201
|
Rasmussen EMK, Vågbø CB, Münch D, Krokan HE, Klungland A, Amdam GV, Dahl JA. DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species- and tissue-specific turnover rates. Biochem Biophys Rep 2016; 6:9-15. [PMID: 28955859 PMCID: PMC5600429 DOI: 10.1016/j.bbrep.2016.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Well-known epigenetic DNA modifications in mammals include the addition of a methyl group and a hydroxyl group to cytosine, resulting in 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) respectively. In contrast, the abundance and the functional implications of these modifications in invertebrate model organisms such as the honey bee (Apis mellifera) and the fruit fly (Drosophila melanogaster) are not well understood. Here we show that both adult honey bees and fruit flies contain 5mC and also 5hmC. Using a highly sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) technique, we quantified 5mC and 5hmC in different tissues of adult honey bee worker castes and in adult fruit flies. A comparison of our data with reports from human and mouse shed light on notable differences in 5mC and 5hmC levels between tissues and species. Reporting cytosine modifications in uncharacterized tissues, phenotypes and species. Quantification of 5mC and 5hmC suggests species-specific roles and turnover. Low levels of 5hmC relative to 5mC and cytosine in honey bees compared to mammals. Honey bee abdominal tissues are richer in5hmC than the brain. We found a higher 5hmC to 5mC ratio in fruit flies as compared to the honey bee.
Collapse
Affiliation(s)
- Erik M K Rasmussen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - John Arne Dahl
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| |
Collapse
|
202
|
Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki SA, Dominiczak A, Morris A, Porteous D, Smith B, Stratton MR, Hurles ME. Timing, rates and spectra of human germline mutation. Nat Genet 2016; 48:126-133. [PMID: 26656846 PMCID: PMC4731925 DOI: 10.1038/ng.3469] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.
Collapse
Affiliation(s)
- Raheleh Rahbari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Arthur Wuster
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Human Genetics and Department of Bioinformatics and Computational Biology, Genentech Inc, 1 DNA Way, CA 94080 South San Francisco, USA
| | - Sarah J Lindsay
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | | | - Saeed Al Turki
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Anna Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Morris
- Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - David Porteous
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Blair Smith
- Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | | | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
203
|
Potential risk of esophageal squamous cell carcinoma due to nucleotide excision repair XPA and XPC gene variants and their interaction among themselves and with environmental factors. Tumour Biol 2016; 37:10193-207. [PMID: 26831662 DOI: 10.1007/s13277-016-4895-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
The association of nucleotide excision repair (NER) gene polymorphisms with esophageal squamous cell carcinoma (ESCC) is inconclusive. The aim of the current study was to assess the association of repair gene xeroderma pigmentosum A (XPA) (rs-1800975) and xeroderma pigmentosum C (XPC) (rs-2228000) polymorphisms with ESCC risk as well as modifying effects of environmental factors. The genotyping was done in 450 confirmed ESCC cases and equal number of individually matched controls by the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and direct sequencing methods. Conditional logistic regression models were used to assess the genotypic associations and interactions. A high ESCC risk was found in subjects who carried the homozygous minor allele of XPA (odds ratio (OR) = 3.57; 95 % confidence interval (CI) = 1.76-7.23), and the risk was higher when analysis was limited to participants who were ever smokers (OR = 4.22; 95 % CI = 2.01-8.88), lived in adobe houses (OR = 8.42; 95 % CI = 3.74-18.95), consumed large volumes of salt tea (OR = 7.42; 95 % CI = 3.30-16.69), or had a positive family history of cancer (FHC) (OR = 9.47; 95 % CI = 4.67-19.20). In case of XPC, a homozygous minor allele also showed strong association with ESCC risk (OR = 4.43; 95 % CI = 2.41-8.16). We again observed a very strong effect of the above environmental factors in elevating the risk of ESCC. Further, the variant genotypes of both genes in combination showed an increased risk towards ESCC (OR = 7.01; 95 % CI = 3.14-15.64) and such association was synergistically significant. Salt tea consumption showed an interaction with genotypes of XPA and XPC. However, an interaction with FHC was significant in the case of XPA genotype only. XPA and XPC genotypes are associated with an increased risk of ESCC, and such association was reasonably modulated by different exposures.
Collapse
|
204
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomics-Enabled Discovery of a Potent and Selective Inhibitor of the DNA Repair Protein MGMT. Angew Chem Int Ed Engl 2016; 55:2911-5. [DOI: 10.1002/anie.201511301] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| |
Collapse
|
205
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomik-vermittelte Entdeckung eines potenten und selektiven Inhibitors des DNA-Reparaturproteins MGMT. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| |
Collapse
|
206
|
Valério E, Campos A, Osório H, Vasconcelos V. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon 2016; 112:22-8. [PMID: 26806210 DOI: 10.1016/j.toxicon.2016.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 02/01/2023]
Abstract
Some of the most common toxins present in freshwater, in particular microcystins (MCs), are produced by cyanobacteria. These toxins have a negative impact on human health, being associated with episodes of acute hepatotoxicity and being considered potentially carcinogenic to humans. To date the exact mechanisms of MC-induced toxicity and tumor promotion were not completely elucidated. To get new insights underlying microcystin-LR (MCLR) molecular mechanisms of toxicity we have performed the proteomic profiling using two-dimensional electrophoresis and MALDI-TOF/TOF of Saccharomyces cerevisiae cells exposed for 4 h-1 nM and 1 μM of MCLR, and compared them to the control (cells not exposed to MCLR). We identified 14 differentially expressed proteins. The identified proteins are involved in metabolism, genotoxicity, cytotoxicity and stress response. Furthermore, we evaluated the relative expression of yeast's PP1 and PP2A genes and also of genes from the Base Excision Repair (BER) DNA-repair system, and observed that three out of the five genes analyzed displayed dose-dependent responses. Overall, the different proteins and genes affected are related to oxidative stress and apoptosis, thus reinforcing that it is probably the main mechanism of MCLR toxicity transversal to several organisms, especially at lower doses. Notwithstanding these MCLR responsive proteins could be object of further studies to evaluate their suitability as biomarkers of exposure to the toxin.
Collapse
Affiliation(s)
- Elisabete Valério
- Unidade de Água e Solo, Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Hugo Osório
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| |
Collapse
|
207
|
Salimizand H, Amini S, Abdi M, Ghaderi B, Azadi NA. Concurrent effects of ABCB1 C3435T, ABCG2 C421A, and XRCC1 Arg194Trp genetic polymorphisms with risk of cancer, clinical output, and response to treatment with imatinib mesylate in patients with chronic myeloid leukemia. Tumour Biol 2016; 37:791-798. [DOI: 10.1007/s13277-015-3874-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 02/06/2023] Open
|
208
|
Ma L, Xun X, Qiao Y, An J, Su M. Predicting efficacies of anticancer drugs using single cell HaloChip assay. Analyst 2016; 141:2454-62. [DOI: 10.1039/c5an02564h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cell HaloChip assay can be used to assess DNA repair ability.
Collapse
Affiliation(s)
- Liyuan Ma
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Wenzhou Institute of Biomaterials and Engineering
| | - Xiaojie Xun
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Wenzhou Institute of Biomaterials and Engineering
| | - Yong Qiao
- NanoScience Technology Center
- University of Central Florida
- Orlando
- USA
| | - Jincui An
- NanoScience Technology Center
- University of Central Florida
- Orlando
- USA
| | - Ming Su
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Wenzhou Institute of Biomaterials and Engineering
| |
Collapse
|
209
|
Imani R, Veranič P, Iglič A, Kreft ME, Pazoki M, Hudoklin S. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem Photobiol Sci 2015; 14:583-90. [PMID: 25385056 DOI: 10.1039/c4pp00272e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
210
|
Predictive assessment in pharmacogenetics of XRCC1 gene on clinical outcomes of advanced lung cancer patients treated with platinum-based chemotherapy. Sci Rep 2015; 5:16482. [PMID: 26585370 PMCID: PMC4653744 DOI: 10.1038/srep16482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022] Open
Abstract
Published data have shown inconsistent results about the pharmacogenetics of XRCC1 gene on clinical outcomes of advanced lung cancer patients treated with platinum-based chemotherapy. This meta-analysis aimed to summarize published findings and provide more reliable association. A total of 53 eligible studies including 7433 patients were included. Patients bearing the favorable TrpTrp and TrpArg genotypes of Arg194Trp were more likely to better response rates to platinum-based chemotherapy compared to those with the unfavorable ArgArg genotype (TrpTrp+TrpArg vs. ArgArg: odds ratio (OR) = 2.02, 95% CI, 1.66–2.45). The GlnGln and GlnArg genotypes of Arg399Gln were significantly associated with the poorer response rates compared to those with the ArgArg genotype (GlnGln +GlnArg vs. ArgArg: OR = 0.68, 95% CI, 0.54–0.86). The GlnGln genotype might be more closely associated with shorter survival time and higher risks of death for patients (GlnGln vs. ArgArg: hazard ratio (HR) = 1.14, 95% CI, 0.75–1.75). Our cumulative meta-analyses indicated a distinct apparent trend toward a better response rate for Arg194Trp, but a poorer response rate in Arg399Gln. These findings indicate a predictive role of XRCC1 polymorphisms in clinical outcomes. The use of XRCC1 polymorphisms as predictive factor of clinical outcomes in personalized chemotherapy treatment requires further verification from large well-designed pharmacogenetics studies.
Collapse
|
211
|
Wang GZ, Hickey SL, Shi L, Huang HC, Nakashe P, Koike N, Tu BP, Takahashi JS, Konopka G. Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. Cell Rep 2015; 13:1868-80. [PMID: 26655902 DOI: 10.1016/j.celrep.2015.10.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephanie L Hickey
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prachi Nakashe
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
212
|
Affiliation(s)
- David S Shin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
213
|
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:267570. [PMID: 26508902 PMCID: PMC4609770 DOI: 10.1155/2015/267570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/03/2023]
Abstract
DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.
Collapse
|
214
|
Kuraoka I. Diversity of Endonuclease V: From DNA Repair to RNA Editing. Biomolecules 2015; 5:2194-206. [PMID: 26404388 PMCID: PMC4693234 DOI: 10.3390/biom5042194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Deamination of adenine occurs in DNA, RNA, and their precursors via a hydrolytic reaction and a nitrosative reaction. The generated deaminated products are potentially mutagenic because of their structural similarity to natural bases, which in turn leads to erroneous nucleotide pairing and subsequent disruption of cellular metabolism. Incorporation of deaminated precursors into the nucleic acid strand occurs during nucleotide synthesis by DNA and RNA polymerases or base modification by DNA- and/or RNA-editing enzymes during cellular functions. In such cases, removal of deaminated products from DNA and RNA by a nuclease might be required depending on the cellular function. One such enzyme, endonuclease V, recognizes deoxyinosine and cleaves 3' end of the damaged base in double-stranded DNA through an alternative excision repair mechanism in Escherichia coli, whereas in Homo sapiens, it recognizes and cleaves inosine in single-stranded RNA. However, to explore the role of endonuclease V in vivo, a detailed analysis of cell biology is required. Based on recent reports and developments on endonuclease V, we discuss the potential functions of endonuclease V in DNA repair and RNA metabolism.
Collapse
Affiliation(s)
- Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
215
|
Vyas R, Efthimiopoulos G, Tokarsky EJ, Malik CK, Basu AK, Suo Z. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase. J Am Chem Soc 2015; 137:12131-42. [PMID: 26327169 PMCID: PMC4582013 DOI: 10.1021/jacs.5b08027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N(2)-yl)-1-aminopyrene (dG(1,8)), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG(1,8) bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG(1,8), we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG(1,8) lesion in the absence or presence of dCTP. The Dpo4·DNA-dG(1,8) binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG(1,8)·dCTP ternary structure, the aminopyrene moiety of the dG(1,8) lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson-Crick base pair with dG, two nucleotides upstream from the dG(1,8) site, creating a complex for "-2" frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism.
Collapse
Affiliation(s)
- Rajan Vyas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Georgia Efthimiopoulos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - E. John Tokarsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Chanchal K. Malik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
216
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
217
|
Miyazono KI, Ishino S, Tsutsumi K, Ito T, Ishino Y, Tanokura M. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I. Nucleic Acids Res 2015; 43:7122-36. [PMID: 26138487 PMCID: PMC4538837 DOI: 10.1093/nar/gkv654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Abstract
Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3′-5′ exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides. Here, we report the structural basis for the cleavage mechanism of this novel exonuclease family. A structural analysis of PhoExo I, the homologous enzyme from P. horikoshii OT3, showed that PhoExo I utilizes an RNase H-like active site and possesses a 3′-OH recognition site ∼9 Å away from the active site, which enables cleavage at every two nucleotides. Analyses of the heterotrimeric and monomeric PhoExo I activities showed that trimerization is indispensable for its processive cleavage mechanism, but only one active site of the trimer is required.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kanae Tsutsumi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
218
|
Liefke R, Windhof-Jaidhauser IM, Gaedcke J, Salinas-Riester G, Wu F, Ghadimi M, Dango S. The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med 2015. [PMID: 26221185 PMCID: PMC4517488 DOI: 10.1186/s13073-015-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes upregulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers, and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an upregulation of ALKBH3 non-bound inflammatory genes. Conclusions The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0180-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | | | - Jochen Gaedcke
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | | | - Feizhen Wu
- Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Michael Ghadimi
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | - Sebastian Dango
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany ; Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
219
|
Jiang Z, Xu M, Lai Y, Laverde EE, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair (Amst) 2015; 33:24-34. [PMID: 26123757 DOI: 10.1016/j.dnarep.2015.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemistry and Biochemistry, USA; Biochemistry Ph.D. Program, USA
| | - Meng Xu
- Department of Chemistry and Biochemistry, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, USA
| | | | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15341, Agia Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, USA; Biochemistry Ph.D. Program, USA; Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
220
|
Lauritzen KH, Kleppa L, Aronsen JM, Eide L, Carlsen H, Haugen ØP, Sjaastad I, Klungland A, Rasmussen LJ, Attramadal H, Storm-Mathisen J, Bergersen LH. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H434-49. [PMID: 26055793 DOI: 10.1152/ajpheart.00253.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Liv Kleppa
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Norway, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo, Oslo, Norway
| | - Harald Carlsen
- Department of Nutrition Research, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øyvind P Haugen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Norway, Oslo, Norway
| | - Arne Klungland
- Department of Nutrition Research, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Medical Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway; and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
221
|
Katlinskaya YV, Carbone CJ, Yu Q, Fuchs SY. Type 1 interferons contribute to the clearance of senescent cell. Cancer Biol Ther 2015; 16:1214-9. [PMID: 26046815 DOI: 10.1080/15384047.2015.1056419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The major known function of cytokines that belong to type I interferons (IFN, including IFNα and IFNβ) is to mount the defense against viruses. This function also protects the genetic information of host cells from alterations in the genome elicited by some of these viruses. Furthermore, recent studies demonstrated that IFN also restrict proliferation of damaged cells by inducing cell senescence. Here we investigated the subsequent role of IFN in elimination of the senescent cells. Our studies demonstrate that endogenous IFN produced by already senescent cells contribute to increased expression of the natural killer (NK) receptor ligands, including MIC-A and ULBP2. Furthermore, neutralization of endogenous IFN or genetic ablation of its receptor chain IFNAR1 compromises the recognition of senescent cells and their clearance in vitro and in vivo. We discuss the role of IFN in protecting the multi-cellular host from accumulation of damaged senescent cells and potential significance of this mechanism in human cancers.
Collapse
Affiliation(s)
- Yuliya V Katlinskaya
- a Department of Biomedical Sciences ; School of Veterinary Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | |
Collapse
|
222
|
Prasad R, Dyrkheeva N, Williams J, Wilson SH. Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. PLoS One 2015; 10:e0124269. [PMID: 26020771 PMCID: PMC4447435 DOI: 10.1371/journal.pone.0124269] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/11/2015] [Indexed: 01/09/2023] Open
Abstract
The apurinic/apyrimidinic- (AP-) site in genomic DNA arises through spontaneous base loss and base removal by DNA glycosylases and is considered an abundant DNA lesion in mammalian cells. The base excision repair (BER) pathway repairs the AP-site lesion by excising and replacing the site with a normal nucleotide via template directed gap-filling DNA synthesis. The BER pathway is mediated by a specialized group of proteins, some of which can be found in multiprotein complexes in cultured mouse fibroblasts. Using a DNA polymerase (pol) β immunoaffinity-capture technique to isolate such a complex, we identified five tightly associated and abundant BER factors in the complex: PARP-1, XRCC1, DNA ligase III, PNKP, and Tdp1. AP endonuclease 1 (APE1), however, was not present. Nevertheless, the complex was capable of BER activity, since repair was initiated by PARP-1’s AP lyase strand incision activity. Addition of purified APE1 increased the BER activity of the pol β complex. Surprisingly, the pol β complex stimulated the strand incision activity of APE1. Our results suggested that PARP-1 was responsible for this effect, whereas other proteins in the complex had no effect on APE1 strand incision activity. Studies of purified PARP-1 and APE1 revealed that PARP-1 was able to stimulate APE1 strand incision activity. These results illustrate roles of PARP-1 in BER including a functional partnership with APE1.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Nadezhda Dyrkheeva
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jason Williams
- Epigenetics and Stem Cell Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Samuel H. Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
223
|
Yang Y, Yang Y, Yang X, Zhu H, Guo Q, Chen X, Zhang H, Cheng H, Sun X. Autophagy and its function in radiosensitivity. Tumour Biol 2015; 36:4079-87. [DOI: 10.1007/s13277-015-3496-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/23/2015] [Indexed: 01/03/2023] Open
|
224
|
Dai Q, Luo H, Li XP, Huang J, Zhou TJ, Yang ZH. XRCC1 and ERCC1 polymorphisms are related to susceptibility and survival of colorectal cancer in the Chinese population. Mutagenesis 2015; 30:441-449. [PMID: 25690281 DOI: 10.1093/mutage/geu088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excision repair cross complementing group 1 (ERCC1) and X-ray repair cross-complementing groups 1 (XRCC1) are DNA repair enzymes. Polymorphisms in DNA repair genes may be important factors affecting cancer susceptibility, prognosis and therapy outcome. The purpose of this study was to investigate the correlation of ERCC1 and XRCC1 polymorphisms with colorectal cancer (CRC) risk, and explore the effect of polymorphisms on event-free, overall survival and oxaliplatin-based therapy in CRC patients. Genotyping was examined with the iMLDR technique. An unconditional logistic regression model was used to estimate the association of certain polymorphisms with CRC risk. The Kaplan-Meier method, log-rank test and Cox regression model were employed to evaluate the effects of polymorphisms on survival analysis. Results showed that Trp/Trp genotype of XRCC1 Arg194Trp and AA genotype of ERCC1 rs2336219 have a significantly increased risk of CRC; Trp allele of XRCC1 Arg194Trp and CC genotype of ERCC1 rs735482 were associated with lower response to oxaliplatin-based chemotherapy, a shorter survival and a higher risk of relapse or metastasis. 194Trp/280Arg/399Arg haplotype was associated with a significant resistance, and the ERCC1 protein expression was statistically higher in tumours with rs735482 CC genotype than with AA genotype. Our studies indicate that XRCC1 and ERCC1 polymorphisms probably affect susceptibility, chemotherapy response and survival of CRC patients.
Collapse
Affiliation(s)
- Qiong Dai
- Department of Human Anatomy, Luzhou Medical College, Luzhou 646000, Sichuan, China and
| | - Hua Luo
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan, China
| | - Xing Pu Li
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan, China
| | - Juan Huang
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan, China
| | - Tie Jun Zhou
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan, China
| | - Zhi-Hui Yang
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan, China
| |
Collapse
|
225
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
226
|
Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 2015; 32:33-42. [PMID: 26021671 DOI: 10.1016/j.dnarep.2015.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States.
| |
Collapse
|
227
|
Tong D, Ortega J, Kim C, Huang J, Gu L, Li GM. Arsenic Inhibits DNA Mismatch Repair by Promoting EGFR Expression and PCNA Phosphorylation. J Biol Chem 2015; 290:14536-41. [PMID: 25907674 DOI: 10.1074/jbc.m115.641399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Both genotoxic and non-genotoxic chemicals can act as carcinogens. However, while genotoxic compounds lead directly to mutations that promote unregulated cell growth, the mechanism by which non-genotoxic carcinogens lead to cellular transformation is poorly understood. Using a model non-genotoxic carcinogen, arsenic, we show here that exposure to arsenic inhibits mismatch repair (MMR) in human cells, possibly through its ability to stimulate epidermal growth factor receptor (EGFR)-dependent tyrosine phosphorylation of proliferating cellular nuclear antigen (PCNA). HeLa cells exposed to exogenous arsenic demonstrate a dose- and time-dependent increase in the levels of EGFR and tyrosine 211-phosphorylated PCNA. Cell extracts derived from arsenic-treated HeLa cells are defective in MMR, and unphosphorylated recombinant PCNA restores normal MMR activity to these extracts. These results suggest a model in which arsenic induces expression of EGFR, which in turn phosphorylates PCNA, and phosphorylated PCNA then inhibits MMR, leading to increased susceptibility to carcinogenesis. This study suggests a putative novel mechanism of action for arsenic and other non-genotoxic carcinogens.
Collapse
Affiliation(s)
- Dan Tong
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and Tsinghua University School of Medicine, Beijing, China 100084
| | - Janice Ortega
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Christine Kim
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Jian Huang
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Liya Gu
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Guo-Min Li
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and Tsinghua University School of Medicine, Beijing, China 100084
| |
Collapse
|
228
|
Krishnamurthy N, Liu L, Xiong X, Zhang J, Montano MM. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells. Cancer Biol Ther 2015; 16:518-27. [PMID: 25849309 DOI: 10.1080/15384047.2015.1016661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.
Collapse
|
229
|
Leung KH, He HZ, He B, Zhong HJ, Lin S, Wang YT, Ma DL, Leung CH. Label-free luminescence switch-on detection of hepatitis C virus NS3 helicase activity using a G-quadruplex-selective probe. Chem Sci 2015; 6:2166-2171. [PMID: 28808523 PMCID: PMC5539802 DOI: 10.1039/c4sc03319a] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022] Open
Abstract
A series of luminescent Ir(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The Ir(iii) complex 9, [Ir(phq)2(phen)]PF6 (where phq = 2-phenylquinoline; phen = 1,10-phenanthroline), exhibited high luminescence in the presence of G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a label-free G-quadruplex-based assay for hepatitis C virus NS3 helicase activity in aqueous solution. Moreover, the application of the assay for screening potential helicase inhibitors was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for helicase activity.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hong-Zhang He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Bingyong He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
230
|
Lian S, Liu C, Zhang X, Wang H, Li Z. Detection of T4 polynucleotide kinase activity based on cationic conjugated polymer-mediated fluorescence resonance energy transfer. Biosens Bioelectron 2015; 66:316-20. [DOI: 10.1016/j.bios.2014.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
231
|
|
232
|
Arora S, Tyagi N, Bhardwaj A, Rusu L, Palanki R, Vig K, Singh SR, Singh AP, Palanki S, Miller ME, Carter JE, Singh S. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1265-75. [PMID: 25804413 DOI: 10.1016/j.nano.2015.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.
Collapse
Affiliation(s)
- Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Lilia Rusu
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, USA
| | - Rohan Palanki
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Komal Vig
- Alabama State University, Montgomery, AL, USA
| | | | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Srinivas Palanki
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, USA
| | - Michael E Miller
- Auburn University Research Instrumentation Facility - Advanced Microscopy and Imaging Laboratory, Auburn, AL, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
233
|
Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol 2015; 25:158-70. [PMID: 25499735 PMCID: PMC5576887 DOI: 10.1016/j.tcb.2014.11.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 01/21/2023]
Abstract
Mitochondria are the oxygen-consuming power plants of cells. They provide a critical milieu for the synthesis of many essential molecules and allow for highly efficient energy production through oxidative phosphorylation. The use of oxygen is, however, a double-edged sword that on the one hand supplies ATP for cellular survival, and on the other leads to the formation of damaging reactive oxygen species (ROS). Different quality control pathways maintain mitochondria function including mitochondrial DNA (mtDNA) replication and repair, fusion-fission dynamics, free radical scavenging, and mitophagy. Further, failure of these pathways may lead to human disease. We review these pathways and propose a strategy towards a treatment for these often untreatable disorders.
Collapse
Affiliation(s)
- Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| |
Collapse
|
234
|
Tajedin L, Anwar M, Gupta D, Tuteja R. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair (Amst) 2015; 28:60-72. [PMID: 25757193 DOI: 10.1016/j.dnarep.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Nucleotide excision repair (NER) is one of the DNA repair pathways crucial for maintenance of genome integrity and deals with repair of DNA damages arising due to exogenous and endogenous factors. The multi-protein transcription initiation factor TFIIH plays a critical role in NER and transcription and is highly conserved throughout evolution. The malaria parasite Plasmodium falciparum has been a challenge for the researchers for a long time because of emergence of drug resistance. The availability of its genome sequence has opened new avenues for research. Antimalarial drugs like chloroquine and mefloquine have been reported to inhibit NER pathway mediated repair reactions and thus promote mutagenesis. Previous studies have validated existence and implied possible association of defective or altered DNA repair pathways with development of drug resistant phenotype in certain P. falciparum strains. We conjecture that a compromised NER pathway in combination with other DNA repair pathways might be conducive for the emergence and sustenance of drug resistance in P. falciparum. Therefore we decided to unravel the components of NER pathway in P. falciparum and using bioinformatics based approaches here we report a genome wide in silico analysis of NER components from P. falciparum and their comparison with the human host. Our results reveal that P. falciparum genome contains almost all the components of NER but we were unable to find clear homologue for p62 and XPC in its genome. The structure modeling of all the components further suggests that their structures are significantly conserved. Furthermore this study lays a foundation to perform similar comparative studies between drug resistant and drug sensitive strains of parasite in order to understand DNA repair-related mechanisms of drug resistance.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masroor Anwar
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
235
|
Fomina EE, Pestryakov PE, Maltseva EA, Petruseva IO, Kretov DA, Ovchinnikov LP, Lavrik OI. Y-box binding protein 1 (YB-1) promotes detection of DNA bulky lesions by XPC-HR23B factor. BIOCHEMISTRY (MOSCOW) 2015; 80:219-27. [DOI: 10.1134/s000629791502008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
236
|
Sousa FG, Matuo R, Tang SW, Rajapakse VN, Luna A, Sander C, Varma S, Simon PHG, Doroshow JH, Reinhold WC, Pommier Y. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst) 2015; 28:107-15. [PMID: 25758781 DOI: 10.1016/j.dnarep.2015.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Renata Matuo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Augustin Luna
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; HiThru Analytics LLC, Laurel, MD 20707, USA
| | - Paul H G Simon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
237
|
Yun YX, Dai LP, Wang P, Wang KJ, Zhang JY, Xie W. Association of polymorphisms in X-ray repair cross complementing 1 gene and risk of esophageal squamous cell carcinoma in a Chinese population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:509215. [PMID: 25710005 PMCID: PMC4331318 DOI: 10.1155/2015/509215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the association between three single nucleotide polymorphisms (SNPs) in the X-ray repair cross complementing 1 gene (XRCC1) and the risk of esophageal squamous cell carcinoma (ESCC) in Chinese population. METHODS A case-control study including 381 primary ESCC patients recruited from hospital and 432 normal controls matched with patients by age and gender from Chinese Han population was conducted. The genotypes of three XRCC1 polymorphisms at -77T>C (T-77C), codon 194 (Arg194Trp), and codon 399 (Arg399Gln) were studied by means of polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP). Unconditional logistic regression model and haplotype analysis were used to estimate associations of these three SNPs in XRCC1 gene with ESCC risk. RESULTS Polymorphisms at these three sites in XRCC1 gene were not found to be associated with risk for developing ESCC; however the haplotype C(codon 194)G(codon 399)C(-77T>C) was significantly associated with reduced risk of ESCC (OR: 0.62, 95% CI: 0.40-0.96) upon haplotype analysis. CONCLUSION These results suggested that the gene-gene interactions might play vital roles in the progression on esophageal cancer in Chinese Han population and it would be necessary to confirm these findings in a large and multiethnic population.
Collapse
Affiliation(s)
- Yu-Xia Yun
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Immunization Planning, Centers for Disease Control and Prevention of Puyang City, Puyang, Henan 457000, China
| | - Li-Ping Dai
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kai-Juan Wang
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian-Ying Zhang
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital & Department of Epidemiology, College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
238
|
Réus GZ, Abaleira HM, Michels M, Tomaz DB, dos Santos MAB, Carlessi AS, Matias BI, Leffa DD, Damiani AP, Gomes VDC, Andrade VM, Dal-Pizzol F, Landeira-Fernadez J, Quevedo J. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake. Mutat Res 2015; 772:30-37. [PMID: 25772108 DOI: 10.1016/j.mrfmmm.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Helena M Abaleira
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora B Tomaz
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Maria Augusta B dos Santos
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Anelise S Carlessi
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Beatriz I Matias
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Daniela D Leffa
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vitor de C Gomes
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
239
|
Ma Y, Zhao J, Li X, Zhang L, Zhao S. A label free fluorescent assay for uracil-DNA glycosylase activity based on the signal amplification of exonuclease I. RSC Adv 2015. [DOI: 10.1039/c5ra12958c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label free fluorescent assay for uracil-DNA glycosylase activity was developed based on the signal amplification of exonuclease I.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Xuejun Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
240
|
Gecit I, Meral I, Aslan M, Kocyigit A, Celik H, Taskın A, Kaba M, Pirincci N, Gunes M, Taken K, Demir H, Uyuklu M, Ceylan K. Peripheral mononuclear leukocyte DNA damage, plasma prolidase activity, and oxidative status in patients with benign prostatic hyperplasia. Redox Rep 2015; 20:163-9. [PMID: 25551736 DOI: 10.1179/1351000214y.0000000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Prolidase plays a major role in collagen turnover, matrix remodeling, and cell growth. Benign prostatic hyperplasia (BPH) may be associated with an increased extracellular matrix deposition. Therefore, the present study was designed to investigate the plasma prolidase activity, oxidative status, and peripheral mononuclear leukocyte DNA damage in patients with BPH. PATIENTS AND METHODS Twenty-six male patients with BPH and 24 healthy male subjects were included in this study. Blood samples were collected from antecubital vein after an overnight fasting period, and the plasma was separated. Plasma prolidase activity, total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were determined. The peripheral lymphocyte oxidative DNA damage was determined using an alkaline single cell gel electrophoresis assay (comet assay). RESULTS The plasma prolidase activity, TOS levels, OSI values, and peripheral mononuclear leukocyte DNA damage were significantly higher (P < 0.001), while the TAC levels were significantly lower (P < 0.001) in patients with BPH than controls. In BPH patients, the prolidase activity was significantly associated with TAC levels (r = -0.366, P < 0.05), TOS levels (r = 0.573, P < 0.001), and OSI (r = 0.618, P < 0.001) and peripheral mononuclear leukocyte DNA damage (r = 0.461, P < 0.001). CONCLUSIONS Our results showed that BPH might be associated with an increased oxidative stress, and also an increased plasma prolidase activity. Increased prolidase activity might play an important role in the etiopathogenesis and/or progression of BPH.
Collapse
|
241
|
Nissar S, Sameer AS, Rasool R, Chowdri NA, Rashid F. Polymorphism of the DNA Repair Gene XRCC1 (Arg194Trp) and its role in Colorectal Cancer in Kashmiri Population: a Case Control Study. Asian Pac J Cancer Prev 2015; 16:6385-6390. [PMID: 26434847 DOI: 10.7314/apjcp.2015.16.15.6385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. MATERIALS AND METHODS In this study we focused on the Arg194Trp polymorphism of the DNA repair gene XRCC1, involved in base excision repair (BER) and its role in colorectal cancer in Kashmiri population. A case-control study was conducted including 100 cases of colorectal cancer, and 100 hospital-based age- and sex-matched healthy controls to examine the role of XRCC1 genetic polymorphisms in the context of colorectal cancer risk for the Kashmiri population. RESULTS Genotype analysis of XRCC1 Arg194Trp was conducted with a restriction fragment length polymorphism (RFLP) method. The overall association between the XRCC1 polymorphism and the CRC cases was found to be significant (p<0.05) with both the heterozygous genotype (Arg/Trp) as well as homozygous variant genotype (Trp/Trp) being moderately associated with the elevated risk for CRC [OR=2.01 (95% CI=1.03-3.94) and OR=5.2(95% CI=1.42-19.5)] respectively. CONCLUSIONS Our results suggest an increased risk for CRC in individuals with XRCC1 Arg194Trp polymorphism suggesting BER repair pathway modulates the risk of developing colorectal cancer in the Kashmiri population.
Collapse
Affiliation(s)
- Saniya Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, India E-mail :
| | | | | | | | | |
Collapse
|
242
|
Tao J, Song P, Sato Y, Nishizawa S, Teramae N, Tong A, Xiang Y. A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity. Chem Commun (Camb) 2015; 51:929-32. [DOI: 10.1039/c4cc06170e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A label-free fluorescent method has been developed for sensitive detection of uracil-DNA glycosylase activity as well as UDG inhibitors.
Collapse
Affiliation(s)
- Jing Tao
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Panshu Song
- National Institute of Metrology
- Beijing 100029
- China
| | - Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Norio Teramae
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| |
Collapse
|
243
|
Pinto MF, Louro H, Costa PM, Caeiro S, Silva MJ. Exploring the potential interference of estuarine sediment contaminants with the DNA repair capacity of human hepatoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:559-570. [PMID: 25965191 DOI: 10.1080/15287394.2015.1006712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Estuaries may be reservoirs of a wide variety of pollutants, including mutagenic and carcinogenic substances that may impact on the ecosystem and human health. A previous study showed that exposure of human hepatoma (HepG2) cells to extracts from sediment samples collected in two areas (urban/industrial and riverine/agricultural) of an impacted estuary (Sado, Portugal), produced differential cytotoxic and genotoxic effects. Those effects were found to be consistent with levels and nature of sediment contamination. The present study aimed at evaluating whether the mixtures of contaminants contained in those extracts were able to modulate DNA repair capacity of HepG2 cells. The residual level of DNA damage was measured by the comet assay in cells exposed for 24 or 48 h to different extracts, after a short preexposure to a challenging concentration range of ethyl methanesulfonate (EMS), as a model alkylating agent. The results suggested that the mixture of contaminants present in the tested samples, besides a potential direct effect on the DNA molecule, may also interfere with DNA repair mechanisms in HepG2 cells, thus impairing their ability to deal with genotoxic stress and, possibly, facilitating accumulation of mutations. Humans are environmentally/occupationally exposed to mixtures rather than to single chemicals. Thus, the observation that estuarine contaminants induce direct and indirect DNA strand breakage in human cells, the latter through the impairment of DNA repair, raises additional concerns regarding potential hazards from exposure and the need to further explore these endpoints in the context of environmental risk assessment.
Collapse
Affiliation(s)
- Miguel Ferreira Pinto
- a National Institute of Health Dr. Ricardo Jorge, I.P. , Department of Human Genetics , Lisbon , Portugal
| | | | | | | | | |
Collapse
|
244
|
Somatic mosaicism in the human genome. Genes (Basel) 2014; 5:1064-94. [PMID: 25513881 PMCID: PMC4276927 DOI: 10.3390/genes5041064] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
Somatic mosaicism refers to the occurrence of two genetically distinct populations of cells within an individual, derived from a postzygotic mutation. In contrast to inherited mutations, somatic mosaic mutations may affect only a portion of the body and are not transmitted to progeny. These mutations affect varying genomic sizes ranging from single nucleotides to entire chromosomes and have been implicated in disease, most prominently cancer. The phenotypic consequences of somatic mosaicism are dependent upon many factors including the developmental time at which the mutation occurs, the areas of the body that are affected, and the pathophysiological effect(s) of the mutation. The advent of second-generation sequencing technologies has augmented existing array-based and cytogenetic approaches for the identification of somatic mutations. We outline the strengths and weaknesses of these techniques and highlight recent insights into the role of somatic mosaicism in causing cancer, neurodegenerative, monogenic, and complex disease.
Collapse
|
245
|
Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res 2014; 42:13749-63. [PMID: 25428354 PMCID: PMC4267656 DOI: 10.1093/nar/gku1239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Zhongliang Jiang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy Institute of Nanoscience and Nanotechnology, N.C.S.R. 'Demokritos', 15341 Agia, Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| |
Collapse
|
246
|
Abstract
The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.
Collapse
Affiliation(s)
- Edward J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
247
|
da Silva VHP, de Moura CFG, Ribeiro FAP, Cesar A, Pereira CDS, Silva MJD, Vilegas W, Ribeiro DA. Genotoxicity and cytotoxicity induced by municipal effluent in multiple organs of Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13069-13080. [PMID: 24996946 DOI: 10.1007/s11356-014-3261-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate cytotoxicity and genotoxicity in multiple organs of rats induced by municipal effluent released by submarine outfall in city of Santos. A total of 20 male Wistar rats were exposed to effluents by drinking water ad libitum at concentrations of 0, 10, 50, and 100 % for 30 days. Microscopic analysis revealed severe lesions such as necrosis and hemorrhagic areas in liver and kidney from animals exposed to effluent at 50 and 100 % concentration. DNA damage in peripheral blood, liver, and kidney cells were detected by comet assay at higher concentrations of effluent. Moreover, a decrease DNA repair capacity was detected in liver cells. Significant statistical differences (p<0.05) for micronucleated cells from liver were noticed at 50 % concentration of effluent. Taken together, our results demonstrate that municipal effluent is able to induce cytotoxicity and genotoxicity in multiple organs of Wistar rats.
Collapse
Affiliation(s)
- Victor Hugo Pereira da Silva
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Av. Ana Costa 95, 11060-001, Santos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
248
|
de Moura CFG, Ribeiro FAP, de Jesus GPP, da Silva VHP, Oshima CTF, Gollücke APB, Aguiar O, Ribeiro DA. Antimutagenic and antigenotoxic potential of grape juice concentrate in blood and liver of rats exposed to cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13118-13126. [PMID: 24996944 DOI: 10.1007/s11356-014-3257-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the antimutagenic and antigenotoxic potential of grape juice concentrate in rodent organs exposed to cadmium chloride intoxication. A total of 15 Wistar rats were distributed into three groups (n = 5), as follows: control group (CTRL; nontreated group), cadmium group (Cd), and cadmium-grape juice group (Cd + GJ). Exposed animals received intraperitoneal injection of cadmium chloride (1.2 mg/kg body weight) diluted in water and, after 15 days, Cd + GJ group received grape juice concentrate for 15 days, by gavage (0.8 mL, 1.18 mg of polyphenols kg(-1) day(-1)). Grape juice concentrate was able to decrease genotoxic effects induced by cadmium in peripheral blood and liver cells as depicted by single cell gel (comet) and micronucleus assays. A decrease for anti-8-hydroxy-20-deoxyguanosine (8OHdG) expression in hepatocytes of animals exposed to cadmium and treated with grape juice concentrate was also detected. Higher CuZn-SOD activity was observed in liver cells of the Cd + GJ group. No remarkable differences were seen regarding Mn-SOD activity among groups. Taken together, our results demonstrate that grape juice concentrate was able to exert antimutagenic and antigenotoxic activities in blood and liver cells of rats exposed to cadmium.
Collapse
|
249
|
Yuan Q, Liu JW, Xing CZ, Yuan Y. Associations of ERCC4 rs1800067 polymorphism with cancer risk: an updated meta-analysis. Asian Pac J Cancer Prev 2014; 15:7639-44. [PMID: 25292041 DOI: 10.7314/apjcp.2014.15.18.7639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RESULTS from previous studies concerning the association of ERCC4 rs1800067 polymorphism with risk of cancer were inconsistent. To explore the exact relation with susceptibility, we conducted the present meta-analysis. MATERIALS AND METHODS Literature of electronic databases including PubMed, Web of Science, EMBASE, Wanfang and Chinese National Knowledge Infrastructure (CNKI) were systematically searched. ORs and their 95%CIs were used to assess the strength of associations between ERCC4 polymorphism and cancer risk. RESULTS There was no significant association between ERCC4 rs1800067 AA or AG genotypes and overall risk of cancer (AA vs. GG: OR=0.998, 95%CI=0.670-1.486, P=0.992; AG vs. GG: OR=0.970, 95%CI=0.888- 1.061, P=0.508). A dominant genetic model also did not demonstrate significant association of (AA+AG) genotype carriers with altered risk of overall cancer (OR=0.985, 95%CI=0.909-1.068, P=0.719). In addition, no significant association was observed between A allele of ERCC4 rs1800067 A/G polymorphism and altered cancer risk compared with G allele (OR=0.952, 95%CI=0.851-1.063, P=0.381). Subgroup analysis suggested that AA genotype carriers were significantly associated with decreased risk of glioma compared with wild-type GG genotype individuals (OR=0.523, 95%CI=0.275-0.993, P=0.048). For subgroup of lung cancer, A allele of ERCC4 rs1800067 A/G polymorphism was significantly associated with decreased risk of lung cancer compared with G allele (OR=0.806, 95%CI=0.697-0.931, P=0.003). CONCLUSIONS This meta-analysis indicated that ERCC4 rs1800067 A/G polymorphism might not be associated with risk of overall cancer. However, individuals with the AA genotype were associated with significantly reduced risk of glioma compared with wild-type GG genotype; The A allele was associated with significantly reduced risk of lung cancer compared with G allele. Future large- scale studies performed in multiple populations are warranted to confirm our results.
Collapse
Affiliation(s)
- Quan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China E-mail :
| | | | | | | |
Collapse
|
250
|
Schuch AP, Moraes MCS, Yagura T, Menck CFM. Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11584-11590. [PMID: 25216262 DOI: 10.1021/es503721a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The protective effect of sunscreens has been extensively evaluated in vivo as a measure of erythema induced in human skin and is expressed as Sun Protection Factor (SPF). In vitro alternatives that use human cells might overcome the limitations of testing on human beings. Here is proposed a broad and accurate in vitro approach for evaluating the efficacy of commercial sunscreens even under environmental conditions. This Cell dosimeter allowed the determination of Sun Protection Factor for DNA (DNA-SPF), using specific DNA repair enzymes and antibodies, and Sun Protection Factor for Lethal Damage (LD-SPF), by measuring cell viability and apoptosis induced after the irradiation of human cells. The use of xeroderma pigmentosum (XP) cells, which are deficient in DNA repair, rendered this assay more sensitive. The results revealed significant protection against the effects elicited by UVB radiation; however, there was no efficient protection from DNA lesions and cell death induced by UVA radiation or natural sunlight. This work demonstrates the environmental application of this biodosimeter for measuring UV-induced biological damage to human cells and supports the need for better evaluation of the UVA protection efficacy conferred by commercial sunscreens, in terms of induction of DNA lesions and cell death.
Collapse
Affiliation(s)
- André P Schuch
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508-000, Brazil
| | | | | | | |
Collapse
|