201
|
Wiebelhaus JM, Grim TW, Owens RA, Lazenka MF, Sim-Selley LJ, Abdullah RA, Niphakis MJ, Vann RE, Cravatt BF, Wiley JL, Negus SS, Lichtman AH. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice. J Pharmacol Exp Ther 2015; 352:195-207. [PMID: 25398241 PMCID: PMC4293433 DOI: 10.1124/jpet.114.218677] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on ICSS. Thus, THC, MAGL inhibition, and dual FAAH-MAGL inhibition not only reduce ICSS, but also decrease other reinforced and nonreinforced behaviors.
Collapse
Affiliation(s)
- Jason M Wiebelhaus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Travis W Grim
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Robert A Owens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Matthew F Lazenka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Micah J Niphakis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Robert E Vann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Benjamin F Cravatt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Jenny L Wiley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.M.W., T.W.G., R.A.O., M.F.L., L.J.S.-S., R.A.A., R.E.V., S.S.N., A.H.L.); Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and RTI International, Research Triangle Park, North Carolina (J.L.W.)
| |
Collapse
|
202
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
203
|
Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015; 26:59-72. [PMID: 25369747 PMCID: PMC5398317 DOI: 10.1097/fbp.0000000000000109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.
Collapse
Affiliation(s)
- Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departments of Psychology
| | | | | | - Jeffrey W. Dalley
- Departments of Psychology
- Department of Psychiatry, Addenbrookes’s Hospital University of Cambridge, Cambridge, UK
| |
Collapse
|
204
|
Wenzel JM, Rauscher NA, Cheer JF, Oleson EB. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 2015; 6:16-26. [PMID: 25491156 DOI: 10.1021/cn500255p] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Survival is dictated by an organism's fitness in approaching positive stimuli and avoiding harm. While a rich literature outlines a role for mesolimbic dopamine in reward and appetitive behaviors, dopamine's involvement in aversion and avoidance behaviors remains controversial. Debate surrounding dopamine's function in the processing of negative stimuli likely stems from conflicting results reported by single-unit electrophysiological studies. Indeed, a number of studies suggest that midbrain dopaminergic cells are inhibited by the presentation of negative or fearful stimuli, while others report no change, or even an increase, in their activity. These disparate results may be due to population heterogeneity. Recent evidence demonstrates that midbrain dopamine neurons are heterogeneous in their projection targets, responses to environmental stimuli, pharmacology, and influences on motivated behavior. Thus, in order to assemble an accurate account of dopamine function during aversive stimulus experience and related behavior, it is necessary to examine the functional output of dopamine neural activity at mesolimbic terminal regions. This Review presents a growing body of evidence that dopamine release in the nucleus accumbens encodes not only reward, but also aversion. For example, our laboratory recently utilized fast-scan cyclic voltammetry to show that real-time changes in accumbal dopamine release are detected when animals are presented with predictors of aversion and its avoidance. These data, along with other reports, support a considerably more nuanced view of dopamine neuron function, wherein accumbal dopamine release is differentially modulated by positive and negative affective stimuli to promote adaptive behaviors.
Collapse
Affiliation(s)
| | - Noah A. Rauscher
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| | | | - Erik B. Oleson
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| |
Collapse
|
205
|
Gomes FV, Guimarães FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol 2015; 18:pyu018. [PMID: 25522381 PMCID: PMC4368886 DOI: 10.1093/ijnp/pyu018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia. METHODS This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40-65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons. RESULTS MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states. CONCLUSIONS Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted.
Collapse
Affiliation(s)
- Felipe V Gomes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace).
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace)
| | - Anthony A Grace
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace)
| |
Collapse
|
206
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
207
|
Cadoni C, Simola N, Espa E, Fenu S, Di Chiara G. Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats. Addict Biol 2015; 20:132-42. [PMID: 23957273 DOI: 10.1111/adb.12085] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adolescent Cannabis exposure has been hypothesized to act as a gateway to opiate abuse. In order to investigate the role of genetic background in cannabinoid-opiate interactions, we studied the effect of Δ(9) -tetrahydrocannabinol (THC) exposure of adolescent Lewis and Fischer 344 rats on the responsiveness of accumbens shell and core dopamine (DA), as monitored by microdialysis, to THC and heroin at adulthood. Heroin reward and reinstatement by heroin priming were studied by conditioned place preference (CPP) and cognitive and emotional functions by object recognition, Y maze and elevated plus maze paradigms. THC stimulated shell DA in Lewis but not in Fischer 344 rats. Adolescent THC exposure potentiated DA stimulant effects of heroin in the shell and core of Lewis and only in the core of Fischer 344 rats. Control Lewis rats developed stronger CPP to heroin and resistance to extinction compared with Fischer 344 strain. In Lewis rats, THC exposure did not affect heroin CPP but potentiated the effect of heroin priming. In Fischer 344 rats, THC exposure increased heroin CPP and made it resistant to extinction. Lewis rats showed seeking reactions during extinction and hedonic reactions in response to heroin priming. Moreover, adolescent THC exposure affected emotional function only in Lewis rats. These observations suggest that long-term effects of Cannabis exposure on heroin addictive liability and emotionality are dependent on individual genetic background.
Collapse
Affiliation(s)
- Cristina Cadoni
- Institute of Neuroscience; National Research Council of Italy; Italy
- National Institute of Neuroscience; University of Cagliari; Italy
- Centre of Excellence ‘Neurobiology of Dependence’; University of Cagliari; Italy
| | - Nicola Simola
- Department of Biomedical Sciences; Neuropsychopharmacology Section; University of Cagliari; Italy
| | - Elena Espa
- Department of Biomedical Sciences; Neuropsychopharmacology Section; University of Cagliari; Italy
| | - Sandro Fenu
- Department of Biomedical Sciences; Neuropsychopharmacology Section; University of Cagliari; Italy
- National Institute of Neuroscience; University of Cagliari; Italy
- Centre of Excellence ‘Neurobiology of Dependence’; University of Cagliari; Italy
| | - Gaetano Di Chiara
- Institute of Neuroscience; National Research Council of Italy; Italy
- Department of Biomedical Sciences; Neuropsychopharmacology Section; University of Cagliari; Italy
- National Institute of Neuroscience; University of Cagliari; Italy
- Centre of Excellence ‘Neurobiology of Dependence’; University of Cagliari; Italy
| |
Collapse
|
208
|
Neurobiological Bases of Cue- and Nicotine-induced Reinstatement of Nicotine Seeking: Implications for the Development of Smoking Cessation Medications. Curr Top Behav Neurosci 2015; 24:125-54. [PMID: 25638336 DOI: 10.1007/978-3-319-13482-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A better understanding of the neurobiological factors that contribute to relapse to smoking is needed for the development of efficacious smoking cessation medications. Reinstatement procedures allow the preclinical assessment of several factors that contribute to relapse in humans, including re-exposure to nicotine via tobacco smoking and the presentation of stimuli that were previously associated with nicotine administration (i.e., conditioned stimuli). This review provides an integrated discussion of the results of animal studies that used reinstatement procedures to assess the efficacy of pharmacologically targeting various neurotransmitter systems in attenuating the cue- and nicotine-induced reinstatement of nicotine seeking. The results of these animal studies have increased our understanding of the neurobiological processes that mediate the conditioned effects of stimuli that trigger reinstatement to nicotine seeking. Thus, these findings provide important insights into the neurobiological substrates that modulate relapse to tobacco smoking in humans and the ongoing search for novel efficacious smoking cessation medications.
Collapse
|
209
|
Aguilar DD, Chen L, Lodge DJ. Increasing endocannabinoid levels in the ventral pallidum restore aberrant dopamine neuron activity in the subchronic PCP rodent model of schizophrenia. Int J Neuropsychopharmacol 2014; 18:pyu035. [PMID: 25539511 PMCID: PMC4332795 DOI: 10.1093/ijnp/pyu035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. METHODS Using in vivo extracellular recordings in chloral hydrate-anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. RESULTS Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. CONCLUSIONS Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity.
Collapse
Affiliation(s)
- David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas (Aguilar, Drs Chen and Lodge); Departments of Physiology & Pathophysiology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China (Dr Chen).
| | | | | |
Collapse
|
210
|
Fanarioti E, Mavrikaki M, Panagis G, Mitsacos A, Nomikos GG, Giompres P. Behavioral and neurochemical changes in mesostriatal dopaminergic regions of the rat after chronic administration of the cannabinoid receptor agonist WIN55,212-2. Int J Neuropsychopharmacol 2014; 18:pyu097. [PMID: 25522428 PMCID: PMC4438542 DOI: 10.1093/ijnp/pyu097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system interacts extensively with other neurotransmitter systems and has been implicated in a variety of functions, including regulation of basal ganglia circuits and motor behavior. The present study examined the effects of repeated administration of the nonselective cannabinoid receptor 1 agonist WIN55,212-2 on locomotor activity and on binding and mRNA levels of dopamine receptors and transporters and GABAA receptors in mesostriatal dopaminergic regions of the rat. METHODS Rats received systemic injections of WIN55,212-2 (0, 0.1, 0.3, or 1mg/kg, intraperitoneally) for 20 consecutive days. Locomotor activity was measured on days 1, 10, and 20. Following the last measurement, rats were euthanized and prepared for in vitro binding and in situ hybridization experiments. RESULTS Acutely, 0.3 and 1mg/kg of WIN55,212-2 produced hypolocomotion, which was sustained for the next 2 measurements, compared to vehicle. Repeated administration of WIN55,212-2 decreased the mRNA levels of the D2 autoreceptors in substantia nigra and ventral tegmental area and increased D1 receptor mRNA and binding in nucleus accumbens. Furthermore, both dopamine receptor and transporter binding and mRNA levels were decreased in substantia nigra. Moreover, repeated administration of WIN55,212-2 decreased GABAA receptor binding levels in dorsal striatum and substantia nigra. CONCLUSIONS Our data indicate that chronic WIN55,212-2 administration results in sustained effects on locomotor activity, similar to those observed after acute administration, and modulates the dopaminergic and GABAergic systems in a region-, dose-, and neurotransmitter-selective manner.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Behavior, Animal/drug effects
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/administration & dosage
- Cannabinoid Receptor Agonists/pharmacology
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Motor Activity/drug effects
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Time Factors
Collapse
Affiliation(s)
- Eleni Fanarioti
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Maria Mavrikaki
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George Panagis
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Ada Mitsacos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George G Nomikos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Panagiotis Giompres
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos).
| |
Collapse
|
211
|
Abstract
OBJECTIVE Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. METHODS We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. RESULTS In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. CONCLUSION The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Collapse
|
212
|
Hunault CC, Böcker KBE, Stellato RK, Kenemans JL, de Vries I, Meulenbelt J. Acute subjective effects after smoking joints containing up to 69 mg Δ9-tetrahydrocannabinol in recreational users: a randomized, crossover clinical trial. Psychopharmacology (Berl) 2014; 231:4723-33. [PMID: 24879495 DOI: 10.1007/s00213-014-3630-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 05/14/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE An increase in the potency of the cannabis cigarettes has been observed over the past three decades. OBJECTIVES In this study, we aimed to establish the impact of Δ9-tetrahydrocannabinol (THC) on the rating of subjective effects (intensity and duration of the effects), up to 23 % THC potency (69 mg THC) among recreational users. METHODS Recreational users (N = 24) smoked cannabis cigarettes with four doses of THC (placebo 29, 49 and 69 mg of THC) on four separate test days in a randomized, double-blind, placebo-controlled, crossover study. The participants filled in three different questionnaires measuring subjective effects during the exposure up to 8 h post-smoking. The 'high' feeling, heart rate, blood pressure and THC serum concentrations were also regularly recorded during these 8 h. RESULTS THC significantly increased the high feeling, dizziness, dry-mouthed feeling, palpitations, impaired memory and concentration, and 'down', 'sedated' and 'anxious' feelings. In addition, THC significantly decreased alertness, contentment and calmness. A cubic relationship was observed between 'feeling the drug' and 'wanting more'. The THC-induced decrease in 'feeling stimulated' and increase in anxiety lasted up to 8 h post-smoking. Sedation at 8 h post-smoking was increased by a factor of 5.7 with the highest THC dose, compared to the placebo. CONCLUSIONS This study shows a strong effect of cannabis containing high percentages of THC on the rating of subjective effects. Regular users and forensic toxicologists should be aware that the THC-induced increase in 'feeling sedated' continues longer with a 69 mg THC dose than with a 29 mg THC dose.
Collapse
Affiliation(s)
- Claudine C Hunault
- National Dutch Poisons Information Center, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, The Netherlands,
| | | | | | | | | | | |
Collapse
|
213
|
Kohut SJ, Hiranita T, Hong SK, Ebbs AL, Tronci V, Green J, Garcés-Ramírez L, Chun LE, Mereu M, Newman AH, Katz JL, Tanda G. Preference for distinct functional conformations of the dopamine transporter alters the relationship between subjective effects of cocaine and stimulation of mesolimbic dopamine. Biol Psychiatry 2014; 76:802-9. [PMID: 24853388 PMCID: PMC4353924 DOI: 10.1016/j.biopsych.2014.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subjective effects of cocaine are mediated primarily by dopamine (DA) transporter (DAT) blockade. The present study assessed the hypothesis that different DAT conformational equilibria regulate differences in cocaine-like subjective effects and extracellular DA induced by diverse DA-uptake inhibitors (DUIs). METHODS The relationship between cocaine-like subjective effects and stimulation of mesolimbic DA levels by standard DUIs (cocaine, methylphenidate, WIN35,428) and atypical DUIs (benztropine analogs: AHN1-055, AHN2-005, JHW007) was investigated using cocaine discrimination and DA microdialysis procedures in rats. RESULTS All drugs stimulated DA levels with different maxima and time courses. Standard DUIs, which preferentially bind outward-facing DAT conformations, fully substituted for cocaine, consistently producing cocaine-like subjective effects at DA levels of 100-125% over basal values, regardless of dose or pretreatment time. The atypical DUIs, with DAT binding minimally affected by DAT conformation, produced inconsistent cocaine-like subjective effects. Full effects were obtained, if at all, only at a few doses and pretreatment times and at DA levels 600-700% greater than basal values. Importantly, the linear, time-independent, relationship between cocaine-like subjective effects and DA stimulation obtained with standard DUIs was not obtained with the atypical DUIs. CONCLUSIONS These results suggest a time-related desensitization process underlying the reduced cocaine subjective effects of atypical DUIs that may be differentially induced by the binding modalities identified using molecular approaches. Since the DAT is the target of several drugs for treating neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder, these results help to identify safe and effective medications with minimal cocaine-like subjective effects that contribute to abuse liability.
Collapse
Affiliation(s)
- Stephen J Kohut
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Takato Hiranita
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Soo-Kyung Hong
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Aaron L Ebbs
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Valeria Tronci
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer Green
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Linda Garcés-Ramírez
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Lauren E Chun
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Maddalena Mereu
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Amy H Newman
- Medicinal Chemistry Sections, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Jonathan L Katz
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Gianluigi Tanda
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland.
| |
Collapse
|
214
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
215
|
Bhattacharyya S, Iyegbe C, Atakan Z, Martin-Santos R, Crippa JA, Xu X, Williams S, Brammer M, Rubia K, Prata D, Collier DA, McGuire PK. Protein kinase B (AKT1) genotype mediates sensitivity to cannabis-induced impairments in psychomotor control. Psychol Med 2014; 44:3315-3328. [PMID: 25065544 DOI: 10.1017/s0033291714000920] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND What determines inter-individual variability to impairments in behavioural control that may underlie road-traffic accidents, and impulsive and violent behaviours occurring under the influence of cannabis, the most widely used illicit drug worldwide? METHOD Employing a double-blind, repeated-measures design, we investigated the genetic and neural basis of variable sensitivity to cannabis-induced behavioural dyscontrol in healthy occasional cannabis users. Acute oral challenge with placebo or Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, was combined with functional magnetic resonance imaging, while participants performed a response inhibition task that involved inhibiting a pre-potent motor response. They were genotyped for rs1130233 single nucleotide polymorphisms (SNPs) of the protein kinase B (AKT1) gene. RESULTS Errors of inhibition were significantly (p = 0.008) increased following administration of THC in carriers of the A allele, but not in G allele homozygotes of the AKT1 rs1130233 SNP. The A allele carriers also displayed attenuation of left inferior frontal response with THC evident in the sample as a whole, while there was a modest enhancement of inferior frontal activation in the G homozygotes. There was a direct relationship (r = -0.327, p = 0.045) between the behavioural effect of THC and its physiological effect in the inferior frontal gyrus, where AKT1 genotype modulated the effect of THC. CONCLUSIONS These results require independent replication and show that differing vulnerability to acute psychomotor impairments induced by cannabis depends on variation in a gene that influences dopamine function, and is mediated through modulation of the effect of cannabis on the inferior frontal cortex, that is rich in dopaminergic innervation and critical for psychomotor control.
Collapse
Affiliation(s)
- S Bhattacharyya
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - C Iyegbe
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - Z Atakan
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - R Martin-Santos
- Pharmacology Research Unit, IMIM-Hospital del Mar and Psychiatric Department,ICN,Hospital Clinico, Barcelona,Spain
| | - J A Crippa
- Department of Neurology, Psychiatry and Medical Psychology, Faculty of Medicine of Ribeirão Preto,University of São Paulo,Brazil
| | - X Xu
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - S Williams
- Department of Neuroimaging, Centre for Neuroimaging Sciences,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - M Brammer
- Department of Neuroimaging, Centre for Neuroimaging Sciences,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - K Rubia
- Department of Child and Adolescent Psychiatry,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - D Prata
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - D A Collier
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - P K McGuire
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| |
Collapse
|
216
|
McLoughlin BC, Pushpa‐Rajah JA, Gillies D, Rathbone J, Variend H, Kalakouti E, Kyprianou K, Cochrane Schizophrenia Group. Cannabis and schizophrenia. Cochrane Database Syst Rev 2014; 2014:CD004837. [PMID: 25314586 PMCID: PMC10107010 DOI: 10.1002/14651858.cd004837.pub3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Schizophrenia is a mental illness causing disordered beliefs, ideas and sensations. Many people with schizophrenia smoke cannabis, and it is unclear why a large proportion do so and if the effects are harmful or beneficial. It is also unclear what the best method is to allow people with schizophrenia to alter their cannabis intake. OBJECTIVES To assess the effects of specific psychological treatments for cannabis reduction in people with schizophrenia.To assess the effects of antipsychotics for cannabis reduction in people with schizophrenia.To assess the effects of cannabinoids (cannabis related chemical compounds derived from cannabis or manufactured) for symptom reduction in people with schizophrenia. SEARCH METHODS We searched the Cochrane Schizophrenia Group Trials Register, 12 August 2013, which is based on regular searches of BIOSIS, CINAHL, EMBASE, MEDLINE, PUBMED and PsycINFO.We searched all references of articles selected for inclusion for further relevant trials. We contacted the first author of included studies for unpublished trials or data. SELECTION CRITERIA We included all randomised controlled trials involving cannabinoids and schizophrenia/schizophrenia-like illnesses, which assessed:1) treatments to reduce cannabis use in people with schizophrenia;2) the effects of cannabinoids on people with schizophrenia. DATA COLLECTION AND ANALYSIS We independently inspected citations, selected papers and then re-inspected the studies if there were discrepancies, and extracted data. For dichotomous data we calculated risk ratios (RR) and for continuous data, we calculated mean differences (MD), both with 95% confidence intervals (CI) on an intention-to-treat basis, based on a fixed-effect model. We excluded data if loss to follow-up was greater than 50%. We assessed risk of bias for included studies and used GRADE to rate the quality of the evidence. MAIN RESULTS We identified eight randomised trials, involving 530 participants, which met our selection criteria.For the cannabis reduction studies no one treatment showed superiority for reduction in cannabis use. Overall, data were poorly reported for many outcomes of interest. Our main outcomes of interest were medium-term data for cannabis use, global state, mental state, global functioning, adverse events, leaving the study early and satisfaction with treatment. 1. Reduction in cannabis use: adjunct psychological therapies (specifically about cannabis and psychosis) versus treatment as usualResults from one small study showed people receiving adjunct psychological therapies specifically about cannabis and psychosis were no more likely to reduce their intake than those receiving treatment as usual (n = 54, 1 RCT, MD -0.10, 95% CI -2.44 to 2.24, moderate quality evidence). Results for other main outcomes at medium term were also equivocal. No difference in mental state measured on the PANSS positive were observed between groups (n = 62, 1 RCT, MD -0.30 95% CI -2.55 to 1.95, moderate quality evidence). Nor for the outcome of general functioning measured using the World Health Organization Quality of Life BREF (n = 49, 1 RCT, MD 0.90 95% CI -1.15 to 2.95, moderate quality evidence). No data were reported for the other main outcomes of interest 2. Reduction in cannabis use: adjunct psychological therapy (specifically about cannabis and psychosis) versus adjunct non-specific psychoeducation One study compared specific psychological therapy aimed at cannabis reduction with general psychological therapy. At three-month follow-up, the use of cannabis in the previous four weeks was similar between treatment groups (n = 47, 1 RCT, RR 1.04 95% CI 0.62 to 1.74, moderate quality evidence). Again, at a medium-term follow-up, the average mental state scores from the Brief Pscychiatric Rating Scale-Expanded were similar between groups (n = 47, 1 RCT, MD 3.60 95% CI - 5.61 to 12.81, moderate quality evidence). No data were reported for the other main outcomes of interest: global state, general functioning, adverse events, leaving the study early and satisfaction with treatment. 3. Reduction in cannabis use: antipsychotic versus antipsychotic In a small trial comparing effectiveness of olanzapine versus risperidone for cannabis reduction, there was no difference between groups at medium-term follow-up (n = 16, 1 RCT, RR 1.80 95% CI 0.52 to 6.22, moderate quality evidence). The number of participants leaving the study early at medium term was also similar (n = 28, 1 RCT, RR 0.50 95% CI 0.19 to 1.29, moderate quality evidence). Mental state data were reported, however they were reported within the short term and no difference was observed. No data were reported for global state, general functioning, and satisfaction with treatment.With regards to adverse effects data, no study reported medium-term data. Short-term data were presented but overall, no real differences between treatment groups were observed for adverse effects. 4. Cannabinoid as treatment: cannabidiol versus amisulprideAgain, no data were reported for any of the main outcomes of interest at medium term. There were short-term data reported for mental state using the BPRS and PANSS, no overall differences in mental state were observed between treatment groups. AUTHORS' CONCLUSIONS Results are limited and inconclusive due to the small number and size of randomised controlled trials available and quality of data reporting within these trials. More research is needed to a) explore the effects of adjunct psychological therapy that is specifically about cannabis and psychosis as currently there is no evidence for any novel intervention being better than standard treatment,for those that use cannabis and have schizophrenia b) decide the most effective drug treatment in treating those that use cannabis and have schizophrenia, and c) assess the effectiveness of cannabidiol in treating schizophrenia. Currently evidence is insufficient to show cannabidiol has an antipsychotic effect.
Collapse
Affiliation(s)
- Benjamin C McLoughlin
- The University of NottinghamSchool of MedicineQueens Medical CentreNottinghamNottinghamshireUKNG7 2UH
| | - Jonathan A Pushpa‐Rajah
- The University of NottinghamSchool of MedicineQueens Medical CentreNottinghamNottinghamshireUKNG7 2UH
| | - Donna Gillies
- Western Sydney Local Health District ‐ Mental HealthCumberland HospitalLocked Bag 7118ParramattaNSWAustralia2124
| | - John Rathbone
- Bond UniversityFaculty of Health Sciences and MedicineRobinaGold CoastQueenslandAustralia4229
| | | | - Eliana Kalakouti
- University of NottinghamDepartment of MedicineFlat 78, One Fletcher GateAdams WalkNottinghamUKNG1 1QR
| | - Katerina Kyprianou
- University of NottinghamDepartment of MedicineFlat 78, One Fletcher GateAdams WalkNottinghamUKNG1 1QR
| | | |
Collapse
|
217
|
Bachhuber MA, Saloner B, Cunningham CO, Barry CL. Medical cannabis laws and opioid analgesic overdose mortality in the United States, 1999-2010. JAMA Intern Med 2014; 174:1668-73. [PMID: 25154332 PMCID: PMC4392651 DOI: 10.1001/jamainternmed.2014.4005] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Opioid analgesic overdose mortality continues to rise in the United States, driven by increases in prescribing for chronic pain. Because chronic pain is a major indication for medical cannabis, laws that establish access to medical cannabis may change overdose mortality related to opioid analgesics in states that have enacted them. OBJECTIVE To determine the association between the presence of state medical cannabis laws and opioid analgesic overdose mortality. DESIGN, SETTING, AND PARTICIPANTS A time-series analysis was conducted of medical cannabis laws and state-level death certificate data in the United States from 1999 to 2010; all 50 states were included. EXPOSURES Presence of a law establishing a medical cannabis program in the state. MAIN OUTCOMES AND MEASURES Age-adjusted opioid analgesic overdose death rate per 100 000 population in each state. Regression models were developed including state and year fixed effects, the presence of 3 different policies regarding opioid analgesics, and the state-specific unemployment rate. RESULTS Three states (California, Oregon, and Washington) had medical cannabis laws effective prior to 1999. Ten states (Alaska, Colorado, Hawaii, Maine, Michigan, Montana, Nevada, New Mexico, Rhode Island, and Vermont) enacted medical cannabis laws between 1999 and 2010. States with medical cannabis laws had a 24.8% lower mean annual opioid overdose mortality rate (95% CI, -37.5% to -9.5%; P = .003) compared with states without medical cannabis laws. Examination of the association between medical cannabis laws and opioid analgesic overdose mortality in each year after implementation of the law showed that such laws were associated with a lower rate of overdose mortality that generally strengthened over time: year 1 (-19.9%; 95% CI, -30.6% to -7.7%; P = .002), year 2 (-25.2%; 95% CI, -40.6% to -5.9%; P = .01), year 3 (-23.6%; 95% CI, -41.1% to -1.0%; P = .04), year 4 (-20.2%; 95% CI, -33.6% to -4.0%; P = .02), year 5 (-33.7%; 95% CI, -50.9% to -10.4%; P = .008), and year 6 (-33.3%; 95% CI, -44.7% to -19.6%; P < .001). In secondary analyses, the findings remained similar. CONCLUSIONS AND RELEVANCE Medical cannabis laws are associated with significantly lower state-level opioid overdose mortality rates. Further investigation is required to determine how medical cannabis laws may interact with policies aimed at preventing opioid analgesic overdose.
Collapse
Affiliation(s)
- Marcus A Bachhuber
- Center for Health Equity Research and Promotion, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania2Robert Wood Johnson Foundation Clinical Scholars Program, University of Pennsylvania, Philadelphia3Leonard Davis Institute of Health
| | - Brendan Saloner
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia4Robert Wood Johnson Health and Society Scholars Program, University of Pennsylvania, Philadelphia
| | - Chinazo O Cunningham
- Division of General Internal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Colleen L Barry
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia6Department of Health Policy and Management, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
218
|
Lam PW, Frost DW. Nabilone therapy for cannabis withdrawal presenting as protracted nausea and vomiting. BMJ Case Rep 2014; 2014:bcr-2014-205287. [PMID: 25246463 DOI: 10.1136/bcr-2014-205287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cannabis is one of the most commonly used recreational drugs worldwide. Psychoactive properties of the principal compound, δ-9-tetrahydrocannabinol include euphoria, a sense of relaxation and increased appetite. Chronic cannabis use has been associated with the development of a withdrawal syndrome on abrupt discontinuation. Withdrawal symptoms typically begin within 24 h of abstinence and manifest as irritability, nervousness, sleep disturbances and decreased appetite. There is growing evidence that supports the use of plant-derived and synthetic cannabinoids for the treatment of cannabis withdrawal. In this case report, we present 20-year-old woman who developed protracted nausea and vomiting secondary to cannabis withdrawal and was successfully treated with nabilone. Nausea and vomiting is not listed in the Diagnostic and Statistical Manual-5 diagnostic criteria for cannabis withdrawal syndrome and is an uncommon symptom presentation.
Collapse
Affiliation(s)
- Philip W Lam
- Division of General Internal Medicine, University Health Network, Toronto, Canada
| | - David W Frost
- Division of General Internal Medicine, University Health Network, Toronto, Canada Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
219
|
|
220
|
Kasten CR, Boehm SL. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice. Behav Brain Res 2014; 272:238-47. [PMID: 25026094 DOI: 10.1016/j.bbr.2014.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2h, 3h into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indiana University Purdue University-Indianapolis, 402 N Blackford St LD 124 Indianapolis, IN 46202, USA.
| | - Stephen L Boehm
- Department of Psychology, Indiana University Purdue University-Indianapolis, 402 N Blackford St LD 124 Indianapolis, IN 46202, USA; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317 Indianapolis, IN, USA
| |
Collapse
|
221
|
Bossong MG, Jansma JM, Bhattacharyya S, Ramsey NF. Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or ∆9-tetrahydrocannabinol (THC). Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:53-69. [PMID: 24380726 DOI: 10.1016/j.pnpbp.2013.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/16/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Institute of Psychiatry, Department of Psychosis Studies, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom.
| | - J Martijn Jansma
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Department of Psychosis Studies, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Nick F Ramsey
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
222
|
Batalla A, Soriano-Mas C, López-Solà M, Torrens M, Crippa JA, Bhattacharyya S, Blanco-Hinojo L, Fagundo AB, Harrison BJ, Nogué S, de la Torre R, Farré M, Pujol J, Martín-Santos R. Modulation of brain structure by catechol-O-methyltransferase Val(158) Met polymorphism in chronic cannabis users. Addict Biol 2014; 19:722-32. [PMID: 23311613 DOI: 10.1111/adb.12027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroimaging studies have shown that chronic consumption of cannabis may result in alterations in brain morphology. Recent work focusing on the relationship between brain structure and the catechol-O-methyltransferase (COMT) gene polymorphism suggests that functional COMT variants may affect brain volume in healthy individuals and in schizophrenia patients. We measured the influence of COMT genotype on the volume of four key regions: the prefrontal cortex, neostriatum (caudate-putamen), anterior cingulate cortex and hippocampus-amygdala complex, in chronic early-onset cannabis users and healthy control subjects. We selected 29 chronic cannabis users who began using cannabis before 16 years of age and matched them to 28 healthy volunteers in terms of age, educational level and IQ. Participants were male, Caucasians aged between 18 and 30 years. All were assessed by a structured psychiatric interview (PRISM) to exclude any lifetime Axis-I disorder according to Diagnostic and Statistical Manual for Mental Disorders-Fourth Edition. COMT genotyping was performed and structural magnetic resonance imaging data was analyzed by voxel-based morphometry. The results showed that the COMT polymorphism influenced the volume of the bilateral ventral caudate nucleus in both groups, but in an opposite direction: more copies of val allele led to lesser volume in chronic cannabis users and more volume in controls. The opposite pattern was found in left amygdala. There were no effects of COMT genotype on volumes of the whole brain or the other selected regions. Our findings support recent reports of neuroanatomical changes associated with cannabis use and, for the first time, reveal that these changes may be influenced by the COMT genotype.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry; Clinical Institute of Neuroscience; Hospital Clínic, IDIBAPS, CIBERSAM; Spain
- Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Spain
| | - Carles Soriano-Mas
- CRC Mar; Hospital del Mar; Spain
- Department of Psychiatry; Bellvitge University Hospital-IDIBELL, CIBERSAM; Spain
| | | | - Marta Torrens
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Red de Trastornos Adictivos (RETIC); IMIM-INAD-Parc de Salut Mar; Spain
| | - José A. Crippa
- Neuroscience and Cognitive Behavior Department; University of Sao Paulo; Brazil
- INCT Translational Medicine (INCT-TM, CNPq); Brazil
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies; King's College London, Institute of Psychiatry; UK
| | | | - Ana B. Fagundo
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
| | - Ben J. Harrison
- CRC Mar; Hospital del Mar; Spain
- Melbourne Neuropsychiatry Centre; Department of Psychiatry; The University of Melbourne & Melbourne Health; Australia
| | - Santiago Nogué
- Clinical Toxicology Unit; Emergency Department; Hospital Clínic, IDIBAPS, University of Barcelona; Spain
| | - Rafael de la Torre
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- CIBEROBN; Spain
| | - Magí Farré
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Red de Trastornos Adictivos (RETIC); IMIM-INAD-Parc de Salut Mar; Spain
| | | | - Rocío Martín-Santos
- Department of Psychiatry; Clinical Institute of Neuroscience; Hospital Clínic, IDIBAPS, CIBERSAM; Spain
- Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Spain
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Neuroscience and Cognitive Behavior Department; University of Sao Paulo; Brazil
| |
Collapse
|
223
|
Repeated exposure to MDMA triggers long-term plasticity of noradrenergic and serotonergic neurons. Mol Psychiatry 2014; 19:823-33. [PMID: 23958955 DOI: 10.1038/mp.2013.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or 'ecstasy') is a psychostimulant drug, widely used recreationally among young people in Europe and North America. Although its neurotoxicity has been extensively described, little is known about its ability to strengthen neural circuits when administered in a manner that reproduces human abuse (i.e. repeated exposure to a low dose). C57BL/6J mice were repeatedly injected with MDMA (10 mg kg(-1), intraperitoneally) and studied after a 4-day or a 1-month withdrawal. We show, using in vivo microdialysis and locomotor activity monitoring, that repeated injections of MDMA induce a long-term sensitization of noradrenergic and serotonergic neurons, which correlates with behavioral sensitization. The development of this phenomenon, which lasts for at least 1 month after withdrawal, requires repeated stimulation of α(1B)-adrenergic and 5-hydroxytryptamine (5-HT)(2A) receptors. Moreover, behavioral and neuroendocrine assays indicate that hyper-reactivity of noradrenergic and serotonergic networks is associated with a persistent desensitization of somatodendritic α(2A)-adrenergic and 5-HT1A autoreceptor function. Finally, molecular analysis including radiolabeling, western blot and quantitative reverse transcription-polymerase chain reaction reveals that mice repeatedly treated with MDMA exhibit normal α(2A)-adrenergic and 5-HT(1A) receptor binding, but a long-lasting downregulation of Gαi proteins expression in both locus coeruleus and dorsal raphe nucleus. Altogether, our results show that repeated MDMA exposure causes strong neural and behavioral adaptations and that inhibitory feedback mediated by α(2A)-adrenergic and 5-HT(1A) autoreceptors has an important role in the physiopathology of addictive behaviors.
Collapse
|
224
|
Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys. J Neurosci 2014; 34:6480-4. [PMID: 24806674 DOI: 10.1523/jneurosci.5073-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.
Collapse
|
225
|
The microinjection of a cannabinoid agonist into the accumbens shell induces anxiogenesis in the elevated plus-maze. Pharmacol Biochem Behav 2014; 124:160-6. [PMID: 24887448 DOI: 10.1016/j.pbb.2014.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/23/2022]
Abstract
This study investigated the effect of a cannabinoid agonist injected into the shell region of the nucleus accumbens (nAcb shell) on anxiety-related behaviors. The animals (male Wistar rats) were unilaterally microinjected with either ACEA (arachidonyl-2'-chloroethylamide a CB1 receptor agonist) at doses of 0.005, 0.05 or 0.5 pmol, or vehicle (ethanol 0.04% in saline 0.9%) and submitted to the elevated plus-maze (EPM), a pre-clinical test of anxiety. The data showed that rats microinjected with ACEA (0.05 pmol/0.2 μl) into the nAcb shell exhibited decreased % open arm time and open arm entries in comparison with the control group, which is compatible with an anxiogenic-like effect. To rule out the hypothesis that spread of the drug into the ventricle was responsible for the observed anxiogenic effect, 0.05 pmol ACEA was injected into the lateral ventricle and shown not to alter the responses representative of fear/anxiety and locomotion. The locomotor activity was not changed at the dose of 0.05 pmol ACEA microinjected into the nAcb shell. The present data suggest that activation of cannabinoid receptors in the nAcb shell may modulate fear/anxiety in the EPM.
Collapse
|
226
|
Effects of Δ9-tetrahydrocannabinol in individuals with a familial vulnerability to alcoholism. Psychopharmacology (Berl) 2014; 231:2385-93. [PMID: 24424782 DOI: 10.1007/s00213-013-3402-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS A family history (FH) of alcoholism accounts for approximately 50% of the risk of developing alcohol problems. Several lines of preclinical evidence suggest that brain cannabinoid receptor (CB1R) function may mediate the effects of alcohol and risk for developing alcoholism including the observations that reduced CB1R function decreases alcohol-related behaviors and enhanced CB1R function increases them. In this first human study, we probed CB1R function in individuals vulnerable to alcoholism with the exogenous cannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). DESIGN, SETTING, AND PARTICIPANTS Healthy volunteers (n = 30) participated in a three test day study during which they received 0.018 and 0.036 mg/kg of Δ(9)-THC, or placebo intravenously in a randomized, counterbalanced order under double-blind conditions. MEASUREMENTS Primary outcome measures were subjective "high," perceptual alterations, and memory impairment. Secondary outcome measures consisted of stimulatory and depressant subjective effects, attention, spatial memory, executive function, Δ(9)-THC and 11-hydroxy-THC blood levels, and other subjective effects. FH was calculated using the Family Pattern Density method and was used as a continuous variable. FINDINGS Greater FH was correlated with greater "high" and perceptual alterations induced by Δ(9)-THC. This enhanced sensitivity with increasing FH was specific to Δ(9)-THC's rewarding effects and persisted even when FH was calculated using an alternate method. CONCLUSIONS Enhanced sensitivity to the rewarding effects of Δ(9)-THC in high-FH volunteers suggests that alterations in CB1R function might contribute to alcohol misuse vulnerability.
Collapse
|
227
|
Liu XS, Hou Y, Yan TL, Guo YY, Han W, Guan FL, Chen T, Li T. Dopamine D3 receptor-regulated NR2B subunits of N-methyl-d-aspartate receptors in the nucleus accumbens involves in morphine-induced locomotor activity. CNS Neurosci Ther 2014; 20:823-9. [PMID: 24797707 DOI: 10.1111/cns.12276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 01/13/2023] Open
Abstract
AIMS Dopamine and glutamate receptors are densely expressed in the nucleus accumbens (NAc). Active interactions between these receptors contribute to the development of neuropsychiatric diseases, such as drug addiction and relapse. However, the molecular mechanisms underlying these interactions remain unclear. METHODS This study established a mouse model of intermittent morphine-induced mouse behavioral sensitization model. Western blot and electrophysiological recording methods were performed to directly identify the affective components of morphine behavioral sensitization. RESULTS Interval morphine administration could cause significant locomotor sensitization. Hyperlocomotion and behavioral locomotor sensitization were significantly suppressed when ifenprodil (5 mg/kg), a selective NR2B subunit-containing N-methyl-d-aspartate (NMDA) receptor antagonist, or nafadotride (25 μg/kg), a dopamine D3 receptor (D3R)-preferring antagonist, was coadministered with morphine. Western blot analysis showed that morphine behavioral sensitization induced a region-specific increase in phosphorylation of NR2B (pNR2B) and total levels of NR2B (NR2B) expression in the NAc. Systemically administered nafadotride attenuated behavioral locomotor sensitization induced by morphine and significantly reversed the overexpression of pNR2B and NR2B subunit-containing NMDA receptor in the NAc. NMDA receptor-mediated excitatory postsynaptic currents in the NAc were also significantly reduced by nafadotride. CONCLUSIONS These findings suggest that D3Rs are involved in morphine-induced behavioral locomotor sensitization in mice by regulating the NR2B subunits of NMDA receptors in the NAc.
Collapse
Affiliation(s)
- Xin-She Liu
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Hadad NA, Knackstedt LA. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction. Psychopharmacology (Berl) 2014; 231:1897-912. [PMID: 24500676 PMCID: PMC4484591 DOI: 10.1007/s00213-014-3461-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. OBJECTIVES Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. RESULTS Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. CONCLUSIONS Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.
Collapse
Affiliation(s)
- Natalie A Hadad
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611-2250, USA
| | | |
Collapse
|
229
|
Sadler B, Haller G, Agrawal A, Culverhouse R, Bucholz K, Brooks A, Tischfield J, Johnson EO, Edenberg H, Schuckit M, Saccone N, Bierut L, Goate A. Variants near CHRNB3-CHRNA6 are associated with DSM-5 cocaine use disorder: evidence for pleiotropy. Sci Rep 2014; 4:4497. [PMID: 24675634 PMCID: PMC4894386 DOI: 10.1038/srep04497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/26/2014] [Indexed: 12/16/2022] Open
Abstract
In the U.S.A., cocaine is the second most abused illicit drug. Variants within the CHRNB3-A6 gene cluster have been associated with cigarette consumption in several GWAS. These receptors represent intriguing candidates for the study of cocaine dependence because nicotinic receptors are thought to be involved in generalized addiction pathways. Using genotypic data from a GWAS of the Study of Addiction: Genetics and Environment (SAGE) dataset, we tested for association of CHRNB3-A6 SNPs with DSM-5 cocaine use disorder. Multiple SNPs in the region were significantly associated with increased risk of cocaine use disorder. Inclusion of the most significant SNP as a covariate in a linear regression model provided evidence for an additional independent signal within this locus for cocaine use disorder. These results suggest that the CHRNB3-A6 locus contains multiple variants affecting risk for vulnerability to cocaine and nicotine dependence as well as bipolar disorder, suggesting that they have pleiotropic effects.
Collapse
Affiliation(s)
- Brooke Sadler
- 1] School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA [2] Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Gabe Haller
- 1] Department of Psychiatry, Washington University, St. Louis, MO, USA [2] Department of Genetics, Washington University, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Rob Culverhouse
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Bucholz
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Andy Brooks
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Jay Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Eric O Johnson
- Division of Health, Social and Economic Research, Research Triangle Institute International, Research Triangle Park, NC
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Marc Schuckit
- Department of Psychiatry, University of California-San Diego, La Jolla, CA
| | - Nancy Saccone
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Laura Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Alison Goate
- 1] Department of Psychiatry, Washington University, St. Louis, MO, USA [2] Department of Genetics, Washington University, St. Louis, MO, USA
| |
Collapse
|
230
|
Amchova P, Kucerova J, Giugliano V, Babinska Z, Zanda MT, Scherma M, Dusek L, Fadda P, Micale V, Sulcova A, Fratta W, Fattore L. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front Pharmacol 2014; 5:44. [PMID: 24688470 PMCID: PMC3960502 DOI: 10.3389/fphar.2014.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/25/2014] [Indexed: 11/13/2022] Open
Abstract
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
Collapse
Affiliation(s)
- Petra Amchova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Kucerova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Valentina Giugliano
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Zuzana Babinska
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Mary T Zanda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Maria Scherma
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Ladislav Dusek
- Institute of Biostatistics and Analyses of Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Paola Fadda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Vincenzo Micale
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Alexandra Sulcova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Liana Fattore
- Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; CNR Institute of Neuroscience-Cagliari, National Research Council-Italy Monserrato, Italy
| |
Collapse
|
231
|
Flores Á, Maldonado R, Berrendero F. The hypocretin/orexin receptor-1 as a novel target to modulate cannabinoid reward. Biol Psychiatry 2014; 75:499-507. [PMID: 23896204 DOI: 10.1016/j.biopsych.2013.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cannabis is the most widely used illicit drug in the world. Although there is a high prevalence of users who seek treatment for cannabis dependence, no accepted pharmacologic treatment is available to facilitate and maintain abstinence. The hypocretin/orexin system plays a critical role in drug addiction, but the potential participation of this system in the addictive properties of cannabinoids is unknown. METHODS We investigated the effects of hypocretins in the intravenous self-administration of the synthetic cannabinoid agonist WIN55,212-2 using hypocretin receptor-1 (Hcrtr-1) and hypocretin receptor-2 antagonists and Hcrtr-1 knockout mice. Additional groups of mice were trained to obtain water to rule out operant responding impairments. Activation of hypocretin neurons was analyzed by using double-label immunofluorescence of FosB/ΔFosB with hypocretin-1. Microdialysis studies were performed to evaluate dopamine extracellular levels in the nucleus accumbens after acute Δ(9)-tetrahydrocannabinol administration. RESULTS Systemic administration of the Hcrtr-1 antagonist SB334867 reduced intravenous self-administration of WIN55,212-2, as well as the maximum effort to obtain a WIN55,212-2 infusion, as revealed under a progressive ratio schedule. This role of Hcrtr-1 in the reinforcing and motivational properties of WIN55,212-2 was confirmed in Hcrtr-1 knockout mice. Contingent, but not noncontingent, WIN55,212-2 self-administration increased the percentage of hypocretin cells expressing FosB/ΔFosB in the lateral hypothalamus. The enhancement in dopamine extracellular levels in the nucleus accumbens induced by Δ(9)-tetrahydrocannabinol was blocked in mice lacking the Hcrtr-1. CONCLUSIONS These findings demonstrate that Hcrtr-1 modulates the reinforcing properties of cannabinoids, which could have a clear therapeutic interest.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
232
|
De Luca MA. Habituation of the responsiveness of mesolimbic and mesocortical dopamine transmission to taste stimuli. Front Integr Neurosci 2014; 8:21. [PMID: 24624065 PMCID: PMC3941202 DOI: 10.3389/fnint.2014.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
The presentation of novel, remarkable, and unpredictable tastes increases dopamine (DA) transmission in different DA terminal areas such as the nucleus accumbens (NAc) shell and core and the medial prefrontal cortex (mPFC), as estimated by in vivo microdialysis studies in rats. This effect undergoes adaptive regulation, as there is a decrease in DA responsiveness after a single pre-exposure to the same taste. This phenomenon termed habituation has been described as peculiar to NAc shell but not to NAc core and mPFC DA transmission. On this basis, it has been proposed that mPFC DA codes for generic motivational stimulus value and, together with the NAc core DA, is more consistent with a role in the expression of motivation. Conversely, NAc shell DA is specifically activated by unfamiliar or novel taste stimuli and rewards, and might serve to associate the sensory properties of the rewarding stimulus with its biological effect (Bassareo etal., 2002; Di Chiara etal., 2004). Notably, habituation of the DA response to intraoral sweet or bitter tastes is not associated with a reduction in hedonic or aversive taste reactions, thus indicating that habituation is unrelated to satiety-induced hedonic devaluation and that it is not influenced by DA alteration or depletion. This mini-review describes specific circumstances of disruption of the habituation of NAc shell DA responsiveness (De Luca etal., 2011; Bimpisidis etal., 2013). In particular, we observed an abolishment of NAc shell DA habituation to chocolate (sweet taste) by morphine sensitization and mPFC 6-hydroxy-dopamine hydrochloride (6-OHDA) lesion. Moreover, morphine sensitization was associated with the appearance of the habituation in the mPFC, and with an increased and delayed response of NAc core DA to taste in naive rats, but not in pre-exposed animals. The results here described shed light on the mechanism of the habituation phenomenon of mesolimbic and mesocortical DA transmission, and its putative role as a marker of cortical dysfunction in specific conditions such as addiction.
Collapse
Affiliation(s)
- Maria A De Luca
- Department of Biomedical Sciences, Neuropsychopharmacology Section, University of Cagliari Cagliari, Italy ; National Institute of Neuroscience, University of Cagliari Cagliari, Italy
| |
Collapse
|
233
|
Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014; 5:118. [PMID: 25225488 PMCID: PMC4150350 DOI: 10.3389/fpsyt.2014.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
Collapse
Affiliation(s)
- Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Psychiatry, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
234
|
Tan H, Ahmad T, Loureiro M, Zunder J, Laviolette SR. The role of cannabinoid transmission in emotional memory formation: implications for addiction and schizophrenia. Front Psychiatry 2014; 5:73. [PMID: 25071606 PMCID: PMC4074769 DOI: 10.3389/fpsyt.2014.00073] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022] Open
Abstract
Emerging evidence from both basic and clinical research demonstrates an important role for endocannabinoid (ECB) signaling in the processing of emotionally salient information, learning, and memory. Cannabinoid transmission within neural circuits involved in emotional processing has been shown to modulate the acquisition, recall, and extinction of emotionally salient memories and importantly, can strongly modulate the emotional salience of incoming sensory information. Two neural regions in particular, the medial prefrontal cortex (PFC) and the basolateral nucleus of the amygdala (BLA), play important roles in emotional regulation and contain high levels of cannabinoid receptors. Furthermore, both regions show profound abnormalities in neuropsychiatric disorders such as addiction and schizophrenia. Considerable evidence has demonstrated that cannabinoid transmission functionally interacts with dopamine (DA), a neurotransmitter system that is of exceptional importance for both addictive behaviors and the neuropsychopathology of disorders like schizophrenia. Research in our laboratory has focused on how cannabinoid transmission both within and extrinsic to the mesolimbic DA system, including the BLA → mPFC circuitry, can modulate both rewarding and aversive emotional information. In this review, we will summarize clinical and basic neuroscience research demonstrating the importance of cannabinoid signaling within this neural circuitry. In particular, evidence will be reviewed emphasizing the importance of cannabinoid signaling within the BLA → mPFC circuitry in the context of emotional salience processing, memory formation and memory-related plasticity. We propose that aberrant states of hyper or hypoactive ECB signaling within the amygdala-prefrontal cortical circuit may lead to dysregulation of mesocorticolimbic DA transmission controlling the processing of emotionally salient information. These disturbances may in turn lead to emotional processing, learning, and memory abnormalities related to various neuropsychiatric disorders, including addiction and schizophrenia-related psychoses.
Collapse
Affiliation(s)
- Huibing Tan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Tasha Ahmad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Michael Loureiro
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Jordan Zunder
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada ; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada ; Department of Psychology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| |
Collapse
|
235
|
Schubart CD, Sommer IEC, Fusar-Poli P, de Witte L, Kahn RS, Boks MPM. Cannabidiol as a potential treatment for psychosis. Eur Neuropsychopharmacol 2014; 24:51-64. [PMID: 24309088 DOI: 10.1016/j.euroneuro.2013.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 12/18/2022]
Abstract
Although cannabis use is associated with an increased risk of developing psychosis, the cannabis constituent cannabidiol (CBD) may have antipsychotic properties. This review concisely describes the role of the endocannabinoid system in the development of psychosis and provides an overview of currently available animal, human experimental, imaging, epidemiological and clinical studies that investigated the antipsychotic properties of CBD. In this targeted literature review we performed a search for English articles using Medline and EMBASE. Studies were selected if they described experiments with psychosis models, psychotic symptoms or psychotic disorders as outcome measure and involved the use of CBD as intervention. Evidence from several research domains suggests that CBD shows potential for antipsychotic treatment.
Collapse
Affiliation(s)
- C D Schubart
- Tergooi Hospital, Department of Psychiatry, Blaricum, The Netherlands
| | - I E C Sommer
- Brain Center Rudolf Magnus, University Medical Centre Utrecht, Department of Psychiatry, The Netherlands
| | - P Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - L de Witte
- Brain Center Rudolf Magnus, University Medical Centre Utrecht, Department of Psychiatry, The Netherlands
| | - R S Kahn
- Tergooi Hospital, Department of Psychiatry, Blaricum, The Netherlands
| | - M P M Boks
- Brain Center Rudolf Magnus, University Medical Centre Utrecht, Department of Psychiatry, The Netherlands.
| |
Collapse
|
236
|
Radhakrishnan R, Wilkinson ST, D'Souza DC. Gone to Pot - A Review of the Association between Cannabis and Psychosis. Front Psychiatry 2014; 5:54. [PMID: 24904437 PMCID: PMC4033190 DOI: 10.3389/fpsyt.2014.00054] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System , West Haven, CT , USA
| |
Collapse
|
237
|
De Luca MA, Valentini V, Bimpisidis Z, Cacciapaglia F, Caboni P, Di Chiara G. Endocannabinoid 2-Arachidonoylglycerol Self-Administration by Sprague-Dawley Rats and Stimulation of in vivo Dopamine Transmission in the Nucleus Accumbens Shell. Front Psychiatry 2014; 5:140. [PMID: 25368584 PMCID: PMC4201088 DOI: 10.3389/fpsyt.2014.00140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
2-Arachidonoylglycerol (2-AG) is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacylglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB) system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA) by squirrel monkeys, and anandamide increases nucleus accumbens (NAc) shell dopamine (DA) in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG [25 mg/kg/inf intravenously (iv)] in single daily 1 h sessions for 5 weeks under initial fixed ratio (FR) 1 schedule. The ratio was subsequently increased to FR2. Active nose poking increased from the 6th SA session (acquisition phase) but no significant increase of nose pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase), rate responding as well as number of injections slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase). The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg intraperitoneally, 30 min before SA session). In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv) preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv). The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.
Collapse
Affiliation(s)
- Maria Antonietta De Luca
- Neuropsychopharmacology Section, Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy ; National Institute of Neuroscience (INN) , Cagliari , Italy
| | - Valentina Valentini
- Neuropsychopharmacology Section, Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy ; National Institute of Neuroscience (INN) , Cagliari , Italy ; Centre of Excellence for Studies on the Neurobiology of Addiction , Cagliari , Italy
| | - Zisis Bimpisidis
- Neuropsychopharmacology Section, Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy
| | - Fabio Cacciapaglia
- Neuropsychopharmacology Section, Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Gaetano Di Chiara
- Neuropsychopharmacology Section, Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy ; National Institute of Neuroscience (INN) , Cagliari , Italy ; Centre of Excellence for Studies on the Neurobiology of Addiction , Cagliari , Italy ; Cagliari Section, Neuroscience Institute, National Research Council of Italy , Cagliari , Italy
| |
Collapse
|
238
|
Justinova Z, Mascia P, Wu HQ, Secci ME, Redhi GH, Panlilio LV, Scherma M, Barnes C, Parashos A, Zara T, Fratta W, Solinas M, Pistis M, Bergman J, Kangas BD, Ferré S, Tanda G, Schwarcz R, Goldberg SR. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci 2013; 16:1652-61. [PMID: 24121737 PMCID: PMC3835353 DOI: 10.1038/nn.3540] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.
Collapse
Affiliation(s)
- Zuzana Justinova
- 1] Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA. [2] Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Biphasic effects of Δ9-tetrahydrocannabinol on brain stimulation reward and motor activity. Int J Neuropsychopharmacol 2013; 16:2273-84. [PMID: 23830148 DOI: 10.1017/s1461145713000709] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive ingredient of marijuana, has led to equivocal results when tested with the intracranial self-stimulation (ICSS) procedure or the open-field test for motor activity, two behavioural models for evaluating the reward-facilitating and locomotor stimulating effects of drugs of abuse, respectively. Therefore, in the present study, the effects of high and low doses of Δ(9)-THC were compared in the ICSS procedure and the open-field test. Moreover, the involvement of CB(1) receptors in tentative Δ(9)-THC-induced effects was investigated by pre-treating the animals with the CB(1) receptor antagonist SR141716A (rimonabant). The results obtained show that low doses of Δ(9)-THC induce opposite effects from high doses of Δ(9)-THC. Specifically, 0.1 mg/kg Δ(9)-THC decreased ICSS thresholds and produced hyperactivity, whereas 1 mg/kg increased ICSS thresholds and produced hypoactivity. Both effects were reversed by pre-treatment with SR141716A, indicating the involvement of CB(1) receptors on these actions. Altogether, our results indicate that Δ(9)-THC can produce acute activating effects in locomotion that coincide with its reward-facilitating effects in the ICSS paradigm. The present findings provide further support that Δ(9)-THC induces behaviours typical of abuse and substantiate the notion that marijuana resembles other drugs of abuse.
Collapse
|
240
|
Palmitoylethanolamide: From endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence. Med Hypotheses 2013; 81:619-22. [DOI: 10.1016/j.mehy.2013.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
|
241
|
Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL. Stimulants as specific inducers of dopamine-independent σ agonist self-administration in rats. J Pharmacol Exp Ther 2013; 347:20-9. [PMID: 23908387 PMCID: PMC3781409 DOI: 10.1124/jpet.113.207522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022] Open
Abstract
A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01-0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001-0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032-1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032-1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032-10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1-3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32-10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0-10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10-100 μg/kg) nor by the opioid antagonist (-)-naltrexone (1.0-10 mg/kg), whereas these antagonists were active against d-methamphetamine and heroin self-administration, respectively. The results indicate that experience specifically with indirect-acting dopamine agonists induces reinforcing effects of previously inactive σ1R agonists. It is further suggested that induced σ1R reinforcing mechanisms may play an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for its treatment.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (T.H., G.T., T.A.K., J.L.K.); and Behavioral Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (P.L.S.)
| | | | | | | | | |
Collapse
|
242
|
Ahmad T, Lauzon NM, de Jaeger X, Laviolette SR. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms. J Neurosci 2013; 33:15642-51. [PMID: 24068830 PMCID: PMC6618460 DOI: 10.1523/jneurosci.1686-13.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 11/21/2022] Open
Abstract
Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.
Collapse
MESH Headings
- Animals
- Conditioning, Classical
- Limbic System/metabolism
- Limbic System/physiology
- Male
- Motivation
- Neurotransmitter Agents/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Reward
- Synaptic Transmission
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
| | | | | | - Steven R. Laviolette
- Departments of Anatomy and Cell Biology
- Psychiatry, and
- Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N5Y 5T8
| |
Collapse
|
243
|
Cannabis Use and Psychosis. ADDICTIVE DISORDERS & THEIR TREATMENT 2013. [DOI: 10.1097/adt.0b013e3182624271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
244
|
Tanda G, Li SM, Mereu M, Thomas AM, Ebbs AL, Chun LE, Tronci V, Green JL, Zou MF, Kopajtic TA, Newman AH, Katz JL. Relations between stimulation of mesolimbic dopamine and place conditioning in rats produced by cocaine or drugs that are tolerant to dopamine transporter conformational change. Psychopharmacology (Berl) 2013; 229:307-21. [PMID: 23612854 PMCID: PMC3758386 DOI: 10.1007/s00213-013-3109-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Dopamine transporter (DAT) conformation plays a role in the effectiveness of cocaine-like and other DAT inhibitors. Cocaine-like stimulants are intolerant to DAT conformation changes having decreased potency in cells transfected with DAT constructs that face the cytosol compared to wild-type DAT. In contrast, analogs of benztropine (BZT) are among compounds that are less affected by DAT conformational change. METHODS We compared the displacement of radioligand binding to various mammalian CNS sites, acute stimulation of accumbens shell dopamine levels, and place conditioning in rats among cocaine and four BZT analogs with Cl substitutions on the diphenyl-ether system including two with carboalkoxy substitutions at the 2-position of the tropane ring. RESULTS Binding assays confirmed high-affinity and selectivity for the DAT with the BZT analogs which also produced significant stimulation of mesolimbic dopamine efflux. Because BZT analogs produced temporal patterns of extracellular dopamine levels different from those by cocaine (3-10 mg/kg, i.p.), the place conditioning produced by BZT analogs and cocaine was compared at doses and times at which both the increase in dopamine levels and rates of increase were similar to those produced by an effective dose of cocaine. Despite this equilibration, none of the BZT analogs tested produced significant place conditioning. CONCLUSIONS The present results extend previous findings suggesting that cocaine-like actions are dependent on a binding equilibrium that favors the outward conformational state of the DAT. In contrast, BZT analogs with reduced dependence on DAT conformation have reduced cocaine-like behavioral effects and may prove useful in development of medications for stimulant abuse.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Su Min Li
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Maddalena Mereu
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Alexandra M. Thomas
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Aaron L. Ebbs
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | | | - Valeria Tronci
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Jennifer L. Green
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Theresa A. Kopajtic
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Jonathan L. Katz
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| |
Collapse
|
245
|
Kuepper R, Ceccarini J, Lataster J, van Os J, van Kroonenburgh M, van Gerven JMA, Marcelis M, Van Laere K, Henquet C. Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study. PLoS One 2013; 8:e70378. [PMID: 23936196 PMCID: PMC3723813 DOI: 10.1371/journal.pone.0070378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/18/2013] [Indexed: 11/18/2022] Open
Abstract
Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and (18)F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ(9)-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis). In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ(9)-THC was measured in 9 healthy cannabis users (average risk psychotic disorder), 8 patients with psychotic disorder (high risk psychotic disorder) and 7 un-related first-degree relatives (intermediate risk psychotic disorder). PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM), which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ(9)-THC administration, reflecting dopamine release. While Δ(9)-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ(9)-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ(9)-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis.
Collapse
Affiliation(s)
- Rebecca Kuepper
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Enayatfard L, Rostami F, Nasoohi S, Oryan S, Ahmadiani A, Dargahi L. Dual role of PPAR-γ in induction and expression of behavioral sensitization to cannabinoid receptor agonist WIN55,212-2. Neuromolecular Med 2013; 15:523-35. [PMID: 23794089 DOI: 10.1007/s12017-013-8238-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023]
Abstract
Behavioral sensitization (B.S.) is a pathophysiological animal model for stimulant-induced psychosis and addiction. Accumulated evidence indicates that inflammatory processes are involved in psychostimulants effects in the CNS. Cannabinoids like WIN55,212-2 act as potential activators of PPAR-γ and affects the inflammatory status of the CNS. The purpose of this study is to determine PPAR-γ role in induction and expression of B.S. and the coincident inflammatory responses developed by WIN55,212-2 (WIN). Using open-field test, locomotor activity was monitored in animals treated with intraperitoneal low-dose WIN single or repeated injections. Concurrent striatal COX-2 and TNF-α levels and PPAR-γ activity were determined by immunoblotting assay. Effects of concomitant chronic or acute PPAR-γ pharmacological inhibition (with GW9662) were then investigated on behavioral and biochemical variables. WIN enhanced locomotor activity and while administered chronically augmented cytosolic COX-2 and TNF-α and also PPAR-γ nuclear levels. GW9662 co-administration completely prevented the induction of sensitizing effects of chronic WIN and altered the inflammatory responses. However, the expression of B.S. was intensified with GW9662 as assessed by increased locomotion after WIN challenge following 48 h withdrawal. Neuroinflammation and locomotor excitability in animals received just a single-dose WIN were also escalated with GW9662. Our findings conclude that PPAR-γ could play different key roles during B.S. development by WIN. Although PPAR-γ is mostly known for neuroprotective and anti-inflammatory effects, our data indicate that it mediates the B.S. induction by chronic WIN. However, while the B.S. was induced, PPAR-γ could play a homeostatic role opposing the expressed B.S. escalation.
Collapse
Affiliation(s)
- Leili Enayatfard
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
247
|
Rashidy-Pour A, Pahlevani P, Vaziri A, Shaigani P, Zarepour L, Vafaei AA, Haghparast A. Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model. Behav Brain Res 2013; 247:259-67. [DOI: 10.1016/j.bbr.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
248
|
Karimi S, Azizi P, Shamsizadeh A, Haghparast A. Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference. Behav Brain Res 2013; 247:125-31. [DOI: 10.1016/j.bbr.2013.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 12/28/2022]
|
249
|
Electroacupuncture inhibition of hyperalgesia in rats with adjuvant arthritis: involvement of cannabinoid receptor 1 and dopamine receptor subtypes in striatum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:393460. [PMID: 23762129 PMCID: PMC3677619 DOI: 10.1155/2013/393460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/28/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022]
Abstract
Electroacupuncture (EA) has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36) and Kunlun (BL60) acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P = 0.001). The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.
Collapse
|
250
|
The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int J Neuropsychopharmacol 2013; 16:393-403. [PMID: 22391102 DOI: 10.1017/s1461145712000156] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cannabinoid administration modulates both dopaminergic and glutamatergic neurotransmission. The present study examines the effects of high and low dose WIN55,212-2, a CB1 receptor agonist, on extracellular dopamine and glutamate release in vivo via brain microdialysis in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) in parallel to its effects on locomotor activity. WIN55,212-2 increased extracellular dopamine in the NAc (1 mg/kg i.p.), striatum (0.1 and 1 mg/kg i.p.) and PFC (1 mg/kg i.p.). Glutamate release was also elevated by WIN55,212-2 in the PFC (1 mg/kg i.p.) whereas in the NAc (0.1 and 1 mg/kg i.p.) and striatum, it was reduced (1 mg/kg i.p.). WIN55,212-2 administration produced hyperlocomotion at the lower dose (0.1 mg/kg i.p.) and hypolocomotion at the higher dose (1 mg/kg i.p.). Co-administration with the CB1 antagonist, SR-141716A (0.03 mg/kg i.p.), prevented the above effects. According to the present results, WIN55,212-2 affected locomotor activity biphasically while exerting converging effects on dopamine activity but diverging effects on glutamate release between cortical and subcortical regions, especially at the higher dose. These findings emphasize the involvement of the CB1 receptor in the simultaneous modulation of dopaminergic and glutamatergic neurotransmission in brain regions involved in reward and locomotion and suggest possible underlying mechanisms of acute cannabinoid exposure and its psychoactive and behavioural manifestations.
Collapse
|