201
|
Mfouo-Tynga IS, Mouinga-Ondeme AG. Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals (Basel) 2022; 15:ph15101273. [PMID: 36297385 PMCID: PMC9608479 DOI: 10.3390/ph15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative “or smart” PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.
Collapse
|
202
|
Human Herpesvirus 8 in Australia: DNAemia and Cumulative Exposure in Blood Donors. Viruses 2022; 14:v14102185. [PMID: 36298740 PMCID: PMC9611601 DOI: 10.3390/v14102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), the causative agent of Kaposi’s sarcoma, multicentric Castleman’s disease and primary effusion lymphoma, predominantly manifests in immunocompromised individuals. However, infection in immunocompetent individuals does occur. The prevalence of HHV-8 exposure in blood donors from non-endemic countries ranges between 1.2% and 7.3%. Nothing was known about the prevalence in Australian blood donors. Therefore, this study investigated the active and cumulative exposure of HHV-8 in this cohort. Plasma samples (n = 480) were collected from eastern Australian blood donors and were tested for HHV-8 DNA by qPCR, and for HHV-8 antibodies by two different ELISAs. Samples initially positive on either ELISA were retested in duplicate on both, and on a mock-coated ELISA. Any samples positive two or three out of the three times tested on at least one ELISA, and repeat negative on the mock-coated ELISA, were assigned as repeat positive. None of the 480 samples tested contained HHV-8 DNA. Serological testing revealed 28 samples (5.83%; 95% CI: 3.74−7.93%) had antibodies to HHV-8. There was no difference (p > 0.05) in seropositivity between sex or with increasing age. This is the first study to show serological evidence of cumulative HHV-8 exposure and no HHV-8 DNAemia within a select blood donor population in Australia. Our molecular and serological data is consistent with published results for blood donors residing in HHV-8 non-endemic countries, which shows the prevalence to be very low.
Collapse
|
203
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
204
|
Serfecz JC, Hong Y, Gay LA, Shekhar R, Turner PC, Renne R. DExD/H Box Helicases DDX24 and DDX49 Inhibit Reactivation of Kaposi's Sarcoma Associated Herpesvirus by Interacting with Viral mRNAs. Viruses 2022; 14:2083. [PMID: 36298642 PMCID: PMC9609691 DOI: 10.3390/v14102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that is the causative agent of primary effusion lymphoma and Kaposi's sarcoma. In healthy carriers, KSHV remains latent, but a compromised immune system can lead to lytic viral replication that increases the probability of tumorigenesis. RIG-I-like receptors (RLRs) are members of the DExD/H box helicase family of RNA binding proteins that recognize KSHV to stimulate the immune system and prevent reactivation from latency. To determine if other DExD/H box helicases can affect KSHV lytic reactivation, we performed a knock-down screen that revealed DHX29-dependent activities appear to support viral replication but, in contrast, DDX24 and DDX49 have antiviral activity. When DDX24 or DDX49 are overexpressed in BCBL-1 cells, transcription of all lytic viral genes and genome replication were significantly reduced. RNA immunoprecipitation of tagged DDX24 and DDX49 followed by next-generation sequencing revealed that the helicases bind to mostly immediate-early and early KSHV mRNAs. Transfection of expression plasmids of candidate KSHV transcripts, identified from RNA pull-down, demonstrated that KSHV mRNAs stimulate type I interferon (alpha/beta) production and affect the expression of multiple interferon-stimulated genes. Our findings reveal that host DExD/H box helicases DDX24 and DDX49 recognize gammaherpesvirus transcripts and convey an antiviral effect in the context of lytic reactivation.
Collapse
Affiliation(s)
- Jacquelyn C. Serfecz
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yuan Hong
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
205
|
Jaijyan DK, Govindasamy K, Lee M, Zhu H. A chemical method for generating live-attenuated, replication-defective DNA viruses for vaccine development. CELL REPORTS METHODS 2022; 2:100287. [PMID: 36160049 PMCID: PMC9499982 DOI: 10.1016/j.crmeth.2022.100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
The development of a chemically attenuated, replication-incompetent virus vaccine can provide protection against diseases caused by DNA viruses. In this study, we have developed a method to produce live-attenuated, replication-defective viruses using centanamycin (CM), a chemical compound that alkylates the A-T-rich minor groove of the DNA and thereby blocks DNA replication. We tested the efficacy of CM to produce live-attenuated, replication-defective human cytomegalovirus, mouse cytomegalovirus, and herpes simplex virus-2 (HSV-2), suggesting a broad application for generating live-attenuated, replication-defective DNA viruses. Mass spectrometry analysis showed that CM alkylate viral DNA at the adenine-N3 position. Moreover, mice immunization with CM-attenuated mouse cytomegalovirus (MCMV) produced a robust immune response and reduced the viral load in immunized animals against challenges with live, wild-type MCMV. Our study offers a unifying and attractive therapeutic opportunity that chemically attenuated live DNA viruses can be readily developed as new frontline vaccines.
Collapse
Affiliation(s)
- Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers – New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | - Kavitha Govindasamy
- New Jersey Center for Science, Technology and Mathematics, Kean University, Union, NJ, USA
| | - Moses Lee
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers – New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
206
|
The ORF45 Protein of Kaposi's Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle. Viruses 2022; 14:v14092010. [PMID: 36146816 PMCID: PMC9506158 DOI: 10.3390/v14092010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections.
Collapse
|
207
|
The Contribution of Kaposi's Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation. J Virol 2022; 96:e0068422. [PMID: 36073924 PMCID: PMC9517700 DOI: 10.1128/jvi.00684-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.
Collapse
|
208
|
Fischer AK, Kroesen A, Büttner R, Drebber U. Das Kaposi-Sarkom – eine Komplikation bei therapierefraktärer Colitis ulcerosa. DIE PATHOLOGIE 2022; 43:372-376. [PMID: 35925309 PMCID: PMC9402725 DOI: 10.1007/s00292-022-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
ZusammenfassungWir berichten über den Zufallsbefund eines Kaposi-Sarkoms des Kolons bei schwerer therapierefraktärer Colitis ulcerosa. Die Patientin war zuvor lange immunsuppressiv mit Infliximab, Vedolizumab und Prednisolon behandelt worden. Serologische Untersuchungen schlossen eine HIV(„human immunodeficiency virus“)-Infektion aus.
Collapse
|
209
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
210
|
Abstract
PURPOSE OF REVIEW The discovery of Kaposi sarcoma herpesvirus (KSHV) / human herpesvirus 8 (HHV-8) led to recognition of primary effusion lymphoma (PEL) as a distinct lymphoproliferative disorder. Subsequently, two other types of lymphoma have been shown to be associated with HHV-8 : HHV-8 positive diffuse large B cell lymphoma not otherwise specified and germinotropic lymphoproliferative disorder.The pathogenesis of PEL is unique as in most cases the HHV-8+ tumoral cells are coinfected with the Epstein-Barr virus (EBV), suggesting an interplay between these two herpesviruses. This article reviews advances in the field of characterization of the lymphomatous cells, pathogenesis, and targeted therapies. RECENT FINDINGS The gene expression profile analysis of PEL cells and the experimental coinfection of peripheral B cells with HHV-8 and EBV allow dissection of the mechanisms of lymphomagenesis and of the relative contribution of both viruses. Systemic chemotherapy regimen remains poorly effective but new therapeutic perspectives are open with the use of monoclonal antibodies, immunomodulatory drugs, and immunotherapy. SUMMARY HHV-8 associated lymphoma is a model for studying virus-induced lymphoproliferation and its relation with host immune response and PEL is a unique model to study the relative contribution of two herpesviruses to lymphomagenesis in coinfected cells.
Collapse
|
211
|
Maeda Y, Watanabe T, Izumi T, Kuriyama K, Ohno S, Fujimuro M. Biomolecular Fluorescence Complementation Profiling and Artificial Intelligence Structure Prediction of the Kaposi's Sarcoma-Associated Herpesvirus ORF18 and ORF30 Interaction. Int J Mol Sci 2022; 23:9647. [PMID: 36077046 PMCID: PMC9456320 DOI: 10.3390/ijms23179647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.
Collapse
Affiliation(s)
- Yoshiko Maeda
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Taisuke Izumi
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Kazushi Kuriyama
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Shinji Ohno
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
212
|
Nash A, Ryan EJ. The oncogenic gamma herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) hijack retinoic acid-inducible gene I (RIG-I) facilitating both viral and tumour immune evasion. Tumour Virus Res 2022; 14:200246. [PMID: 35998812 PMCID: PMC9424536 DOI: 10.1016/j.tvr.2022.200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023] Open
Abstract
Herpesviruses evade host immunity to establish persistent lifelong infection with dormant latent and replicative lytic phases. Epstein-Barr virus (EBV) and Kaposi's Sarcoma-associated virus (KSHV) are double-stranded DNA herpesviruses that encode components to activate RNA sensors, (Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5). Yet both viruses can effectively evade the antiviral immune response. The ability of these viruses to disarm RIG-I to evade immunity allowing viral persistency can contribute to the creation of a protected niche that facilitates tumour growth and immune evasion. Alternatively, viral nucleic acids present in the cytosol during the replicative phase of the viral lifecycle can activate pro-inflammatory signaling downstream of RIG-I augmenting tumour promoting inflammation. Understanding how these viral proteins disrupt innate immune pathways could help identify mechanisms to boost immunity, clearing viral infection and enhancing the efficacy of immunotherapy for virally induced cancers. Here we review literature on the strategies EBV and KSHV use to either enhance or inhibit RLR signaling.
Collapse
Affiliation(s)
- Alana Nash
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Ireland
| | - Elizabeth J. Ryan
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Ireland,Limerick Digital Cancer Research Centre, University of Limerick, Ireland,Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland,Corresponding author. Department of Biological Sciences.
| |
Collapse
|
213
|
Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, Lee HR, Lai CJ, Eoh H, Jung JU. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep 2022; 40:111234. [PMID: 35977517 DOI: 10.1016/j.celrep.2022.111234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyle L Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youn Jung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
214
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) inhibitor of cyclic GMP-AMP synthase (cGAS) (KicGAS) encoded by ORF52 is a conserved major tegument protein of KSHV and the first reported viral inhibitor of cGAS. In our previous study, we found that KicGAS is highly oligomerized in solution and that oligomerization is required for its cooperative DNA binding and for inhibiting DNA-induced phase separation and activation of cGAS. However, how KicGAS oligomerizes remained unclear. Here, we present the crystal structure of KicGAS at 2.5 Å resolution, which reveals an "L"-shaped molecule with each arm of the L essentially formed by a single α helix (α1 and α2). Antiparallel dimerization of α2 helices from two KicGAS molecules leads to a unique "Z"-shaped dimer. Surprisingly, α1 is also a dimerization domain. It forms a parallel dimeric leucine zipper with the α1 from a neighboring dimer, leading to the formation of an infinite chain of KicGAS dimers. Residues involved in leucine zipper dimer formation are among the most conserved residues across ORF52 homologs of gammaherpesviruses. The self-oligomerization increases the valence and cooperativity of interaction with DNA. The resultant multivalent interaction is critical for the formation of liquid condensates with DNA and consequent sequestration of DNA from being sensed by cGAS, explaining its role in restricting cGAS activation. The structure presented here not only provides a mechanistic understanding of the function of KicGAS but also informs a molecular target for rational design of antivirals against KSHV and related viruses.
Collapse
|
215
|
Lin CI, Wang SS, Hung CH, Chang PJ, Chen LW. Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein Represses Cellular MDM2 Expression via Suppressing the Sp1- and p53-Mediated Transactivation. Int J Mol Sci 2022; 23:ijms23158673. [PMID: 35955808 PMCID: PMC9369062 DOI: 10.3390/ijms23158673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded ORF50 protein is a potent transcriptional activator essential for triggering KSHV lytic reactivation. Despite extensive studies, little is known about whether ORF50 possesses the ability to repress gene expression or has an antagonistic action to cellular transcription factors. Previously, we demonstrated that human oncoprotein MDM2 can promote the degradation of ORF50 protein. Herein, we show that abundant ORF50 expression in cells can conversely downregulate MDM2 expression via repressing both the upstream (P1) and internal (P2) promoters of the MDM2 gene. Deletion analysis of the MDM2 P1 promoter revealed that there were two ORF50-dependent negative response elements located from −102 to −63 and from −39 to +1, which contain Sp1-binding sites. For the MDM2 P2 promoter, the ORF50-dependent negative response element was identified in the region from −110 to −25, which is coincident with the location of two known p53-binding sites. Importantly, we further demonstrated that overexpression of Sp1 or p53 in cells indeed upregulated MDM2 expression; however, coexpression with ORF50 protein remarkably reduced the Sp1- or p53-mediated MDM2 upregulation. Collectively, our findings propose a reciprocal negative regulation between ORF50 and MDM2 and uncover that ORF50 decreases MDM2 expression through repressing Sp1- and p53-mediated transactivation.
Collapse
Affiliation(s)
- Chia-I Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Lee-Wen Chen
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
- Correspondence: ; Tel.: +886-5362-8800 (ext. 2235)
| |
Collapse
|
216
|
Lytic Reactivation of the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Is Accompanied by Major Nucleolar Alterations. Viruses 2022; 14:v14081720. [PMID: 36016343 PMCID: PMC9412354 DOI: 10.3390/v14081720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2′-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.
Collapse
|
217
|
Goubran H, Stakiw J, Seghatchian J, Ragab G, Burnouf T. SARS-CoV-2 and cancer: the intriguing and informative cross-talk. Transfus Apher Sci 2022; 61:103488. [PMID: 35753906 PMCID: PMC9192107 DOI: 10.1016/j.transci.2022.103488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has significantly disrupted and burdened the diagnostic workup and delivery of care, including transfusion, to cancer patients across the globe. Furthermore, cancer patients suffering from solid tumors or hematologic malignancies were more prone to the infection and had higher morbidity and mortality than the rest of the population. Major signaling pathways have been identified at the intersection of SARS-CoV-2 and cancer cells, often leading to tumor progression or alteration of the tumor response to therapy. The reactivation of oncogenic viruses has also been alluded to in the context and following COVID-19. Paradoxically, certain tumors responded better following the profound infection-induced immune modulation. Unveiling the mechanisms of the virus-tumor cell interactions will lead to a better understanding of the pathophysiology of both cancer progression and virus propagation. It would be challenging to monitor, through the different cancer registries, retrospectively, the response of patients who have been previously exposed to the virus in contrast to those who have not contracted the infection.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Julie Stakiw
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety, Audit/Inspection and DDR Strategy, London, UK
| | - Gaafar Ragab
- Internal Medicine Department, Rheumatology, and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt; School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
218
|
KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog 2022; 18:e1010744. [PMID: 35914008 PMCID: PMC9371351 DOI: 10.1371/journal.ppat.1010744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus with the capacity to establish life-long latent infection. During latent infection, the viral genome persists as a circular episome that associates with cellular histones and exists as a nonintegrated minichromosome in the nucleus of infected cells. Chromatin structure and epigenetic programming are required for the proper control of viral gene expression and stable maintenance of viral DNA. However, there is still limited knowledge regarding how the host regulates the chromatin structure and maintenance of episomal DNA. Here, we found that the cellular protein structural maintenance of chromosome (SMC) complex SMC5/6 recognizes and associates with the KSHV genome to inhibit its replication. The SMC5/6 complex can bind to the KSHV genome and suppress KSHV gene transcription by condensing the viral chromatin and creating a repressive chromatin structure. Correspondingly, KSHV employs an antagonistic strategy by utilizing the viral protein RTA to degrade the SMC5/6 complex and antagonize the inhibitory effect of this complex on viral gene transcription. Interestingly, this antagonistic mechanism of RTA is evolutionarily conserved among γ-herpesviruses. Our work suggests that the SMC5/6 complex is a new host factor that restricts KSHV replication. KSHV can establish life-long latent infection. During latency, the viral genome is maintained as an extrachromosomal episome in the infected cells. We demonstrated that the host protein SMC5/6 complex associates with the KSHV genome and results in direct transcriptional inhibition by creating a transcriptionally repressive chromatin structure of the viral genome. RTA, the master switch protein of KSHV, can hijack the ubiquitin-proteasome system to degrade the SMC5/6 complex to antagonize its inhibitory effect on viral gene transcription. Interestingly, this function of RTA is evolutionarily conserved among γ-herpesviruses.
Collapse
|
219
|
Jung KL, Choi UY, Park A, Foo SS, Kim S, Lee SA, Jung JU. Single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection in three-dimensional air-liquid interface culture model. PLoS Pathog 2022; 18:e1010775. [PMID: 35976902 PMCID: PMC9385030 DOI: 10.1371/journal.ppat.1010775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.
Collapse
Affiliation(s)
- Kyle L. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Un Yung Choi
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
220
|
Nalwoga A, Whitby D. Adaptive immune responses to Kaposi's sarcoma-associated herpesvirus. Curr Opin Immunol 2022; 77:102230. [PMID: 35810680 PMCID: PMC9578218 DOI: 10.1016/j.coi.2022.102230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that causes Kaposi's sarcoma (KS), primary effusion lymphoma, multicentric Castleman's disease and KSHV-induced cytokine syndrome. KSHV established lifelong infection and has evolved numerous ways in which to evade adaptive immune responses. Most KSHV infections are asymptomatic but when disease occurs it does so in the context of immune suppression especially HIV infection. It is important therefore to study immune responses to KSHV in order to understand KSHV-related disease pathogenesis.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States of America; MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America.
| |
Collapse
|
221
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
222
|
Liew YCC, Tam YCS, Oh CC. Treatments for AIDS/HIV-related Kaposi sarcoma: A systematic review of the literature. Int J Dermatol 2022; 61:1311-1324. [PMID: 35775738 DOI: 10.1111/ijd.16318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Treatment guidelines are not well established in AIDS-related Kaposi sarcoma (KS). OBJECTIVE We aim to review the evidence on efficacy of treatments for AIDS-related Kaposi sarcoma. METHODS We searched the Cochrane Library, PubMed, and Embase Database from date of database inception till July 2020. Randomized controlled trials reporting intervention consisting of any type of treatment compared to control/placebo to a different treatment modality or different combination of treatment/treatment doses with a diagnosis of AIDS-related KS are selected. MAIN OUTCOMES AND MEASURES Primary outcomes were response rates defined as complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD). Secondary outcomes were cosmesis and adverse outcomes such as pain and erythema. RESULTS Thirteen out of 536 articles met our eligibility criteria. Three studies reported the efficacy of chemotherapy, two studies looked at different doses of radiotherapy regimes, and three studies compared different antiretroviral therapy (ART) and chemotherapy regimens. Other studies reported topical therapies such as alitretinoin gel, IM862, and bHCG injection which showed varied efficacies. LIMITATIONS Lack of standardization classification of disease activity and clinical outcomes and treatment modalities precluded meaningful comparison of studies. CONCLUSION The evidence of efficacy of any particular intervention is overall varied and there was insufficient evidence to recommend any particular intervention. We have provided an overview of treatments for KS but larger studies need to be carried out to verify the efficacy of treatment options reported in the literature.
Collapse
Affiliation(s)
| | - Yew Chong Steve Tam
- Department of Education Resource Centre, Medical Board, Singapore General Hospital, Singapore, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
223
|
Majerciak V, Alvarado-Hernandez B, Lobanov A, Cam M, Zheng ZM. Genome-wide regulation of KSHV RNA splicing by viral RNA-binding protein ORF57. PLoS Pathog 2022; 18:e1010311. [PMID: 35834586 PMCID: PMC9321434 DOI: 10.1371/journal.ppat.1010311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/26/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
RNA splicing plays an essential role in the expression of eukaryotic genes. We previously showed that KSHV ORF57 is a viral splicing factor promoting viral lytic gene expression. In this report, we compared the splicing profile of viral RNAs in BCBL-1 cells carrying a wild-type (WT) versus the cells containing an ORF57 knock-out (57KO) KSHV genome during viral lytic infection. Our analyses of viral RNA splice junctions from RNA-seq identified 269 RNA splicing events in the WT and 255 in the 57KO genome, including the splicing events spanning large parts of the viral genome and the production of vIRF4 circRNAs. No circRNA was detectable from the PAN region. We found that the 57KO alters the RNA splicing efficiency of targeted viral RNAs. Two most susceptible RNAs to ORF57 splicing regulation are the K15 RNA with eight exons and seven introns and the bicistronic RNA encoding both viral thymidylate synthase (ORF70) and membrane-associated E3-ubiquitin ligase (K3). ORF57 inhibits splicing of both K15 introns 1 and 2. ORF70/K3 RNA bears two introns, of which the first intron is within the ORF70 coding region as an alternative intron and the second intron in the intergenic region between the ORF70 and K3 as a constitutive intron. In the WT cells expressing ORF57, most ORF70/K3 transcripts retain the first intron to maintain an intact ORF70 coding region. In contrast, in the 57KO cells, the first intron is substantially spliced out. Using a minigene comprising of ORF70/K3 locus, we further confirmed ORF57 regulation of ORF70/K3 RNA splicing, independently of other viral factors. By monitoring protein expression, we showed that ORF57-mediated retention of the first intron leads to the expression of full-length ORF70 protein. The absence of ORF57 promotes the first intron splicing and expression of K3 protein. Altogether, we conclude that ORF57 regulates alternative splicing of ORF70/K3 bicistronic RNA to control K3-mediated immune evasion and ORF70 participation of viral DNA replication in viral lytic infection.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
- * E-mail: (VM); (Z-MZ)
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, Unites States of America
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, Unites States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
- * E-mail: (VM); (Z-MZ)
| |
Collapse
|
224
|
Subramaniam A, Giani C, Napolitano A, Ravi V, Frezza AM, Jones RL. Management of Vascular Sarcoma. Surg Oncol Clin N Am 2022; 31:485-510. [PMID: 35715146 DOI: 10.1016/j.soc.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular sarcomas encompass 3 well-defined sarcoma types: hemangioendothelioma, Kaposi sarcoma, and angiosarcoma. These distinct types are exceedingly rare and very different in terms of clinical behavior, biological features, and treatment approach. Because of this rarity and heterogeneity, it is crucial that vascular sarcomas are treated in sarcoma reference centers or networks, in order to ensure optimal management. The diversity of vascular sarcomas also needs to be taken into account in the design of clinical trials, in order to produce meaningful results that can be consistently translated into everyday clinical practice.
Collapse
Affiliation(s)
- Aparna Subramaniam
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Unit 0450, FC12.3044, Houston, TX 77030, USA
| | - Claudia Giani
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, Milan 20133, Italy
| | - Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Unit 0450, FC12.3044, Houston, TX 77030, USA.
| | - Anna Maria Frezza
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, Milan 20133, Italy
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
225
|
Human Gammaherpesvirus 8 Oncogenes Associated with Kaposi’s Sarcoma. Int J Mol Sci 2022; 23:ijms23137203. [PMID: 35806208 PMCID: PMC9266852 DOI: 10.3390/ijms23137203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.
Collapse
|
226
|
Rosenkilde MM, Tsutsumi N, Knerr JM, Kildedal DF, Garcia KC. Viral G Protein-Coupled Receptors Encoded by β- and γ-Herpesviruses. Annu Rev Virol 2022; 9:329-351. [PMID: 35671566 PMCID: PMC9584139 DOI: 10.1146/annurev-virology-100220-113942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein-coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Julius M Knerr
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | | | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
227
|
Taskin S, Yasak T, Mentese ST, Yilmaz B, Çolak O. Kaposi's Sarcoma Management from a Plastic Surgery Perspective. J DERMATOL TREAT 2022; 33:2838-2843. [PMID: 35652782 DOI: 10.1080/09546634.2022.2083544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kaposi's Sarcoma (KS) is a low-grade angioproliferative tumor arising from endothelial cells and associated with Human Herpes Virus 8 infection. Although KS cases are not rare and there are considerable number of patients referred for surgical excision, the plastic surgery literature on KS is exceptionally scarce. Thirty patients who were operated with the diagnosis of KS between March 2015 and January 2020 were included. Preoperative HIV tests and detailed whole-body examinations of the patients were performed. As a surgical method, for lesions with sizes ranging from 0.5 * 1 cm to 2 * 3 cm, excisions were made over the deep skin fascia by placing a margin between 0.5-1 cm, considering the anatomical location and elasticity of the skin. Primary repair was performed in 40 lesions and 12 lesions of 8 patients were repaired with a skin graft. In four patients the repair was performed with local skin flaps. Higher upper extremity involvement, less systemic involvement and less pronounced male predominance have been important results in our study that we have found different from the literature data. Compared to the therapies such as radiotherapy, laser, or chemotherapy which require several administrations; one-stage surgical excision of the lesions provides remarkable advantages.
Collapse
Affiliation(s)
- Selman Taskin
- Prof.Dr. Cemil Tascioglu City Hospital, Plastic Reconstructive and Aesthetic Surgery Clinic
| | - Tugce Yasak
- Prof.Dr. Cemil Tascioglu City Hospital, Plastic Reconstructive and Aesthetic Surgery Clinic
| | - S Tiber Mentese
- Prof.Dr. Cemil Tascioglu City Hospital, Plastic Reconstructive and Aesthetic Surgery Clinic
| | - Burak Yilmaz
- Prof.Dr. Cemil Tascioglu City Hospital, Plastic Reconstructive and Aesthetic Surgery Clinic
| | - Ozlem Çolak
- Prof.Dr. Cemil Tascioglu City Hospital, Plastic Reconstructive and Aesthetic Surgery Clinic
| |
Collapse
|
228
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
229
|
Yang X, Zhou J, Liu C, Qu Y, Wang W, Xiao MZX, Zhu F, Liu Z, Liang Q. KSHV-encoded ORF45 activates human NLRP1 inflammasome. Nat Immunol 2022; 23:916-926. [PMID: 35618833 DOI: 10.1038/s41590-022-01199-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
At steady state, the NOD-like receptor (NLR)-containing pyrin domain (PYD) (NLRP)1 inflammasome is maintained in an auto-inhibitory complex by dipeptidyl peptidases 8 and 9 (DPP8 and DPP9) and is activated by pathogen-encoded proteases after infection. Here, we showed that the open reading frame (ORF)45 protein of the Kaposi's sarcoma-associated herpesvirus activated the human NLRP1 (hNLRP1) inflammasome in a non-protease-dependent manner, and we additionally showed that the Linker1 region of hNLRP1, situated between the PYD and NACHT domains, was required for the auto-inhibition and non-protease-dependent activation of hNLRP1. At steady state, the interaction between Linker1 and the UPA subdomain silenced the activation of hNLRP1 in auto-inhibitory complexes either containing DPP9 or not in a manner independent of DPP9. ORF45 binding to Linker1 displaced UPA from the Linker1-UPA complex and induced the release of the C-terminal domain of hNLRP1 for inflammasome assembly. The ORF45-dependent activation of the NLRP1 inflammasome was conserved in primates but was not observed for murine NLRP1b inflammasomes.
Collapse
Affiliation(s)
- Xing Yang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingfan Zhou
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengrong Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Zhenshan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
230
|
Epidemiology of Kaposi’s sarcoma in sub-Saharan Africa. Cancer Epidemiol 2022; 78:102167. [DOI: 10.1016/j.canep.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022]
|
231
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
232
|
Cieniewicz B, Kirillov V, Daher I, Li X, Oldenburg DG, Dong Q, Bettke JA, Marcu KB, Krug LT. IKKα-Mediated Noncanonical NF-κB Signaling Is Required To Support Murine Gammaherpesvirus 68 Latency In Vivo. J Virol 2022; 96:e0002722. [PMID: 35481781 PMCID: PMC9131860 DOI: 10.1128/jvi.00027-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Noncanonical NF-κB signaling is activated in B cells via the tumor necrosis factor (TNF) receptor superfamily members CD40, lymphotoxin β receptor (LTβR), and B-cell-activating factor receptor (BAFF-R). The noncanonical pathway is required at multiple stages of B cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt noncanonical NF-κB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IκB kinase α (IKKα), named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NF-κB-inducing kinase (NIK). We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTβR-mediated activation of NF-κB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in the colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and wild-type (WT) MHV68 at 16 days postinfection (dpi). Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the noncanonical NF-κB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68. IMPORTANCE The latency programs of the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with B cell lymphomas. It is critical to understand the signaling pathways that are used by gammaherpesviruses to establish and maintain latency in primary B cells. We used a novel approach to block noncanonical NF-κB signaling only in the infected cells of mice. We generated a recombinant virus that expresses a dominant negative mutant of IKKα that is nonresponsive to upstream activation. Latency was reduced in a route- and cell type-dependent manner in mice infected with this recombinant virus. These findings identify a significant role for the noncanonical NF-κB signaling pathway that might provide a novel target to prevent latent infection of B cells with oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Isabel Daher
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaofan Li
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Qiwen Dong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Julie A. Bettke
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Kenneth B. Marcu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Laurie T. Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
233
|
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics (Basel) 2022; 12:1242. [PMID: 35626397 PMCID: PMC9140574 DOI: 10.3390/diagnostics12051242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma is a rare disease with four known variants: classic, epidemic, endemic and iatrogenic (transplant-related), all caused by an oncogenic virus named Human Herpes Virus 8. The viral infection in itself, along with the oncogenic properties of HHV8 and with immune system dysfunction, forms the grounds on which Kaposi's Sarcoma may develop. Infection with HHV8 occurs through saliva via close contacts, blood, blood products, solid organ donation and, rarely, vertical transmission. Chronic inflammation and oncogenesis are promoted by a mix of viral genes that directly promote cell survival and transformation or interfere with the regular cell cycle and cell signaling (of particular note: LANA-1, v-IL6, vBCL-2, vIAP, vIRF3, vGPCR, gB, K1, K8.1, K15). The most common development sites for Kaposi's sarcoma are the skin, mucocutaneous zones, lymph nodes and visceral organs, but it can also rarely appear in the musculoskeletal system, urinary system, endocrine organs, heart or eye. Histopathologically, spindle cell proliferation with slit-like vascular spaces, plasma cell and lymphocyte infiltrate are characteristic. The clinical presentation is heterogenic depending on the variant; some patients have indolent disease and others have aggressive disease. The treatment options include highly active antiretroviral therapy, surgery, radiation therapy, chemotherapy, and immunotherapy. A literature search was carried out using the MEDLINE/PubMed, SCOPUS and Google Scholar databases with a combination of keywords with the aim to provide critical, concise, and comprehensive insights into advances in the pathogenic mechanism of Kaposi's sarcoma.
Collapse
Affiliation(s)
- Gabriela Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Oana Mădălina Manole
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania
| | - Cristina Galeș
- Department of Histology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Dermatology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Otilia Obadă
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Cezar Valentin Mocanu
- Department of Anatomical Pathology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| |
Collapse
|
234
|
Kumar A, Lyu Y, Yanagihashi Y, Chantarasrivong C, Majerciak V, Salemi M, Wang KH, Inagaki T, Chuang F, Davis RR, Tepper CG, Nakano K, Izumiya C, Shimoda M, Nakajima KI, Merleev A, Zheng ZM, Campbell M, Izumiya Y. KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Rep 2022; 39:110788. [PMID: 35545047 PMCID: PMC9153692 DOI: 10.1016/j.celrep.2022.110788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Yuanzhi Lyu
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | | | | | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michelle Salemi
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, UC Davis, Davis, CA 95616, USA
| | - Kang-Hsin Wang
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Tomoki Inagaki
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kazushi Nakano
- Lifescience Division, Lifematics, Osaka, Osaka 541-0046, Japan
| | - Chie Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Michiko Shimoda
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Alexander Merleev
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Mel Campbell
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| |
Collapse
|
235
|
Lamoureux C, Drak Alsibai K, Pradinaud R, Sainte-Marie D, Couppie P, Blaizot R. Kaposi Sarcoma with Mucocutaneous Involvement in French Guiana: An Epidemiological Study between 1969 and 2019. Acta Derm Venereol 2022; 102:adv00709. [DOI: 10.2340/actadv.v102.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Data on Kaposi sarcoma in French Guiana are scarce and out of date. This territory presents unique epidemiological features. The objectives of this retrospective study were to analyse the clinical features, outcome and incidence of the different forms of Kaposi sarcoma in patients diagnosed between 1969 and 2019. The study population comprised a total of 52 patients. Clinical forms included epidemic Kaposi sarcoma (n=30), endemic (n=18), iatrogenic (n=2), classic (n=1) and unclassified Kaposi sarcoma (n=1). The mean annual incidence rate of epidemic Kaposi reached a peak in the 1990s (0.93/100,000) then decreased in the 2000s (0.33/100,000), while the incidence of endemic Kaposi sarcoma reached a peak in the 1980s (0.82/100,000) before decreasing in the 2000s (0.12/100,000). Factors associated with the epidemic form were: sexual intercourse between men (p=0.0054) and Haitian origin (p=0.035). The presence of nodules and/or tumour, lesions limited to the lower limbs, and age >65 years were associated with the endemic form. While Creole populations seem to be as affected by endemic Kaposi sarcoma as their African counterparts, the dynamics of Kaposi sarcoma in French Guiana are now dominated by the epidemic form.
Collapse
|
236
|
DiMaio D, Emu B, Goodman AL, Mothes W, Justice A. Cancer Microbiology. J Natl Cancer Inst 2022; 114:651-663. [PMID: 34850062 PMCID: PMC9086797 DOI: 10.1093/jnci/djab212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Microbes play important roles in cancer from direct carcinogenic effects to their use in treatment. Cancers caused by microorganisms account for approximately 15% of cancers, primarily in low- and middle-income countries. Unique features of infectious carcinogens include their transmissibility, mutability, and specific immune interactions, which provide challenges and opportunities for cancer prevention and treatment. For these agents, infection control through exposure reduction, antivirals, antibiotics, and vaccines is cancer control. In addition, developing evidence suggests that microorganisms including the human microbiome can indirectly modulate cancer formation and influence the effectiveness and toxicity of cancer treatments. Finally, microorganisms themselves can be used to prevent or treat cancer. The convergence of these factors signals the emergence of a new field, cancer microbiology. Recognition of cancer microbiology will spur research, stimulate cross-disciplinary training, inform drug development, and improve public health.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Brinda Emu
- Yale Cancer Center, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Yale Cancer Center, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Walther Mothes
- Yale Cancer Center, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Amy Justice
- Yale Cancer Center, New Haven, CT, USA
- Department of General Medicine, Yale University, VA Medical Center, New Haven, CT, USA
| |
Collapse
|
237
|
McLigeyo A, Owuor K, Ng’ang’a E, Mwangi J, Wekesa P. Characteristics and Treatment Response of Patients with HIV Associated Kaposi's Sarcoma in Central Kenya. HIV AIDS (Auckl) 2022; 14:207-215. [PMID: 38808105 PMCID: PMC11130515 DOI: 10.2147/hiv.s359278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/01/2022] [Indexed: 05/30/2024] Open
Abstract
Introduction Kaposi's sarcoma (KS) is the most common HIV-associated malignancy in Sub Saharan Africa. In 2018, it was the 7th most common cancer and the 10th most common cause of cancer death in Kenya. This study aimed to describe the baseline and clinical characteristics and treatment response observed following combined antiretroviral treatment (ART) and chemotherapy in KS patients. Methods This was a descriptive analysis of patients aged ≥15 years treated for KS and HIV at 11 treatment hubs in Central Kenya between 2011 and 2014. Data on baseline and clinical characteristics, ART and chemotherapy regimens as well as treatment responses were collected from patient files and KS registers. Results A total of 95 patients presenting with clinically suspected KS with no history of prior treatment with chemotherapy were reviewed. All had histological diagnostic samples taken with 67 (71%) having confirmed KS. All were on ART, either newly initiated or continuing on ART, and 63 of the 67 (94.0%) confirmed to have KS received chemotherapy. Among the 67 patients with confirmed KS, mean age was 37.2 years (± 13.2) and 40 (59.7%) were male. More than 80% had normal baseline and follow-up BMI, and 34 (50.7%) were on a TDF-based regimen, 52 (77.6%) were treated with the Adriamycin, bleomycin and vinblastine protocol, and 55 (82.1%) had KS diagnosis before HIV diagnosis. All 67 patients had mucocutaneous lesions. Complete, partial response and stable disease occurred in 27 (40.3%), 10 (14.9%) and 7 (10.4%), respectively, 11 (16.4%) defaulted care during treatment, six patients died during treatment, four patients died before treatment while two patients had progressive disease during chemotherapy. Conclusion The diagnosis of KS preceded HIV in the majority of cases reviewed, with histology helpful to reduce misdiagnosis. Patients generally complied with their chemotherapy, with overall good response rate for this intervention implemented at primary health-care facilities.
Collapse
Affiliation(s)
| | - Kevin Owuor
- Center for Health Solutions - Kenya, Nairobi, Kenya
| | | | - Jonathan Mwangi
- Division of Global HIV & TB, Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Paul Wekesa
- Center for Health Solutions - Kenya, Nairobi, Kenya
| |
Collapse
|
238
|
Molecular Mechanisms of Kaposi Sarcoma Development. Cancers (Basel) 2022; 14:cancers14081869. [PMID: 35454776 PMCID: PMC9030761 DOI: 10.3390/cancers14081869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary There are at least four forms of Kaposi’s sarcoma (KS) with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Kaposi’s sarcoma-associated herpes virus (KSHV) is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells and establish a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation that are key for KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines and paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated. Abstract Kaposi’s sarcoma (KS) is a heterogeneous angioproliferative tumor that generally arises in the skin. At least four forms of this disease have been described, with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Three quarters of KS cases occur in sub-Saharan Africa (SSA) as geographic variation is explained by the disparate prevalence of KS-associated herpes virus (KSHV), which is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells that consequently transdifferentiate to an intermediate state. KSHV establishes a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation triggered by various biological signals in which lytic stage proteins modulate host cell signaling pathways and are key in KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines with paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated.
Collapse
|
239
|
Mekni-Toujani M, Mousavizadeh L, Gallo A, Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi's sarcoma-associated herpesvirus. FEBS Open Bio 2022; 12:1166-1177. [PMID: 35384415 PMCID: PMC9157407 DOI: 10.1002/2211-5463.13407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpes virus 8 (HHV-8), causes primary effusion lymphoma, multicentric Castleman's disease, and Kaposi's sarcoma. Few antiviral drugs are available to efficiently control KSHV infection, and therefore development of novel, effective anti-KSHV treatments is needed. The aim of this study was to determine the antiviral activity of ethanolic and aqueous extracts, essential oils and certain flavonoids (hesperidin, eupafolin, and vicenin) derived from Thymus capitatus (commonly known as thyme). We assessed the toxicity of these different extracts and components in RPE-1 cell cultures using the MTS test and evaluated their antiviral effect using the TCID50 method. The mechanism of action was determined through time-of-addition tests as well as viral entry, attachment and virucidal assays. Additionally, western blot analysis was also used to assess their modes of action. Total treatment assay showed that the aqueous extract of Thymus capitatus has the highest inhibitory effect against KSHVLYT with an EC50 value of 0.2388 µg/ml. Both hesperidin and eupafolin showed the ability to inactivate viral infection in a dose-response manner (EC50 values of 0.2399 µM and 1.396 µM, respectively). Moreover, they were able to inactivate KSHVLyt post-infection by reducing viral protein expression. In summary, the effective antiviral property of the aqueous extract is likely a result of the inhibition of viral growth within the host cells by both hesperidin and eupafolin.
Collapse
Affiliation(s)
- Marwa Mekni-Toujani
- University of Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, PB 74, 1002, Tunis-Belvedere, Tunisia
| | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,einrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Antonio Gallo
- einrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Abdeljelil Ghram
- University of Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, PB 74, 1002, Tunis-Belvedere, Tunisia
| |
Collapse
|
240
|
Henry DH, Maki RG. Lenalidomide and the expanding toolkit to manage Kaposi sarcoma. Clin Cancer Res 2022; 28:2485-2487. [DOI: 10.1158/1078-0432.ccr-22-0884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Lenalidomide recently was shown to have clinical activity in patients with human immunodeficiency virus-associated Kaposi sarcoma. Immunomodulatory imine drugs thus provide another tool in the treatment of this challenging neoplasm.
Collapse
Affiliation(s)
- David H. Henry
- University of Pennsylvania Health System, Philadelphia, PA, United States
| | - Robert G. Maki
- University of Pennsylvania Health System, Philadelphia, PA, United States
| |
Collapse
|
241
|
The SUMO E3 ligase activity of ORF45 determines KSHV lytic replication. PLoS Pathog 2022; 18:e1010504. [PMID: 35482828 PMCID: PMC9089915 DOI: 10.1371/journal.ppat.1010504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/10/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023] Open
Abstract
RSK1, an essential cellular kinase for Kaposi's sarcoma-associated herpesvirus (KSHV) replication, is highly phosphorylated and SUMOylated during KSHV lytic cycle, which determine the substrate phosphorylation and specificity of RSK1, respectively. However, the SUMO E3 ligase responsible for attaching SUMO to RSK1 has not yet been identified. By genome-wide screening, we found that KSHV ORF45 is necessary and sufficient to enhance RSK1 SUMOylation. Mechanistically, KSHV ORF45 binds to SUMOs via two classic SUMO-interacting motifs (SIMs) and functions as a SIM-dependent SUMO E3 ligase for RSK1. Mutations on these ORF45 SIMs resulted in much lower lytic gene expressions, viral DNA replication, and mature progeny virus production. Interestingly, KSHV ORF45 controls RSK1 SUMOylation and phosphorylation via two separated functional regions: SIMs and amino acid 17-90, respectively, which do not affect each other. Similar to KSHV ORF45, ORF45 of Rhesus Macaque Rhadinovirus has only one SIM and also increases RSK1 SUMOylation in a SIM-dependent manner, while other ORF45 homologues do not have this function. Our work characterized ORF45 as a novel virus encoded SUMO E3 ligase, which is required for ORF45-RSK1 axis-mediated KSHV lytic gene expression.
Collapse
|
242
|
Meriem H, Bouhairi MEL, Ben Yahya I. Non HIV oral Kaposi Sarcoma: Rare case report literature review. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2021.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
243
|
Fiches GN, Wu Z, Zhou D, Biswas A, Li TW, Kong W, Jean M, Santoso NG, Zhu J. Polyamine biosynthesis and eIF5A hypusination are modulated by the DNA tumor virus KSHV and promote KSHV viral infection. PLoS Pathog 2022; 18:e1010503. [PMID: 35486659 PMCID: PMC9094511 DOI: 10.1371/journal.ppat.1010503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Polyamines are critical metabolites involved in various cellular processes and often dysregulated in cancers. Kaposi’s sarcoma-associated Herpesvirus (KSHV), a defined human oncogenic virus, leads to profound alterations of host metabolic landscape to favor development of KSHV-associated malignancies. In our studies, we identified that polyamine biosynthesis and eIF5A hypusination are dynamically regulated by KSHV infection through modulation of key enzymes (ODC1 and DHPS) of these pathways. During KSHV latency, ODC1 and DHPS are upregulated along with increase of hypusinated eIF5A (hyp-eIF5A), while hyp-eIF5A is further induced along with reduction of ODC1 and intracellular polyamines during KSHV lytic reactivation. In return these metabolic pathways are required for both KSHV lytic reactivation and de novo infection. Further analysis unraveled that synthesis of critical KSHV latent and lytic proteins (LANA, RTA) depends on hypusinated-eIF5A. We also demonstrated that KSHV infection can be efficiently and specifically suppressed by inhibitors targeting these pathways. Collectively, our results illustrated that the dynamic and profound interaction of a DNA tumor virus (KSHV) with host polyamine biosynthesis and eIF5A hypusination pathways promote viral propagation, thus defining new therapeutic targets to treat KSHV-associated malignancies. Understanding virus-host interactions is crucial to develop and improve therapies. Kaposi’s sarcoma associated Herpesvirus (KSHV) is a human gamma-herpesvirus which deeply modulates the host metabolism and is associated with various cancers of endothelial and lymphoid origin. Polyamines are critical metabolites often dysregulated in cancers. In this study we demonstrated KSHV dynamically modulates polyamine metabolism to favor eIF5A hypusination and translation of critical KSHV latent and lytic proteins (LANA, RTA). Consequently, we found KSHV lytic switch from latency and de novo infection were dependent on polyamines and hypusination and pharmacological inhibition efficiently and specifically restricted KSHV infection. Our study provides new insights into KSHV alteration of the host metabolism and describe new therapeutic targets to treat KSHV-associated malignancies.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Zhenyu Wu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Ayan Biswas
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tai-Wei Li
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Maxime Jean
- Department of Neurology, University of Rochester Medical center, Rochester, New York, United States of America
| | - Netty G. Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
244
|
Bradshaw S, Oertling E, Rezigh A. Synchronous visceral Kaposi sarcoma and extracavitary primary effusion lymphoma in a patient with AIDS. BMJ Case Rep 2022; 15:e245306. [PMID: 35351773 PMCID: PMC8966535 DOI: 10.1136/bcr-2021-245306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 11/03/2022] Open
Abstract
While infection should always lead the differential when a patient with AIDS presents with fever, inflammatory and malignant aetiologies should also be considered. With profound immunocompromise, malignancies can develop as sequelae of viral oncogene expression. Human herpesvirus 8 (HHV-8) infection drives several AIDS-related cancers including Kaposi sarcoma (KS), multicentric Castleman disease and primary effusion lymphoma (PEL), which can present simultaneously with variable clinical features. Herein, we describe a case of synchronous visceral KS and extracavitary PEL in a patient with AIDS. The patient was treated with systemic chemotherapy and remains in remission after four cycles. We review other cases of copresenting HHV-8-related malignancies, explore the salient pathomechanisms and clinical features of these cancers and discuss treatment strategies.
Collapse
Affiliation(s)
- Stanley Bradshaw
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Estelle Oertling
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Austin Rezigh
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
245
|
Badalamenti G, Incorvaia L, Algeri L, Bonasera A, Dimino A, Scalia R, Cucinella A, Madonia G, Pomi FL, Galvano A, Gristina V, Toia F, Cordova A, Bazan V, Russo A. Safety and effectiveness of gemcitabine for the treatment of classic Kaposi’s sarcoma without visceral involvement. Ther Adv Med Oncol 2022; 14:17588359221086829. [PMID: 35356263 PMCID: PMC8958699 DOI: 10.1177/17588359221086829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Classic Kaposi’s sarcoma (CKS) is a rare, multifocal, endothelial cell neoplasm that typically occurs in elderly people with previous infection by human herpes virus-8. Prospective trials are rare, and the choice of drugs relies on prospective trials performed on HIV-associated Kaposi’s sarcoma (KS). Pegylated liposomal anthracyclines and taxanes are considered the standard first- and second-line chemotherapy, respectively. Despite the indolent biologic behavior, the natural history is characterized by recurrent disease. This condition of chronic administration of cytotoxic drugs is often associated with immediate/long-term adverse events. Methods: This was an observational, retrospective study to evaluate the effectiveness and safety of gemcitabine in patients with CKS. From January 2016 to September 2021, the patients were treated with gemcitabine 1000 mg/m2 on days 1 and 8, with cycles repeated every 21 days. The treatment was administered as first or second line. Results: Twenty-seven (27) patients were included in the study. Twenty-one (21) out 27 patients (77.8%) achieved a partial response (PR), including 8 patients with major response (MR) (29.6%) and 13 patients with minor response (mR) (48.2%); 2 (7.4%) showed a complete response (CR), 3 (11.1%) a stable disease (SD), and 1 (3.7%) a progressive disease (PD). Tumor responses were generally rapid, with a median time to first response of 4 weeks (range, 3–12 weeks). Patients who responded had disease improvement with flattening of the skin lesions, decrease in the number of lesions, and substantial reduction in tumor-associated complications. Median duration of response was 19.2 months. Common adverse events were grades 1/2 thrombocytopenia, and grade 1 noninfectious fever. No patient discontinued treatment as a result of adverse events. Conclusion: Our study showed that gemcitabine is effective and well tolerated, acts rapidly on cutaneous lesions, and allows substantial symptom palliation, without dose-limiting toxicity. Gemcitabine represents a safe and effective option for the treatment of CKS.
Collapse
Affiliation(s)
- Giuseppe Badalamenti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Laura Algeri
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Annalisa Bonasera
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Raimondo Scalia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Cucinella
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Madonia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Federica Li Pomi
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesca Toia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Section of Medical Oncology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
246
|
Zer A, Icht O, Yosef L, Avram D, Jacobi O, Fenig E, Kurman N, Peretz I, Shamai S, Merimsky O, Ben-Ami E, Shapira Frommer R, Schwarzbach AE, Bernstine H, Weitzen R, Vornicova O, Bar-Sela G, Stemmer SM, Lotem M. Phase 2 single arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated classical Kaposi Sarcoma (cKS). Ann Oncol 2022; 33:720-727. [PMID: 35339649 DOI: 10.1016/j.annonc.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Classical Kaposi Sarcoma (cKS) is a rare HHV8-associated sarcoma with limited treatment options. We evaluated the efficacy and safety of nivolumab in combination with ipilimumab (Nivo/Ipi) in patients with previously treated progressive cKS. PATIENTS AND METHODS cKS pts with progressive disease after > 1 lines of systemic therapy and measurable disease by PET/CT and/or physical examination received nivolumab 240mg every two weeks and ipilimumab 1mg/kg every six weeks until progression or toxicity for a maximum of 24 months. The primary endpoint was overall response rate (ORR); secondary endpoints included 6-months progression free survival rate (PFS) and safety. Immune correlates were explored using IHC, DNAseq (596/648 genes) and RNAseq (exome capture transcriptome) of tumor specimens and matched blood. RESULTS Eighteen male patients (median age 76.5) were enrolled between April 2018 and Dec 2020. At a median follow up of 24.4 months, ORR by RECIST v1.1 was 87%. Metabolic complete response as assessed by PET CT was observed in 8 of 13 (62%) evaluable patients. 6/13 achieved pathological CR post treatment. In two patients, palliative limb amputation was prevented. Median PFS was not reached. The 6mo and 12m PFS rate was 76.5% and 58.8%, respectively. Only four patients (22%) experienced grade 3-4 adverse events. The most frequent genomic alteration was biallelic copy number loss of FOX1A gene. The majority of tumors carried a low TMB, were microsatellite stable (MSS), MMR proficient, did not express PD-L1 and displayed only low lymphocytic infiltrates, rendering them immunologically "cold". CONCLUSIONS This prospectively designed phase II study of nivolumab and ipilimumab demonstrates promising activity of this combination in progressive cKS representing a new treatment option in this population.
Collapse
Affiliation(s)
- A Zer
- Division of Oncology, Rambam Health Care Campus, Israel.
| | - O Icht
- Davidoff Center, Rabin Medical Center, Israel
| | - L Yosef
- Davidoff Center, Rabin Medical Center, Israel
| | - D Avram
- Davidoff Center, Rabin Medical Center, Israel
| | - O Jacobi
- Davidoff Center, Rabin Medical Center, Israel
| | - E Fenig
- Davidoff Center, Rabin Medical Center, Israel
| | - N Kurman
- Davidoff Center, Rabin Medical Center, Israel
| | - I Peretz
- Davidoff Center, Rabin Medical Center, Israel
| | - S Shamai
- Tel Aviv Sourasky Medical Center
| | | | - E Ben-Ami
- Ella Institute for Immuno-Oncology and melanoma, Sheba medical center, Israel
| | - R Shapira Frommer
- Ella Institute for Immuno-Oncology and melanoma, Sheba medical center, Israel
| | | | - H Bernstine
- Nuclear medicine, Rabin Medical Center, Israel
| | - R Weitzen
- Oncology Institute, Sheba Medical Center, Israel
| | | | | | - S M Stemmer
- Davidoff Center, Rabin Medical Center, Israel
| | - M Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center
| |
Collapse
|
247
|
El Mawla Z, Ghannoum H, Saliba M, Michel Minari A, Kanaan HM. Visceral Kaposi’s Sarcoma as a Presentation in a Newly Diagnosed HIV-Infected Man: A Case Report. Cureus 2022; 14:e23339. [PMID: 35475100 PMCID: PMC9018453 DOI: 10.7759/cureus.23339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi’s sarcoma is an angioproliferative malignancy due to human herpesvirus-8 and is associated with immunosuppression. Although most cases are cutaneous and resolve with treatment of the underlying condition, few cases present with organ involvement and have a fulminant course. We present a case of a 24-year-old sexually active man who presented with fulminant visceral Kaposi’s sarcoma, without cutaneous involvement. He presented with anasarca, high fever, hypoalbuminemia, and anemia on day five of antiretroviral therapy (ART). There was clinical improvement after the first dose of liposomal doxorubicin. However, given that he developed refractory pancytopenia, with disease relapse by the third week, he received a second dose of doxorubicin, with no clinical improvement, and the patient died with multi-organ dysfunction on day 22 of presentation. The main treatment is liposomal doxorubicin with ART, and the disease is typically associated with a poor prognosis.
Collapse
|
248
|
Ramaswami R, Polizzotto MN, Lurain K, Wyvill KM, Widell A, George J, Goncalves P, Steinberg SM, Whitby D, Uldrick TS, Yarchoan R. Safety, Activity, and Long-term Outcomes of Pomalidomide in the Treatment of Kaposi Sarcoma among Individuals with or without HIV Infection. Clin Cancer Res 2022; 28:840-850. [PMID: 34862247 PMCID: PMC8898289 DOI: 10.1158/1078-0432.ccr-21-3364] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Kaposi sarcoma (KS) is caused by Kaposi sarcoma herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8). KS, which develops most frequently among people with HIV, is generally treated with chemotherapy, but these drugs have acute and cumulative toxicities. We previously described initial results of a trial of pomalidomide, an oral immunomodulatory derivative of thalidomide, in patients with KS. Here, we present results on the full cohort and survival outcomes. PATIENTS AND METHODS Participants with KS with or without HIV were treated with pomalidomide 5 mg once daily for 21 days per 28-day cycle with aspirin 81 mg daily for thromboprophylaxis. Participants with HIV received antiretroviral therapy. Response was defined by modified version of the AIDS Clinical Trial Group KS criteria. We evaluated tumor responses (including participants who had a second course), adverse events, progression-free survival (PFS), and long-term outcomes. RESULTS Twenty-eight participants were enrolled. Eighteen (64%) were HIV positive and 21 (75%) had advanced (T1) disease. The overall response rate was 71%: 95% confidence interval (CI) 51%-87%. Twelve of 18 HIV-positive (67%; 95% CI, 41-87%) and 8 of 10 HIV-negative participants (80%; 95% CI, 44%-97%) had a response. Two of 4 participants who received a second course of pomalidomide had a partial response. The median PFS was 10.2 months (95% CI: 7.6-15.7 months). Grade 3 neutropenia was noted among 50% of participants. In the follow-up period, 3 participants with HIV had other KSHV-associated diseases. CONCLUSIONS Pomalidomide is a safe and active chemotherapy-sparing agent for the treatment of KS among individuals with or without HIV.
Collapse
Affiliation(s)
- Ramya Ramaswami
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Mark N Polizzotto
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kathryn Lurain
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kathleen M Wyvill
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Anaida Widell
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Jomy George
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Priscila Goncalves
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institutes, National Institutes of Health
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Thomas S Uldrick
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Robert Yarchoan
- HIV/AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
249
|
Van Gelder RN. Molecular Diagnostics for Ocular Infectious Diseases: LXXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol 2022; 235:300-312. [PMID: 34921773 PMCID: PMC8863649 DOI: 10.1016/j.ajo.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To review the use of molecular diagnostic techniques in the management of ocular infectious disease. DESIGN Retrospective review. METHODS A combination of literature review and personal recollections are used. RESULTS Although the broad term molecular diagnostics may encompass techniques to identify pathogens via protein or metabolomic signatures, this review concentrates on detection of pathogen nucleic acid as an indicator of infection. The introduction of the polymerase chain reaction (PCR) in 1985 opened a new era in analysis of nucleic acids. This technique was soon applied to the detection of potential pathogen DNA and RNA, including viruses, bacteria, and parasites in infectious eye disease. Advances in PCR have allowed class-specific diagnostics (ie, pan-bacterial and pan-fungal), quantitation of pathogen DNA, and multiplexed testing. The Human Genome Project in the early 2000s greatly accelerated development of DNA sequencers, ushering in the era of "Next Generation Sequencing" and permitting pathogen-agnostic methods for the detection of potential infectious agents. Most recently, new technologies such as nanopore sequencing have reduced both cost and equipment requirements for whole-genome sequencing; when coupled with real-time sequence analysis methods, these methods offer the promise of true, real-time, point-of-service ocular infectious disease diagnostics. CONCLUSIONS Molecular methods for pathogen detection have greatly advanced the diagnosis of ocular infectious disease. Further methodologic advances will have a direct impact on the management of these conditions.
Collapse
Affiliation(s)
- Russell N Van Gelder
- From the Departments of Ophthalmology, Biological Structure, and Laboratory Medicine and Pathology, and Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
250
|
Indave Ruiz BI, Armon S, Watanabe R, Uttley L, White VA, Lazar AJ, Cree IA. Clonality, Mutation and Kaposi Sarcoma: A Systematic Review. Cancers (Basel) 2022; 14:1201. [PMID: 35267506 PMCID: PMC8909603 DOI: 10.3390/cancers14051201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It remains uncertain whether Kaposi sarcoma (KS) is a true neoplasm, in that it regresses after removal of the stimulus to growth (as HHV8) when immunosuppression is reduced. We aimed to summarize the available evidence on somatic mutations and clonality within KS to assess whether KS is a neoplasm or not. METHODS Medline and Web of Science were searched until September 2020 for articles on clonality or mutation in KS. Search strings were supervised by expert librarians, and two researchers independently performed study selection and data extraction. An adapted version of the QUADAS2 tool was used for methodological quality appraisal. RESULTS Of 3077 identified records, 20 publications reported on relevant outcomes and were eligible for qualitative synthesis. Five studies reported on clonality, 10 studies reported on various mutations, and 5 studies reported on chromosomal aberrations in KS. All studies were descriptive and were judged to have a high risk of bias. There was considerable heterogeneity of results with respect to clonality, mutation and cytogenetic abnormalities as well as in terms of types of lesions and patient characteristics. CONCLUSIONS While KS certainly produces tumours, the knowledge is currently insufficient to determine whether KS is a clonal neoplasm (sarcoma), or simply an aggressive reactive virus-driven lesion.
Collapse
Affiliation(s)
- Blanca Iciar Indave Ruiz
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Subasri Armon
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Reiko Watanabe
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield S1 4DA, UK;
| | - Valerie A. White
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| |
Collapse
|