201
|
Sapin E, Carr DB, De Jong KA, Shehu A. Computing energy landscape maps and structural excursions of proteins. BMC Genomics 2016; 17 Suppl 4:546. [PMID: 27535545 PMCID: PMC5001232 DOI: 10.1186/s12864-016-2798-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Structural excursions of a protein at equilibrium are key to biomolecular recognition and function modulation. Protein modeling research is driven by the need to aid wet laboratories in characterizing equilibrium protein dynamics. In principle, structural excursions of a protein can be directly observed via simulation of its dynamics, but the disparate temporal scales involved in such excursions make this approach computationally impractical. On the other hand, an informative representation of the structure space available to a protein at equilibrium can be obtained efficiently via stochastic optimization, but this approach does not directly yield information on equilibrium dynamics. METHODS We present here a novel methodology that first builds a multi-dimensional map of the energy landscape that underlies the structure space of a given protein and then queries the computed map for energetically-feasible excursions between structures of interest. An evolutionary algorithm builds such maps with a practical computational budget. Graphical techniques analyze a computed multi-dimensional map and expose interesting features of an energy landscape, such as basins and barriers. A path searching algorithm then queries a nearest-neighbor graph representation of a computed map for energetically-feasible basin-to-basin excursions. RESULTS Evaluation is conducted on intrinsically-dynamic proteins of importance in human biology and disease. Visual statistical analysis of the maps of energy landscapes computed by the proposed methodology reveals features already captured in the wet laboratory, as well as new features indicative of interesting, unknown thermodynamically-stable and semi-stable regions of the equilibrium structure space. Comparison of maps and structural excursions computed by the proposed methodology on sequence variants of a protein sheds light on the role of equilibrium structure and dynamics in the sequence-function relationship. CONCLUSIONS Applications show that the proposed methodology is effective at locating basins in complex energy landscapes and computing basin-basin excursions of a protein with a practical computational budget. While the actual temporal scales spanned by a structural excursion cannot be directly obtained due to the foregoing of simulation of dynamics, hypotheses can be formulated regarding the impact of sequence mutations on protein function. These hypotheses are valuable in instigating further research in wet laboratories.
Collapse
Affiliation(s)
- Emmanuel Sapin
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Daniel B Carr
- Department of Statistics, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Kenneth A De Jong
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.,Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA. amarda.@gmu.edu.,Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA. amarda.@gmu.edu.,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, 20110, VA, USA. amarda.@gmu.edu
| |
Collapse
|
202
|
Mishra AK, Lambright DG. Invited review: Small GTPases and their GAPs. Biopolymers 2016; 105:431-48. [PMID: 26972107 PMCID: PMC5439442 DOI: 10.1002/bip.22833] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.
Collapse
Affiliation(s)
- Ashwini K Mishra
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
203
|
Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016; 15:771-785. [PMID: 27469033 DOI: 10.1038/nrd.2016.139] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.
Collapse
Affiliation(s)
- Jonathan M L Ostrem
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
204
|
InteractoMIX: a suite of computational tools to exploit interactomes in biological and clinical research. Biochem Soc Trans 2016; 44:917-24. [DOI: 10.1042/bst20150001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 01/18/2023]
Abstract
Virtually all the biological processes that occur inside or outside cells are mediated by protein–protein interactions (PPIs). Hence, the charting and description of the PPI network, initially in organisms, the interactome, but more recently in specific tissues, is essential to fully understand cellular processes both in health and disease. The study of PPIs is also at the heart of renewed efforts in the medical and biotechnological arena in the quest of new therapeutic targets and drugs. Here, we present a mini review of 11 computational tools and resources tools developed by us to address different aspects of PPIs: from interactome level to their atomic 3D structural details. We provided details on each specific resource, aims and purpose and compare with equivalent tools in the literature. All the tools are presented in a centralized, one-stop, web site: InteractoMIX (http://interactomix.com).
Collapse
|
205
|
Rivoire O, Reynolds KA, Ranganathan R. Evolution-Based Functional Decomposition of Proteins. PLoS Comput Biol 2016; 12:e1004817. [PMID: 27254668 PMCID: PMC4890866 DOI: 10.1371/journal.pcbi.1004817] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/15/2016] [Indexed: 11/24/2022] Open
Abstract
The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. Proteins display the ability to fold, to carry out complex biochemical reactions, and to be adaptive to changing conditions of selection—the essential characteristics contributing to organismal fitness. A major goal is to understand how these properties emerge from the global pattern of interactions between amino acid residues. Here, we describe the principles and implementation of the statistical coupling analysis (SCA), a method to reveal this pattern through analysis of coevolution between amino acids in an ensemble of homologous sequences. The basic result is a decomposition of protein structures into groups of contiguous amino acids called “sectors” which have been linked to conserved functional properties. This work provides conceptual and practical tools for sector analysis in any sufficiently well-represented protein family, and represents a necessary basis for broadly testing the concept of protein sectors.
Collapse
Affiliation(s)
- Olivier Rivoire
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, Grenoble, France
| | - Kimberly A. Reynolds
- The Green Center for Systems Biology, and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rama Ranganathan
- The Green Center for Systems Biology, and Departments of Biophysics and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
206
|
Pathan AAK, Panthi B, Khan Z, Koppula PR, Alanazi MS, Sachchidanand, Parine NR, Chourasia M. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches. Onco Targets Ther 2016; 9:2575-84. [PMID: 27217775 PMCID: PMC4861002 DOI: 10.2147/ott.s99671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. METHODS In the present study, we targeted the nucleotide-binding site in the "on" and "off" state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. RESULTS Interestingly, the designed compounds exhibit a binding preference for the "off" state over "on" state conformation of K-Ras protein. Moreover, the designed compounds' interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski's rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. CONCLUSION Thus, through the current study, we propose targeting only "off" state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein.
Collapse
Affiliation(s)
- Akbar Ali Khan Pathan
- Genome Research Chair (GRC), Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia; Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia
| | - Bhavana Panthi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Zahid Khan
- Genome Research Chair (GRC), Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Purushotham Reddy Koppula
- Department of Internal Medicine, School of Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veterans Affairs Hospital, School of Medicine, Columbia, MO, USA; Department of Radiology, School of Medicine, Columbia, MO, USA
| | - Mohammed Saud Alanazi
- Genome Research Chair (GRC), Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Sachchidanand
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Narasimha Reddy Parine
- Genome Research Chair (GRC), Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Mukesh Chourasia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
207
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
208
|
Lu S, Jang H, Nussinov R, Zhang J. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Sci Rep 2016; 6:21949. [PMID: 26902995 PMCID: PMC4763299 DOI: 10.1038/srep21949] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/04/2016] [Indexed: 02/08/2023] Open
Abstract
Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4B(WT)-GTP/GDP) catalytic domain, the K-Ras4B(WT)-GTP-GAP complex, and the mutants (K-Ras4B(G12C/G12D/G12V)-GTP/GDP, K-Ras4B(G13D)-GTP/GDP, K-Ras4B(Q61H)-GTP/GDP) and their complexes with GAP. In addition, we simulated 'exchanged' nucleotide states. These comprehensive simulations reveal that in solution K-Ras4B(WT)-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4B(G12C/G12D)-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
209
|
Hiippala A, Vasilescu C, Tallila J, Alastalo TP, Paetau A, Tyni T, Suomalainen A, Euro L, Ojala T. The rare Costello variantHRASc.173C>T (p.T58I) with severe neonatal hypertrophic cardiomyopathy. Am J Med Genet A 2016; 170:1433-8. [DOI: 10.1002/ajmg.a.37596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 01/25/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Anita Hiippala
- Department of Pediatric Cardiology; Children's Hospital; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| | - Catalina Vasilescu
- Research Program Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | | | - Tero-Pekka Alastalo
- Blueprint Genetics; Helsinki Finland
- Pediatric Research Laboratory; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| | - Anders Paetau
- Department of Pathology; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| | - Tiina Tyni
- Research Program Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | - Anu Suomalainen
- Research Program Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | - Liliya Euro
- Research Program Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | - Tiina Ojala
- Department of Pediatric Cardiology; Children's Hospital; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| |
Collapse
|
210
|
Vibrio cholerae FeoA, FeoB, and FeoC Interact To Form a Complex. J Bacteriol 2016; 198:1160-70. [PMID: 26833408 DOI: 10.1128/jb.00930-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Feo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. The feo operon in Vibrio cholerae is made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all required for Feo system function. FeoA and FeoC are both small cytoplasmic proteins, and their function remains unclear. FeoB, which is thought to function as a ferrous iron permease, is a large integral membrane protein made up of an N-terminal GTPase domain and a C-terminal membrane-spanning region. To date, structural studies of FeoB have been carried out using a truncated form of the protein encompassing only the N-terminal GTPase region. In this report, we show that full-length FeoB forms higher-order complexes when cross-linked in vivo in V. cholerae. Our analysis of these complexes revealed that FeoB can simultaneously associate with both FeoA and FeoC to form a large complex, an observation that has not been reported previously. We demonstrate that interactions between FeoB and FeoA, but not between FeoB and FeoC, are required for complex formation. Additionally, we identify amino acid residues in the GTPase region of FeoB that are required for function of the Feo system and for complex formation. These observations suggest that this large Feo complex may be the active form of Feo that is used for ferrous iron transport. IMPORTANCE The Feo system is the major route for ferrous iron transport in bacteria. In this work, the Vibrio cholerae Feo proteins, FeoA, FeoB, and FeoC, are shown to interact to form a large inner membrane complex in vivo. This is the first report showing an interaction among all three Feo proteins. It is also determined that FeoA, but not FeoC, is required for Feo complex assembly.
Collapse
|
211
|
Luitz MP, Bomblies R, Ramcke E, Itzen A, Zacharias M. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis. Sci Rep 2016; 6:19896. [PMID: 26818796 PMCID: PMC4730224 DOI: 10.1038/srep19896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022] Open
Abstract
The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins.
Collapse
Affiliation(s)
- Manuel P Luitz
- Physics Department T38, Technische Universität München, 85748 Garching, Germany
| | - Rainer Bomblies
- Physics Department T38, Technische Universität München, 85748 Garching, Germany
| | - Evelyn Ramcke
- Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, 85748 Garching, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
212
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
213
|
Marcus K, Mattos C. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects. Clin Cancer Res 2016; 21:1810-8. [PMID: 25878362 DOI: 10.1158/1078-0432.ccr-14-2148] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."
Collapse
Affiliation(s)
- Kendra Marcus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
214
|
Nakamura Y, Hibino K, Yanagida T, Sako Y. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains. Biophys Physicobiol 2016; 13:1-11. [PMID: 27924253 PMCID: PMC5042160 DOI: 10.2142/biophysico.13.0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.
Collapse
Affiliation(s)
- Yuki Nakamura
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kayo Hibino
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, Suita, Osaka 565-0874, Japan
| | - Toshio Yanagida
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
215
|
Coyle SM, Lim WA. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. eLife 2016; 5. [PMID: 26765565 PMCID: PMC4775219 DOI: 10.7554/elife.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.
Collapse
Affiliation(s)
- Scott M Coyle
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Program in Biological Sciences, University of California, San Francisco, San Francisco, United States.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Program in Biological Sciences, University of California, San Francisco, San Francisco, United States.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
216
|
Stradal TEB, Costa SCP. Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Curr Top Microbiol Immunol 2016; 399:175-199. [PMID: 27744505 DOI: 10.1007/82_2016_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key aspect of bacterial pathogenesis is the colonization and persistence within the host and, later on, its dissemination to new niches. During evolution, bacteria developed a myriad of virulence mechanisms to usurp the host's sophisticated defense mechanisms in order to establish their colonization niche. Elucidation of the highly dynamic and complex interactions between host and pathogens remains an important field of study. Here, we highlight the conserved manipulation of the actin cytoskeleton by some Gram-negative gastrointestinal pathogens, addressing the role of type III secreted bacterial GEFs at the different steps of pathogenesis. As a final topic, we review cytoskeleton dynamics induced by EPEC/EHEC strains for pedestal formation.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany.
| | - Sonia C P Costa
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany
| |
Collapse
|
217
|
Chavan TS, Jang H, Khavrutskii L, Abraham SJ, Banerjee A, Freed BC, Johannessen L, Tarasov SG, Gaponenko V, Nussinov R, Tarasova NI. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site. Biophys J 2015; 109:2602-2613. [PMID: 26682817 PMCID: PMC4699860 DOI: 10.1016/j.bpj.2015.09.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Medicinal Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Lyuba Khavrutskii
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sherwin J Abraham
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Avik Banerjee
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Liv Johannessen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sergey G Tarasov
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
218
|
Abstract
SUMMARYEvidence is emerging that the role of protein structure in disease needs to be rethought. Sequence mutations in proteins are often found to affect the rate at which a protein switches between structures. Modeling structural transitions in wildtype and variant proteins is central to understanding the molecular basis of disease. This paper investigates an efficient algorithmic realization of the stochastic roadmap simulation framework to model structural transitions in wildtype and variants of proteins implicated in human disorders. Our results indicate that the algorithm is able to extract useful information on the impact of mutations on protein structure and function.
Collapse
|
219
|
Lu S, Jang H, Zhang J, Nussinov R. Inhibitors of Ras-SOS Interactions. ChemMedChem 2015; 11:814-21. [PMID: 26630662 DOI: 10.1002/cmdc.201500481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA. .,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
220
|
Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 2015; 6:8859. [PMID: 26617336 PMCID: PMC4674766 DOI: 10.1038/ncomms9859] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022] Open
Abstract
Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. Aberrant Ras signalling resulting in downstream Mek/Erk pathway activation is found in many cancers. Here, the authors show that the phosphatase SHP2 dephosphorylates Ras resulting in increased Ras activity, and that increased SHP2 activity is found in glioblastomas.
Collapse
Affiliation(s)
- Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Kelly Burrell
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Pardeep Heir
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Amir Alamsahebpour
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Yoshihito Kano
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, 9-701A, 101 College Street, Toronto, M5G1L7 Ontario, Canada
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Gelareh Zadeh
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| |
Collapse
|
221
|
Ran Involved in the Development and Reproduction Is a Potential Target for RNA-Interference-Based Pest Management in Nilaparvata lugens. PLoS One 2015; 10:e0142142. [PMID: 26554926 PMCID: PMC4640576 DOI: 10.1371/journal.pone.0142142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 11/27/2022] Open
Abstract
Ran (RanGTPase) in insects participates in the 20-hydroxyecdysone signal transduction pathway in which downstream genes, FTZ-F1, Krüppel-homolog 1 (Kr-h1) and vitellogenin, are involved. A putative Ran gene (NlRan) was cloned from Nilaparvata lugens, a destructive phloem-feeding pest of rice. NlRan has the typical Ran primary structure features that are conserved in insects. NlRan showed higher mRNA abundance immediately after molting and peaked in newly emerged female adults. Among the examined tissues ovary had the highest transcript level, followed by fat body, midgut and integument, and legs. Three days after dsNlRan injection the NlRan mRNA abundance in the third-, fourth-, and fifth-instar nymphs was decreased by 94.3%, 98.4% and 97.0%, respectively. NlFTZ-F1 expression levels in treated third- and fourth-instar nymphs were reduced by 89.3% and 23.8%, respectively. In contrast, NlKr-h1 mRNA levels were up-regulated by 67.5 and 1.5 folds, respectively. NlRan knockdown significantly decreased the body weights, delayed development, and killed >85% of the nymphs at day seven. Two apparent phenotypic defects were observed: (1) Extended body form, and failed to molt; (2) The cuticle at the notum was split open but cannot completely shed off. The newly emerged female adults from dsNlRan injected fifth-instar nymphs showed lower levels of NlRan and vitellogenin, lower weight gain and honeydew excretion comparing with the blank control, and no offspring. Those results suggest that NlRan encodes a functional protein that was involved in development and reproduction. The study established proof of concept that NlRan could serve as a target for dsRNA-based pesticides for N. lugens control.
Collapse
|
222
|
Yang SW, Ting HC, Lo YT, Wu TY, Huang HW, Yang CJ, Chan JFR, Chuang MC, Hsu YHH. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:42-51. [PMID: 26542736 DOI: 10.1016/j.bbapap.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Cdc42 regulates pathways related to cell division. Dysregulation of Cdc42 can lead to cancer, cardiovascular diseases and neurodegenerative diseases. GTP induced activation mechanism plays an important role in the activity and biological functions of Cdc42. P-loop, Switch I and Switch II are critical regions modulating the enzymatic activity of Cdc42. We applied amide hydrogen/deuterium exchange coupled with liquid chromatography mass spectrometry (HDXMS) to investigate the dynamic changes of apo-Cdc42 after GDP, GTP and GMP-PCP binding. The natural substrate GTP induced significant decreases of deuteration in P-loop and Switch II, moderate changes of deuteration in Switch I and significant changes of deuteration in the α7 helix, a region far away from the active site. GTP binding induced similar effects on H/D exchange to its non-hydrolysable analog, GMP-PCP. HDXMS results indicate that GTP binding blocked the solvent accessibility in the active site leading to the decrease of H/D exchange rate surrounding the active site, and further triggered a conformational change resulting in the drastic decrease of H/D exchange rate at the remote α7 helix. Comparing the deuteration levels in three activation states of apo-Cdc42, Cdc42-GDP and Cdc42-GMP-PCP, the apo-Cdc42 has the most flexible structure, which can be stabilized by guanine nucleotide binding. The rates of H/D exchange of Cdc42-GDP are between the GMP-PCP-bound and the apo form, but more closely to the GMP-PCP-bound form. Our results show that the activation of Cdc42 is a process of conformational changes involved with P-loop, Switch II and α7 helix for structural stabilization.
Collapse
Affiliation(s)
- Sheng-Wei Yang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Ting-Yuan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Chia-Jung Yang
- Department of Materials Engineering, National Chung Hsing University, Taichung, Taiwan
| | | | | | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan; Life Science Research Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
223
|
Knihtila R, Holzapfel G, Weiss K, Meilleur F, Mattos C. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate. J Biol Chem 2015; 290:31025-36. [PMID: 26515069 DOI: 10.1074/jbc.m115.679860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/06/2022] Open
Abstract
RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.
Collapse
Affiliation(s)
- Ryan Knihtila
- From the Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Genevieve Holzapfel
- the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| | - Kevin Weiss
- the Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Flora Meilleur
- the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, and the Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Carla Mattos
- From the Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| |
Collapse
|
224
|
Lu J, Hunter J, Manandhar A, Gurbani D, Westover KD. Structural dataset for the fast-exchanging KRAS G13D. Data Brief 2015; 5:572-8. [PMID: 26958611 PMCID: PMC4773362 DOI: 10.1016/j.dib.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
Cancers bearing the KRAS G13D mutation are notable for their distinct clinical behavior relative to other oncogenic KRAS mutations. We hypothesized that primary biochemical or biophysical properties of KRAS G13D might contribute to these clinical observations and as part of our study undertook structural studies using x-ray crystallography. In this data article we discuss several x-ray diffraction datasets that yielded structures of oncogenic KRAS mutants including a high resolution (1.13 Å) structure of KRAS G13D. The datasets are typical for high resolution x-ray diffraction data and allow the construction of atomic resolution, three dimensional structural models with high confidence. This data can be correlated with biochemical information such as defects in substrate binding kinetics, GTPase activities and interactions with the RAS effector RAF kinase.
Collapse
|
225
|
Srinivasan S, Schiemer J, Zhang X, Chishti AH, Le Breton GC. Gα13 Switch Region 2 Binds to the Talin Head Domain and Activates αIIbβ3 Integrin in Human Platelets. J Biol Chem 2015; 290:25129-39. [PMID: 26292217 PMCID: PMC4599016 DOI: 10.1074/jbc.m115.650978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Even though GPCR signaling in human platelets is directly involved in hemostasis and thrombus formation, the sequence of events by which G protein activation leads to αIIbβ3 integrin activation (inside-out signaling) is not clearly defined. We previously demonstrated that a conformationally sensitive domain of one G protein, i.e. Gα13 switch region 1 (Gα13SR1), can directly participate in the platelet inside-out signaling process. Interestingly however, the dependence on Gα13SR1 signaling was limited to PAR1 receptors, and did not involve signaling through other important platelet GPCRs. Based on the limited scope of this involvement, and the known importance of G13 in hemostasis and thrombosis, the present study examined whether signaling through another switch region of G13, i.e. Gα13 switch region 2 (Gα13SR2) may represent a more global mechanism of platelet activation. Using multiple experimental approaches, our results demonstrate that Gα13SR2 forms a bi-molecular complex with the head domain of talin and thereby promotes β3 integrin activation. Moreover, additional studies provided evidence that Gα13SR2 is not constitutively associated with talin in unactivated platelets, but becomes bound to talin in response to elevated intraplatelet calcium levels. Collectively, these findings provide evidence for a novel paradigm of inside-out signaling in platelets, whereby β3 integrin activation involves the direct binding of the talin head domain to the switch region 2 sequence of the Gα13 subunit.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612 and
| | - James Schiemer
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Programs in Cellular and Molecular Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Xiaowei Zhang
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612 and
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Programs in Cellular and Molecular Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Guy C Le Breton
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612 and
| |
Collapse
|
226
|
MCPIP1 Regulates Fibroblast Migration in 3-D Collagen Matrices Downstream of MAP Kinases and NF-κB. J Invest Dermatol 2015; 135:2944-2954. [PMID: 26399696 PMCID: PMC4648714 DOI: 10.1038/jid.2015.334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
The fibroblast-populated 3D collagen matrix has been used to model matrix contraction, cell motility, and general fibroblast biology. MCPIP1 (monocyte chemotactic protein-induced protein 1) has been shown to regulate inflammation, angiogenesis, and cellular motility. In the present study, we demonstrated induction of MCPIP1 in human fibroblasts embedded in the stress-released 3D collagen matrix, which occurred through activation of mitogen-activated protein kinases, phosphoinositide 3-kinase, and NF-κB. Furthermore, MCPIP1 induction was associated with inhibition of fibroblast migration out of the nested collagen matrix. MCPIP1 induction or ectopic expression also upregulated p53. RNA interference of p53 prevented the inhibition of migration produced by induction or ectopic expression of MCPIP1. Our findings suggest a new role for MCPIP1 as a molecular switch that regulates fibroblast migration in the nested collagen matrix model.
Collapse
|
227
|
Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015; 524:173-179. [PMID: 26147082 PMCID: PMC4866443 DOI: 10.1038/nature14663] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ∼800 human GPCRs and 16 different Gα genes, this raises the question of whether a universal allosteric mechanism governs Gα activation. Here we show that different GPCRs interact with and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, while conserving the allosteric activation mechanism.
Collapse
Affiliation(s)
- Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dmitry B. Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
228
|
Qi F, Fudo S, Neya S, Hoshino T. A Dominant Factor for Structural Classification of Protein Crystals. J Chem Inf Model 2015; 55:1673-85. [DOI: 10.1021/acs.jcim.5b00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Qi
- Graduate School of Pharmaceutical
Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Fudo
- Graduate School of Pharmaceutical
Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Saburo Neya
- Graduate School of Pharmaceutical
Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical
Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
229
|
Aramini JM, Vorobiev SM, Tuberty LM, Janjua H, Campbell ET, Seetharaman J, Su M, Huang YJ, Acton TB, Xiao R, Tong L, Montelione GT. The RAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase Exhibits Allosteric Conformational Changes upon Binding HRAS. Structure 2015; 23:1382-1393. [PMID: 26165597 DOI: 10.1016/j.str.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
RAS binding is a critical step in the activation of BRAF protein serine/threonine kinase and stimulation of the mitogen-activated protein kinase signaling pathway. Mutations in both RAS and BRAF are associated with many human cancers. Here, we report the solution nuclear magnetic resonance (NMR) and X-ray crystal structures of the RAS-binding domain (RBD) from human BRAF. We further studied the complex between BRAF RBD and the GppNHp bound form of HRAS in solution. Backbone, side-chain, and (19)F NMR chemical shift perturbations reveal unexpected changes distal to the RAS-binding face that extend through the core of the RBD structure. Moreover, backbone amide hydrogen/deuterium exchange NMR data demonstrate conformational ensemble changes in the RBD core structure upon complex formation. These changes in BRAF RBD reveal a basis for allosteric regulation of BRAF structure and function, and suggest a mechanism by which RAS binding can signal the drastic domain rearrangements required for activation of BRAF kinase.
Collapse
Affiliation(s)
- James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Sergey M Vorobiev
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Lynda M Tuberty
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haleema Janjua
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elliot T Campbell
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jayaraman Seetharaman
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Min Su
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Yuanpeng J Huang
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
230
|
Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. Current status of the development of Ras inhibitors. J Biochem 2015; 158:91-9. [DOI: 10.1093/jb/mvv060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
|
231
|
Soltan Ghoraie L, Burkowski F, Zhu M. Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins. Bioinformatics 2015; 31:i124-32. [PMID: 26072474 PMCID: PMC4765857 DOI: 10.1093/bioinformatics/btv241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motivation: Inferring structural dependencies among a protein’s side chains helps us understand their coupled motions. It is known that coupled fluctuations can reveal pathways of communication used for information propagation in a molecule. Side-chain conformations are commonly represented by multivariate angular variables, but existing partial correlation methods that can be applied to this inference task are not capable of handling multivariate angular data. We propose a novel method to infer direct couplings from this type of data, and show that this method is useful for identifying functional regions and their interactions in allosteric proteins. Results: We developed a novel extension of canonical correlation analysis (CCA), which we call ‘kernelized partial CCA’ (or simply KPCCA), and used it to infer direct couplings between side chains, while disentangling these couplings from indirect ones. Using the conformational information and fluctuations of the inactive structure alone for allosteric proteins in the Ras and other Ras-like families, our method identified allosterically important residues not only as strongly coupled ones but also in densely connected regions of the interaction graph formed by the inferred couplings. Our results were in good agreement with other empirical findings. By studying distinct members of the Ras, Rho and Rab sub-families, we show further that KPCCA was capable of inferring common allosteric characteristics in the small G protein super-family. Availability and implementation:https://github.com/lsgh/ismb15 Contact:lsoltang@uwaterloo.ca
Collapse
Affiliation(s)
- Laleh Soltan Ghoraie
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Forbes Burkowski
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Mu Zhu
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
232
|
Noguchi H, Ikegami T, Nagadoi A, Kamatari YO, Park SY, Tame JRH, Unzai S. The structure and conformational switching of Rap1B. Biochem Biophys Res Commun 2015; 462:46-51. [PMID: 25935485 DOI: 10.1016/j.bbrc.2015.04.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022]
Abstract
Rap1B is a small GTPase involved in the regulation of numerous cellular processes including synaptic plasticity, one of the bases of memory. Like other members of the Ras family, the active GTP-bound form of Rap1B can bind to a large number of effector proteins and so transmit signals to downstream components of the signaling pathways. The structure of Rap1B bound only to a nucleotide has yet to be solved, but might help reveal an inactive conformation that can be stabilized by a small molecule drug. Unlike other Ras family proteins such as H-Ras and Rap2A, Rap1B crystallizes in an intermediate state when bound to a non-hydrolyzable GTP analog. Comparison with H-Ras and Rap2A reveals conservative mutations relative to Rap1B, distant from the bound nucleotide, which control how readily the protein may adopt the fully activated form in the presence of GTP. High resolution crystallographic structures of mutant proteins show how these changes may influence the hydrogen bonding patterns of the key switch residues.
Collapse
Affiliation(s)
- Hiroki Noguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Aritaka Nagadoi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu 501-1194, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan.
| | - Satoru Unzai
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
233
|
Kapoor A, Travesset A. Differential dynamics of RAS isoforms in GDP- and GTP-bound states. Proteins 2015; 83:1091-106. [PMID: 25846136 DOI: 10.1002/prot.24805] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Abstract
RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP- (total of 3.06 μs) and GTP-bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25-40) and SwitchII (Residues 59-75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP-bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild-type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF-assisted nucleotide exchange.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
234
|
Mott HR, Owen D. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Crit Rev Biochem Mol Biol 2015; 50:85-133. [PMID: 25830673 DOI: 10.3109/10409238.2014.999191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras superfamily small G proteins are master regulators of a diverse range of cellular processes and act via downstream effector molecules. The first structure of a small G protein-effector complex, that of Rap1A with c-Raf1, was published 20 years ago. Since then, the structures of more than 60 small G proteins in complex with their effectors have been published. These effectors utilize a diverse array of structural motifs to interact with the G protein fold, which we have divided into four structural classes: intermolecular β-sheets, helical pairs, other interactions, and pleckstrin homology (PH) domains. These classes and their representative structures are discussed and a contact analysis of the interactions is presented, which highlights the common effector-binding regions between and within the small G protein families.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
235
|
Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:25-41. [PMID: 25618148 PMCID: PMC4329189 DOI: 10.1007/s10969-015-9193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2015] [Indexed: 11/15/2022]
Abstract
The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 μM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Ryohei Ishii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasushi Hikida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuya Fukunaga
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Department of Biochemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, 521A Physiology Bldg., Baltimore, MD 21205 USA
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
236
|
Kanada R, Takagi F, Kikuchi M. Nucleotide-dependent structural fluctuations and regulation of microtubule-binding affinity of KIF1A. Proteins 2015; 83:809-19. [PMID: 25684691 DOI: 10.1002/prot.24780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 11/08/2022]
Abstract
Molecular motors such as kinesin regulate affinity to a rail protein during the ATP hydrolysis cycle. The regulation mechanism, however, is yet to be determined. To understand this mechanism, we investigated the structural fluctuations of the motor head of the single-headed kinesin called KIF1A in different nucleotide states using molecular dynamics simulations of a Gō-like model. We found that the helix α4 at the microtubule (MT) binding site intermittently exhibits a large structural fluctuation when MT is absent. Frequency of this fluctuation changes systematically according to the nucleotide states and correlates strongly with the experimentally observed binding affinity to MT. We also showed that thermal fluctuation enhances the correlation and the interaction with the nucleotide suppresses the fluctuation of the helix α4. These results suggest that KIF1A regulates affinity to MT by changing the flexibility of the helix α4 during the ATP hydrolysis process: the binding site becomes more flexible in the strong binding state than in the weak binding state.
Collapse
Affiliation(s)
- Ryo Kanada
- Cybermedia Center, Osaka University, Toyonaka, 560-0043, Japan; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
237
|
Soltan Ghoraie L, Burkowski F, Zhu M. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins. Proteins 2015; 83:497-516. [DOI: 10.1002/prot.24752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/05/2014] [Accepted: 12/13/2014] [Indexed: 02/05/2023]
Affiliation(s)
| | - Forbes Burkowski
- School of Computer Science, University of Waterloo; Waterloo Ontario Canada
| | - Mu Zhu
- Department of Statistics and Actuarial Science; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
238
|
Abstract
Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼ 30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequence-specific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85D(V12) activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer.
Collapse
|
239
|
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that multiple endocrine neoplasia type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma (MTC). Thyroid C-cells are known to express RET at high levels relative to most cell types; therefore, aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET, the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations have uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular-targeted therapies.
Collapse
Affiliation(s)
- Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA.
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA
| |
Collapse
|
240
|
Oliva B, Fernandez-Fuentes N. Knowledge-based modeling of peptides at protein interfaces: PiPreD. Bioinformatics 2014; 31:1405-10. [PMID: 25540186 DOI: 10.1093/bioinformatics/btu838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/14/2014] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Protein-protein interactions (PPIs) underpin virtually all cellular processes both in health and disease. Modulating the interaction between proteins by means of small (chemical) agents is therefore a promising route for future novel therapeutic interventions. In this context, peptides are gaining momentum as emerging agents for the modulation of PPIs. RESULTS We reported a novel computational, structure and knowledge-based approach to model orthosteric peptides to target PPIs: PiPreD. PiPreD relies on a precompiled and bespoken library of structural motifs, iMotifs, extracted from protein complexes and a fast structural modeling algorithm driven by the location of native chemical groups on the interface of the protein target named anchor residues. PiPreD comprehensive and systematically samples the entire interface deriving peptide conformations best suited for the given region on the protein interface. PiPreD complements the existing technologies and provides new solutions for the disruption of selected interactions. AVAILABILITY AND IMPLEMENTATION Database and accessory scripts and programs are available upon request to the authors or at http://www.bioinsilico.org/PIPRED. CONTACT narcis.fernandez@gmail.com.
Collapse
Affiliation(s)
- Baldo Oliva
- Structural Bioinformatics Lab (GRIB), Departament de Ciencies Experimental i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Narcis Fernandez-Fuentes
- Structural Bioinformatics Lab (GRIB), Departament de Ciencies Experimental i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
241
|
Hubbard PA, Moody CL, Murali R. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities. Front Physiol 2014; 5:478. [PMID: 25566081 PMCID: PMC4267178 DOI: 10.3389/fphys.2014.00478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/23/2014] [Indexed: 12/24/2022] Open
Abstract
GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways.
Collapse
Affiliation(s)
- Paul A Hubbard
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Colleen L Moody
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
242
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
243
|
Kapoor A, Travesset A. Mechanism of the exchange reaction in HRAS from multiscale modeling. PLoS One 2014; 9:e108846. [PMID: 25272152 PMCID: PMC4182752 DOI: 10.1371/journal.pone.0108846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022] Open
Abstract
HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 µs), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 25–40) and SwitchII (residues 59–75) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Alex Travesset
- Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
244
|
Abstract
The Ras superfamily of small GTPases is composed of more than 150 members, which share a conserved structure and biochemical properties, acting as binary molecular switches turned on by binding GTP and off by hydrolyzing GTP to GDP. However, despite considerable structural and biochemical similarities, these proteins play multiple and divergent roles, being versatile and key regulators of virtually all fundamental cellular processes. Conversely, their dysfunction plays a crucial role in the pathogenesis of serious human diseases, including cancer and developmental syndromes. Fuelled by the original identification in 1982 of mutationally activated and transforming human Ras genes in human cancer cell lines, a variety of powerful experimental techniques have been intensively focused on discovering and studying structure, biochemistry, and biology of Ras and Ras-related small GTPases, leading to fundamental research breakthroughs into identification and structural and functional characterization of a huge number of Ras superfamily members, as well as of their multiple regulators and effectors. In this review we provide a general overview of the major milestones that eventually allowed to unlock the secret treasure chest of this large and important superfamily of proteins.
Collapse
|
245
|
In Silico Screening of Mutated K-Ras Inhibitors from Malaysian Typhonium flagelliforme for Non-Small Cell Lung Cancer. Adv Bioinformatics 2014; 2014:431696. [PMID: 25309590 PMCID: PMC4189522 DOI: 10.1155/2014/431696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022] Open
Abstract
K-ras is an oncogenic GTPase responsible for at least 15-25% of all non-small cell lung cancer cases worldwide. Lung cancer of both types is increasing with an alarming rate due to smoking habits in Malaysia among men and women. Natural products always offer alternate treatment therapies that are safe and effective. Typhonium flagelliforme or Keladi Tikus is a local plant known to possess anticancer properties. The whole extract is considered more potent than individual constituents. Since K-ras is the key protein in lung cancer, our aim was to identify the constituents of the plant that could target the mutated K-ras. Using docking strategies, reported potentially active compounds of Typhonium flagelliforme were docked into the allosteric surface pockets and switch regions of the K-ras protein to identify possible inhibitors. The selected ligands were found to have a high binding affinity for the switch II and the interphase region of the ras-SOS binding surface.
Collapse
|
246
|
Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proc Natl Acad Sci U S A 2014; 111:E3785-94. [PMID: 25157176 DOI: 10.1073/pnas.1406559111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in Ras GTPase and various other components of the Ras signaling pathways are among the most common genetic alterations in human cancers and also have been identified in several familial developmental syndromes. Over the past few decades it has become clear that the activity or the oncogenic potential of Ras is dependent on the nonreceptor tyrosine kinase Src to promote the Ras/Raf/MAPK pathway essential for proliferation, differentiation, and survival of eukaryotic cells. However, no direct relationship between Ras and Src has been established. We show here that Src binds to and phosphorylates GTP-, but not GDP-, loaded Ras on a conserved Y32 residue within the switch I region in vitro and that in vivo, Ras-Y32 phosphorylation markedly reduces the binding to effector Raf and concomitantly increases binding to GTPase-activating proteins and the rate of GTP hydrolysis. These results suggest that, in the context of predetermined crystallographic structures, Ras-Y32 serves as an Src-dependent keystone regulatory residue that modulates Ras GTPase activity and ensures unidirectionality to the Ras GTPase cycle.
Collapse
|
247
|
Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, Pannone L, Paolacci S, Zhang SC, Fodale V, Bocchinfuso G, Rossi C, Burkitt-Wright EMM, Farrotti A, Stellacci E, Cecchetti S, Ferese R, Bottero L, Castro S, Fenneteau O, Brethon B, Sanchez M, Roberts AE, Yntema HG, Van Der Burgt I, Cianci P, Bondeson ML, Cristina Digilio M, Zampino G, Kerr B, Aoki Y, Loh ML, Palleschi A, Di Schiavi E, Carè A, Selicorni A, Dallapiccola B, Cirstea IC, Stella L, Zenker M, Gelb BD, Cavé H, Ahmadian MR, Tartaglia M. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet 2014; 23:4315-27. [PMID: 24705357 PMCID: PMC4103678 DOI: 10.1093/hmg/ddu148] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 12/29/2022] Open
Abstract
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.
Collapse
Affiliation(s)
- Elisabetta Flex
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | | | - Marion Strullu
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Eyad K Fansa
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Aurélie Caye
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Radovan Dvorsky
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | | | - Si-Cai Zhang
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-Malpighi, Bologna 40138, Italy
| | - Emma M M Burkitt-Wright
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | | | - Serena Cecchetti
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rosangela Ferese
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Silvana Castro
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | | | - Benoît Brethon
- Pediatric Hematology Department, Robert Debré Hospital, Paris 75019, France
| | - Massimo Sanchez
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, and Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Ineke Van Der Burgt
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Paola Cianci
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Bronwyn Kerr
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California School of Medicine, and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94143, USA
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Elia Di Schiavi
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | - Alessandra Carè
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Angelo Selicorni
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | | | - Ion C Cirstea
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany, Leibniz Institute for Age Research, Jena 07745, Germany
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Bruce D Gelb
- Department of Pediatrics and Department of Genetics and Department of Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hélène Cavé
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Mohammad R Ahmadian
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| |
Collapse
|
248
|
Hong L, Sklar LA. Targeting GTPases in Parkinson's disease: comparison to the historic path of kinase drug discovery and perspectives. Front Mol Neurosci 2014; 7:52. [PMID: 24926233 PMCID: PMC4046578 DOI: 10.3389/fnmol.2014.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022] Open
Abstract
Neurological diseases have placed heavy social and financial burdens on modern society. As the life expectancy of humans is extended, neurological diseases, such as Parkinson’s disease, have become increasingly common among senior populations. Although the enigmas of Parkinson’s diseases await resolution, more vivid pictures on the cause, progression, and control of the illness are emerging after years of research. On the molecular level, GTPases are implicated in the etiology of Parkinson’s disease and are rational pharmaceutical targets for their control. However, targeting individual GTPases, which belong to a superfamily of proteins containing multiple members with a conserved guanine nucleotide binding domain, has proven to be challenging. In contrast, pharmaceutical pursuit of inhibition of kinases, which constitute another superfamily of proteins with more than 500 members, has been fairly successful. We reviewed the breakthroughs in the history of kinase drug discovery to provide guidance for the GTPase field. We summarize recent progress made in the regulation of GTPase activity. We also present an efficient and cost effective approach to drug screening, which uses multiplex flow cytometry and mixture-based positional scanning libraries. These methods allow simultaneous measurements of both the activity and the selectivity of the screened library. Several GTPase activator clusters were identified which showed selectivity against different GTPase subfamilies. While the clusters need to be further deconvoluted to identify individual active compounds, the method described here and the structure information gathered create a foundation for further developments to build upon.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, The University of New Mexico Albuquerque, NM, USA ; Center for Molecular Discovery, The University of New Mexico Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, The University of New Mexico Albuquerque, NM, USA ; Center for Molecular Discovery, The University of New Mexico Albuquerque, NM, USA ; Cancer Center, The University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
249
|
Liao W, Jordaan G, Coriaty N, Sharma S. Amplification of B cell receptor-Erk signaling by Rasgrf-1 overexpression in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2907-16. [PMID: 24597981 DOI: 10.3109/10428194.2014.898759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rasgrf-1 is a guanine exchange factor (GEF) that catalyzes the exchange of GDP for GTP. In a RNA microarray analysis of chronic lymphocytic leukemia (CLL) specimens (n = 5), this gene was found to be overexpressed in CLL as compared to normal peripheral blood mononuclear cell (PBMC) CD19 + B cells (n = 3). CLL specimens (n = 29) expressed Rasgrf-1 RNA at levels 5-300-fold higher as compared to normal B cells. CLL specimens expressed a 75 kDa isoform that was smaller than the expected full-length protein (140 kDa) and the truncated variant had higher GEF activity. Knockdown of Rasgrf-1 in CLL specimens inhibited active GTP-bound Ras and the Ras/Erk/mitogen-activated protein kinase (MAPK) pathway. Rasgrf-1 was phosphorylated and activated by B cell receptor (BCR) signaling that increased its GEF function, and this phosphorylation was blocked by Src and Bruton's tyrosine kinase (BTK) inhibitors. Rasgrf-1 is a novel GEF protein that has a role in BCR signaling and its overexpression further activates the Ras/Erk/MAPK pathway in CLL specimens.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, Greater Los Angeles VA Healthcare Center, UCLA School of Medicine , Los Angeles, CA , USA
| | | | | | | |
Collapse
|
250
|
Prakash P, Gorfe AA. Overview of simulation studies on the enzymatic activity and conformational dynamics of the GTPase Ras. MOLECULAR SIMULATION 2014; 40:839-847. [PMID: 26491216 DOI: 10.1080/08927022.2014.895000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last 40 years, we have learnt a great deal about the Ras onco-proteins. These intracellular molecular switches are essential for the function of a variety of physiological processes, including signal transduction cascades responsible for cell growth and proliferation. Molecular simulations and free energy calculations have played an essential role in elucidating the conformational dynamics and energetics underlying the GTP hydrolysis reaction catalysed by Ras. Here we present an overview of the main lessons from molecular simulations on the GTPase reaction and conformational dynamics of this important anti-cancer drug target. In the first part, we summarise insights from quantum mechanical and combined quantum mechanical/molecular mechanical simulations as well as other free energy methods and highlight consensus viewpoints as well as remaining controversies. The second part provides a very brief overview of new insights emerging from large-scale molecular dynamics simulations. We conclude with a perspective regarding future studies of Ras where computational approaches will likely play an active role.
Collapse
Affiliation(s)
- Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| |
Collapse
|