201
|
Phenotypic-screening generates active novel fetal globin-inducers that downregulate Bcl11a in a monkey model. Biochem Pharmacol 2019; 171:113717. [PMID: 31751536 DOI: 10.1016/j.bcp.2019.113717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023]
Abstract
Heritable disorders associated with hemoglobin production are the most common monogenic disorders. These are mainly represented by disorders such as β-thalassemia and sickle cell disease. Induction of fetal hemoglobin (HbF) has been known to ameliorate the clinical severity of these β hemoglobinopathies. A high throughput phenotypic screening was used in this study to isolate novel compounds that may enhance the expression of γ-globin, the component of HbF, in human erythroid cell lines and primary erythroid progenitors derived from human CD34+ cells. The effect of lead compounds on epigenetic enzymes and key transcriptional factors was evaluated to identify their mode of action. One hit compound was further evaluated in vivo using monkey models. Among the ~18,000 compounds screened, 18 compounds were selected and tested to determine their ability to induce HbF in human erythroid cell lines and primary erythroid cells. One of these compounds, a 3-phenyl-isoxazole derivative, could potentially induce HbF in monkey bone marrow cells when administered orally. The compound downregulated negative transcriptional regulators of HbF, Bcl11a and LRF without inhibiting the known epigenetic enzymes. These studies demonstrated the advantages associated with phenotype-screening and identified novel fetal globin inducers that may be useful for treating hemoglobinopathies.
Collapse
|
202
|
Steinberg MH, Kumar S, Murphy GJ, Vanuytsel K. Sickle cell disease in the era of precision medicine: looking to the future. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:357-367. [PMID: 33015364 PMCID: PMC7531762 DOI: 10.1080/23808993.2019.1688658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sickle cell anemia is a mendelian disease that is noted for the heterogeneity of its clinical expression. Because of this, providing an accurate prognosis has been a longtime quest. AREAS COVERED Reviewed are the benefits and shortcomings of testing for the major modulators of the severity of disease, like fetal hemoglobin and α thalassemia, along with studies that have attempted to link genetic variation with sub-phenotypes of disease in a predictive fashion. Induced pluripotent stem cells driven to differentiate into erythroid precursor cells provide another area for potential patient-specific drug testing. EXPERT OPINION Fetal hemoglobin is the strongest modulator of sickle cell anemia but simply measuring its blood levels is an insufficient means of forecasting an individual's prognosis. A more precise method would be to know the distribution of fetal hemoglobin levels across the population of red cells, an assay not yet available. Prognostic measures have been developed using genetic and other signatures, but their predictive value is suboptimal. Widely applicable assays must be developed to allow a tailored approach to using the several new treatments that are likely to be available in the near future.
Collapse
Affiliation(s)
- Martin H Steinberg
- Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston MA
| | - Sara Kumar
- Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston MA
| | - George J. Murphy
- Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston MA
| | - Kim Vanuytsel
- Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston MA
| |
Collapse
|
203
|
Ohishi A, Masunaga Y, Iijima S, Yamoto K, Kato F, Fukami M, Saitsu H, Ogata T. De novo ZBTB7A variant in a patient with macrocephaly, intellectual disability, and sleep apnea: implications for the phenotypic development in 19p13.3 microdeletions. J Hum Genet 2019; 65:181-186. [PMID: 31645653 DOI: 10.1038/s10038-019-0690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 11/09/2022]
Abstract
Interstitial microdeletions at chromosome 19p13.3 are frequently associated with a constellation of clinical features including macrocephaly, characteristic face, intellectual disability, and sleep apnea. Previous studies in 25 patients with 19p13.3 microdeletions have revealed loss of MAP2K2 in 24 patients and that of PIAS4 and ZBTB7A in 23 patients, suggesting that these three adjacent genes are candidate genes for the phenotypic development in 19p13.3 microdeletions. We identified a de novo likely pathogenic heterozygous missense variant of ZBTB7A (NM_015898.3:c.1152C>G, p.(Cys384Trp)) in a Japanese boy with macrocephaly, intellectual disability, and sleep apnea. This variant affects the conserved cysteine residue forming the coordinate bond with Zn2+ ion at the first zinc finger domain, and is predicted to exert a dominant-negative effect because of the generation of homo- and hetero-dimers with the wild-type and variant ZBTB7A proteins. The results argue for a critical relevance of ZBTB7A to the development of most, but probably not all, of the 19p13.3 microdeletion phenotype.
Collapse
Affiliation(s)
- Akira Ohishi
- Maternal-Fetal and Neonatal Care Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeo Iijima
- Maternal-Fetal and Neonatal Care Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University school of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
204
|
Leighton G, Williams DC. The Methyl-CpG-Binding Domain 2 and 3 Proteins and Formation of the Nucleosome Remodeling and Deacetylase Complex. J Mol Biol 2019:S0022-2836(19)30599-6. [PMID: 31626804 DOI: 10.1016/j.jmb.2019.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
The Nucleosome Remodeling and Deacetylase (NuRD) complex uniquely combines both deacetylase and remodeling enzymatic activities in a single macromolecular complex. The methyl-CpG-binding domain 2 and 3 (MBD2 and MBD3) proteins provide a critical structural link between the deacetylase and remodeling components, while MBD2 endows the complex with the ability to selectively recognize methylated DNA. Hence, NuRD combines three major arms of epigenetic gene regulation. Research over the past few decades has revealed much of the structural basis driving formation of this complex and started to uncover the functional roles of NuRD in epigenetic gene regulation. However, we have yet to fully understand the molecular and biophysical basis for methylation-dependent chromatin remodeling and transcription regulation by NuRD. In this review, we discuss the structural information currently available for the complex, the role MBD2 and MBD3 play in forming and recruiting the complex to methylated DNA, and the biological functions of NuRD.
Collapse
Affiliation(s)
- Gage Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
205
|
Jia W, Jia S, Chen P, He Y. Construction and Analysis of a Long Non-Coding RNA (lncRNA)-Associated ceRNA Network in β-Thalassemia and Hereditary Persistence of Fetal Hemoglobin. Med Sci Monit 2019; 25:7079-7086. [PMID: 31541070 PMCID: PMC6767942 DOI: 10.12659/msm.915946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Higher fetal hemoglobin (HbF) levels can ameliorate the clinical severity of β-thalassemia. The use of integrative strategies to combine results from gene microarray expression profiling, experimental evidence, and bioinformatics helps reveal functional long noncoding RNAs (lncRNAs) in β-thalassemia and HbF induction. Material/Methods In a previous study, a microarray profiling was performed of 7 individuals with high HbF levels and 7 normal individuals. Thirteen paired samples were used for validation. lncRNA NR_001589 and uc002fcj.1 were chosen for further research. The quantitative reverse transcription-PCR was used to detect the expression levels of 2 lncRNAs. The Spearman correlation test was employed. The nuclear and cytoplasmic distribution experiment in K562 cells was used to verify the subcellular localization of 2 lncRNAs. Potential relationships among lncRNAs, predicted microRNAs (miRNAs), and target gene HBG1/2 were based on competitive endogenous RNA theory and bioinformatics analysis. Results Average expression levels of NR_001589 and uc002fcj.1 were significantly higher in the high-HbF group than in the control group. A positive correlation existed between NR_001589, uc002fcj.1, and HbF. The expression of NR_001589 was in both the cytoplasm and the nucleus, mostly (77%) in the cytoplasm. The expression of uc002fcj.1 was in both the cytoplasm and the nucleus; the cytoplasmic proportion was 43% of the total amount. A triple lncRNA-miRNA-mRNA network was established. Conclusions Novel candidate genetic factors associated with the HBG1/2 expression were identified. Further functional investigation of NR_001589 and uc002fcj.1 can help deepen the understanding of molecular mechanisms in β-thalassemia.
Collapse
Affiliation(s)
- Wenguang Jia
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Siyuan Jia
- Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ping Chen
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Yunyan He
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| |
Collapse
|
206
|
Jia S, Jia W, Yu S, Hu Y, He Y. Using microarray analysis to identify genes and pathways that regulate fetal hemoglobin levels. Ann Hum Genet 2019; 84:29-36. [PMID: 31396950 DOI: 10.1111/ahg.12346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
Increased levels of fetal hemoglobin (HbF: α2γ2) can ameliorate the clinical severity of the β-hemoglobinopathies. Microarray analysis represents a powerful approach to identify novel genetic factors regulating the γ-globin gene. Gene expression profiling was previously performed on 14 individuals with high or normal HbF levels to identify the genetic factors that control γ-globin gene expression. To obtain more accurate and reliable results, our results were combined with public microarray dataset GSE22109 deposited in the Gene Expression Omnibus database. Annotation of case versus control samples was taken directly from the microarray documentation. The differentially expressed genes (DEGs) were obtained and were deeply analyzed by bioinformatics methods. Combined with our own chip expression data, potential genes HBE1, TFRC, and CSF2 were selected out for subsequent qRT-PCR validation. A total of 184 DEGs were identified from GSE22109 and the protein-protein interaction network was constructed. Gene set enrichment analysis showed that the hematopoietic cell lineage pathway overlaps in the two datasets. HBE1, CSF2, and TFRC were confirmed by qRT-PCR. Our results suggest novel candidate genes and pathways associated with the γ-globin gene expression.
Collapse
Affiliation(s)
- Siyuan Jia
- Department of Pediatrics, The Affiliated Huaian No.1 Peoples' Hospital of Nanjing Medical University, Huai'an, Jiangsu, P. R. China
| | - Wenguang Jia
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| | - Shanjuan Yu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunyan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| |
Collapse
|
207
|
Abstract
Hemoglobinopathies include all genetic diseases of hemoglobin and are grouped into thalassemia syndromes and structural hemoglobin variants. The β-thalassemias constitute a group of severe anemias with monogenic inheritance, caused by β-globin gene mutations. This review is focused on omics studies in hemoglobinopathies and mainly β-thalassemia, and discusses genomic, epigenomic, transcriptomic, proteomic and metabolomic findings. Omics analyses have identified various disease modifiers with an impact on disease severity and efficacy of treatments. These modifiers have contributed to the understanding of globin genes regulation/hemoglobin switching and the development of novel therapies. How omics data and their integration can contribute to efficient patient stratification, therapeutic management, improvements in existing treatments and application of novel personalized therapies is discussed.
Collapse
Affiliation(s)
- Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27, Athens, Greece.
| |
Collapse
|
208
|
Surface plasmon resonance based analysis of the binding of LYAR protein to the rs368698783 (G>A) polymorphic Aγ-globin gene sequences mutated in β-thalassemia. Anal Bioanal Chem 2019; 411:7699-7707. [PMID: 31300855 DOI: 10.1007/s00216-019-01987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Recent studies have identified and characterized a novel putative transcriptional repressor site in a 5' untranslated region of the Aγ-globin gene that interacts with the Ly-1 antibody reactive clone (LYAR) protein. LYAR binds the 5'-GGTTAT-3' site of the Aγ-globin gene, and this molecular interaction causes repression of gene transcription. In β-thalassemia patients, a polymorphism has been demonstrated (the rs368698783 G>A polymorphism) within the 5'-GGTTAT-3' LYAR-binding site of the Aγ-globin gene. The major results gathered from surface plasmon resonance based biospecific interaction analysis (SPR-BIA) studies (using crude nuclear extracts, LYAR-enriched lysates, and recombinant LYAR) support the concept that the rs368698783 G>A polymorphism of the Aγ-globin gene attenuates the efficiency of LYAR binding to the LYAR-binding site. This conclusion was fully confirmed by a molecular docking analysis. This might lead to a very important difference in erythroid cells from β-thalassemia patients in respect to basal and induced levels of production of fetal hemoglobin. The novelty of the reported SPR-BIA method is that it allows the characterization and validation of the altered binding of a key nuclear factor (LYAR) to mutated LYAR-binding sites. These results, in addition to theoretical implications, should be considered of interest in applied pharmacology studies as a basis for the screening of drugs able to inhibit LYAR-DNA interactions. This might lead to the identification of molecules facilitating induced increase of γ-globin gene expression and fetal hemoglobin production in erythroid cells, which is associated with possible reduction of the clinical severity of the β-thalassemia phenotype. Graphical abstract.
Collapse
|
209
|
Sher F, Hossain M, Seruggia D, Schoonenberg VAC, Yao Q, Cifani P, Dassama LMK, Cole MA, Ren C, Vinjamur DS, Macias-Trevino C, Luk K, McGuckin C, Schupp PG, Canver MC, Kurita R, Nakamura Y, Fujiwara Y, Wolfe SA, Pinello L, Maeda T, Kentsis A, Orkin SH, Bauer DE. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet 2019; 51:1149-1159. [PMID: 31253978 PMCID: PMC6650275 DOI: 10.1038/s41588-019-0453-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Developmental silencing of fetal globins serves as both a paradigm of spatiotemporal gene regulation and an opportunity for therapeutic intervention of β-hemoglobinopathy. The nucleosome remodeling and deacetylase (NuRD) chromatin complex participates in γ-globin repression. We used pooled CRISPR screening to disrupt NuRD protein coding sequences comprehensively in human adult erythroid precursors. Essential for fetal hemoglobin (HbF) control is a non-redundant subcomplex of NuRD protein family paralogs, whose composition we corroborated by affinity chromatography and proximity labeling mass spectrometry proteomics. Mapping top functional guide RNAs identified key protein interfaces where in-frame alleles resulted in loss-of-function due to destabilization or altered function of subunits. We ascertained mutations of CHD4 that dissociate its requirement for cell fitness from HbF repression in both primary human erythroid precursors and transgenic mice. Finally we demonstrated that sequestering CHD4 from NuRD phenocopied these mutations. These results indicate a generalizable approach to discover protein complex features amenable to rational biochemical targeting.
Collapse
Affiliation(s)
- Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Center for Translational & Computational Neuroimmunology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Mir Hossain
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Vivien A C Schoonenberg
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura M K Dassama
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Mitchel A Cole
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
210
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
211
|
Houwing ME, de Pagter PJ, van Beers EJ, Biemond BJ, Rettenbacher E, Rijneveld AW, Schols EM, Philipsen JNJ, Tamminga RYJ, van Draat KF, Nur E, Cnossen MH. Sickle cell disease: Clinical presentation and management of a global health challenge. Blood Rev 2019; 37:100580. [PMID: 31128863 DOI: 10.1016/j.blre.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
Sickle cell disease is an autosomal recessive, multisystem disorder, characterised by chronic haemolytic anaemia, painful episodes of vaso-occlusion, progressive organ failure and a reduced life expectancy. Sickle cell disease is the most common monogenetic disease, with millions affected worldwide. In well-resourced countries, comprehensive care programs have increased life expectancy of sickle cell disease patients, with almost all infants surviving into adulthood. Therapeutic options for sickle cell disease patients are however, still scarce. Predictors of sickle cell disease severity and a better understanding of pathophysiology and (epi)genetic modifiers are warranted and could lead to more precise management and treatment. This review provides an extensive summary of the pathophysiology and management of sickle cell disease and encompasses the characteristics, complications and current and future treatment options of the disease.
Collapse
Affiliation(s)
- M E Houwing
- Department of Paediatric Haematology, Erasmus University Medical Center - Sophia Children's Hospital, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands.
| | - P J de Pagter
- Department of Paediatric Haematology, Erasmus University Medical Center - Sophia Children's Hospital, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands.
| | - E J van Beers
- Department of Internal Medicine and Dermatology, Van Creveldkliniek, University Medical Center Utrecht, Internal mail no C.01.412, 3508, GA, Utrecht, the Netherlands.
| | - B J Biemond
- Department of Internal Medicine and Clinical Haematology, Amsterdam University Medical Centers, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
| | - E Rettenbacher
- Department of Paediatric Haematology, Radboud University Medical Center - Amalia Children's Hospital, Geert Grooteplein Zuid 10, 6500, HB, Nijmegen, the Netherlands.
| | - A W Rijneveld
- Department of Haematology, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands.
| | - E M Schols
- Department of Haematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - J N J Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands.
| | - R Y J Tamminga
- Department of Paediatric Oncology and Haematology, University Medical Center Groningen - Beatrix Children's Hospital, Postbus 30001, 9700, RB, Groningen, the Netherlands..
| | - K Fijn van Draat
- Department of Paediatric Haematology, Amsterdam University Medical Centers - Emma Children's Hospital, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Plasma Proteins, Sanquin Research, the Netherlands.
| | - E Nur
- Department of Internal Medicine and Clinical Haematology, Amsterdam University Medical Centers, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
| | - M H Cnossen
- Department of Paediatric Haematology, Erasmus University Medical Center - Sophia Children's Hospital, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands.
| |
Collapse
|
212
|
Chen WR, Chou CC, Wang CC. Phthalides serve as potent modulators to boost fetal hemoglobin induction therapy for β-hemoglobinopathies. Blood Adv 2019; 3:1493-1498. [PMID: 31072835 PMCID: PMC6517670 DOI: 10.1182/bloodadvances.2019031120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Fetal hemoglobin (HbF) induction therapy has become the most promising strategy for treating β-hemoglobinopathies, including sickle-cell diseases and β-thalassemia. However, subtle but critical structural difference exists between HbF and normal adult hemoglobin (HbA), which inevitably leads to reduced binding of the endogenous modulator 2,3-bisphosphoglycerate (2,3-BPG) to HbF and thus increased oxygen affinity and decreased oxygen transport efficiency of HbF. We combined the oxygen equilibrium experiments, resonance Raman (RR) spectroscopy, and molecular docking modeling, and we discuss 2 phthalides, z-butylidenephthalide and z-ligustilide, that can effectively lower the oxygen affinity of HbF. They adjust it to a level closer to that of HbA and make it a more satisfactory oxygen carrier for adults. From the oxygen equilibrium curve measurements, we show that the 2 phthalides are more effective than 2,3-BPG for modulating HbF. The RR spectra show that phthalides allosterically stabilize the oxygenated HbF in the low oxygen affinity conformation, and the molecular docking modeling reveals that the 2 chosen phthalides interact with HbF via the cleft around the γ1/γ2 interface with a binding strength ∼1.6 times stronger than that of 2,3-BPG. We discuss the implications of z-butylidenephthalide and z-ligustilide in boosting the efficacy of HbF induction therapy to mitigate the clinical severities of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Wei-Ren Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | - Chia-Cheng Chou
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan, Republic of China; and
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
213
|
Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood 2019; 133:2455-2459. [PMID: 30992270 DOI: 10.1182/blood.2018892737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
214
|
|
215
|
Varricchio L, Planutis A, Manwani D, Jaffray J, Mitchell WB, Migliaccio AR, Bieker JJ. Genetic disarray follows mutant KLF1-E325K expression in a congenital dyserythropoietic anemia patient. Haematologica 2019; 104:2372-2380. [PMID: 30872368 PMCID: PMC6959163 DOI: 10.3324/haematol.2018.209858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital dyserythropoietic anemia type IV is caused by a heterozygous mutation, Glu325Lys (E325K), in the KLF1 transcription factor. Molecular characteristics of this disease have not been clarified, partly due to its rarity. We expanded erythroid cells from a patient's peripheral blood and analyzed its global expression pattern. We find that a large number of erythroid pathways are disrupted, particularly those related to membrane transport, globin regulation, and iron utilization. The altered genetics lead to significant deficits in differentiation. Glu325 is within the KLF1 zinc finger domain at an amino acid critical for site specific DNA binding. The change to Lys is predicted to significantly alter the target site recognition sequence, both by subverting normal recognition and by enabling interaction with novel sites. Consistent with this, we find high level ectopic expression of genes not normally present in the red cell. These altered properties explain patients' clinical and phenotypic features, and elucidate the dominant character of the mutation.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Jaffray
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - W Beau Mitchell
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - James J Bieker
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
216
|
A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood 2019; 133:852-856. [PMID: 30617196 DOI: 10.1182/blood-2018-07-863951] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, result from mutations in the adult β-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of β-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The -113A>G HPFH mutation falls within the -115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the -113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the -113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the -113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.
Collapse
|
217
|
CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:37-52. [PMID: 30715679 DOI: 10.1007/5584_2018_331] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder resulting in serious mortality and morbidity worldwide. Although the disease was characterized more than a century ago, there are only two FDA approved medications to lessen disease severity, and a definitive cure available to all patients with SCD is lacking. Rapid and substantial progress in genome editing approaches have proven valuable as a curative option given plausibility to either correct the underlying mutation in patient-derived hematopoietic stem/progenitor cells (HSPCs), induce fetal hemoglobin expression to circumvent sickling of red blood cells (RBCs), or create corrected induced pluripotent stem cells (iPSCs) among other approaches. Recent discovery of CRISPR/Cas9 has not only revolutionized genome engineering but has also brought the possibility of translating these concepts into a clinically meaningful reality. Here we summarize genome engineering applications using CRISPR/Cas9, addressing challenges and future perspectives of CRISPR/Cas9 as a curative option for SCD.
Collapse
|
218
|
TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:175-183. [PMID: 30705922 PMCID: PMC6348980 DOI: 10.1016/j.omtm.2018.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/22/2018] [Indexed: 01/03/2023]
Abstract
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
Collapse
|
219
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
220
|
Kang J, Kang Y, Kim YW, You J, Kang J, Kim A. LRF acts as an activator and repressor of the human β-like globin gene transcription in a developmental stage dependent manner. Biochem Cell Biol 2018; 97:380-386. [PMID: 30427207 DOI: 10.1139/bcb-2018-0303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leukemia/lymphoma-related factor (LRF; a hematopoietic transcription factor) has been suggested to repress fetal γ-globin genes in the human adult stage β-globin locus. Here, to study the role of LRF in the fetal stage β-globin locus, we knocked out its expression in erythroid K562 cells, in which the γ-globin genes are mainly transcribed. The γ-globin transcription was reduced in LRF knock-out cells, and transcription factor binding to the β-globin locus control region hypersensitive sites (LCR HSs) and active histone organization in the LCR HSs were disrupted by the depletion of LRF. In contrast, LRF loss in the adult stage β-globin locus did not affect active chromatin structure in the LCR HSs and induced the fetal γ-globin transcription. These results indicate that LRF may act as an activator and repressor of the human β-like globin gene transcription in a manner dependent on developmental stage.
Collapse
Affiliation(s)
- Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jaekyeong You
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jihong Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
221
|
Abstract
The genetic basis of sickle cell disease (SCD) was elucidated >60 years ago, yet current therapy does not rely on this knowledge. Recent advances raise prospects for improved, and perhaps curative, treatment. First, transcription factors, BCL11A and LRF/ZBTB7A, that mediate silencing of the β-like fetal (γ-) globin gene after birth have been identified and demonstrated to act at the γ-globin promoters, precisely at recognition sequences disrupted in rare individuals with hereditary persistence of fetal hemoglobin. Second, transformative advances in gene editing and progress in lentiviral gene therapy provide diverse opportunities for genetic strategies to cure SCD. Approaches include hematopoietic gene therapy by globin gene addition, gene editing to correct the SCD mutation, and genetic manipulations to enhance fetal hemoglobin production, a potent modifier of the clinical phenotype. Clinical trials may soon identify efficacious and safe genetic approaches to the ultimate goal of cure for SCD.
Collapse
Affiliation(s)
- Stuart H Orkin
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Daniel E Bauer
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
222
|
Schoonenberg VAC, Cole MA, Yao Q, Macias-Treviño C, Sher F, Schupp PG, Canver MC, Maeda T, Pinello L, Bauer DE. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol 2018; 19:169. [PMID: 30340514 PMCID: PMC6195731 DOI: 10.1186/s13059-018-1563-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas9 pooled screening permits parallel evaluation of comprehensive guide RNA libraries to systematically perturb protein coding sequences in situ and correlate with functional readouts. For the analysis and visualization of the resulting datasets, we develop CRISPRO, a computational pipeline that maps functional scores associated with guide RNAs to genomes, transcripts, and protein coordinates and structures. No currently available tool has similar functionality. The ensuing genotype-phenotype linear and three-dimensional maps raise hypotheses about structure-function relationships at discrete protein regions. Machine learning based on CRISPRO features improves prediction of guide RNA efficacy. The CRISPRO tool is freely available at gitlab.com/bauerlab/crispro .
Collapse
Affiliation(s)
- Vivien A. C. Schoonenberg
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
- Faculty of Science, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - Mitchel A. Cole
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Claudio Macias-Treviño
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Patrick G. Schupp
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Matthew C. Canver
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
223
|
Establishment and characterization of immortalized erythroid progenitor cell lines derived from a common cell source. Exp Hematol 2018; 69:11-16. [PMID: 30326248 DOI: 10.1016/j.exphem.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
Immortalized erythroid progenitor cell lines, which exhibit potential for enucleated red blood cell (RBC) production, are expected to serve as an in vitro source of RBCs. These erythroid progenitor cell lines have previously been established from a variety of sources; however, large numbers of cell lines have not been established, characterized, and compared from a common cell source. In the present study, 37 cell lines were established from human bone marrow cells from a single donor. The time required for the establishment of each cell line varied greatly from 46 to 246 days. Of these lines, five were selected and their characteristics were analyzed. The cell lines established at the earliest time point showed better results in terms of both karyotype and differentiation potential than those established the latest. Moreover, obvious differences were noted even when cell lines were established at the earliest time point from the same source. These results suggest that it is important to select the best cell lines from ones established at the earliest time point for generating cell lines with low genomic abnormality and high differentiation ability. We have successfully generated an adult type of cell line with 50% cells carrying a normal karyotype and with 25% enucleation efficiency. These findings could be valuable in the development of an optimal method for establishing cell lines.
Collapse
|
224
|
Chondrou V, Stavrou EF, Markopoulos G, Kouraklis-Symeonidis A, Fotopoulos V, Symeonidis A, Vlachaki E, Chalkia P, Patrinos GP, Papachatzopoulou A, Sgourou A. Impact of ZBTB7A hypomethylation and expression patterns on treatment response to hydroxyurea. Hum Genomics 2018; 12:45. [PMID: 30285874 PMCID: PMC6167880 DOI: 10.1186/s40246-018-0177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We aimed to clarify the emerging epigenetic landscape in a group of genes classified as "modifier genes" of the β-type globin genes (HBB cluster), known to operate in trans to accomplish the two natural developmental switches in globin expression, from embryonic to fetal during the first trimester of conception and from fetal to adult around the time of birth. The epigenetic alterations were determined in adult sickle cell anemia (SCA) homozygotes and SCA/β-thalassemia compound heterozygotes of Greek origin, who are under hydroxyurea (HU) treatment. Patients were distinguished in HU responders and HU non-responders (those not benefited from the HU) and both, and in vivo and in vitro approaches were implemented. RESULTS We examined the CpG islands' DNA methylation profile of BCL11A, KLF1, MYB, MAP3K5, SIN3A, ZBTB7A, and GATA2, along with γ-globin and LRF/ZBTB7A expression levels. In vitro treatment of hematopoietic stem cells (HSCs) with HU induced a significant DNA hypomethylation pattern in ZBTB7A (p*, 0.04) and GATA2 (p*, 0.03) CpGs exclusively in the HU non-responders. Also, this group of patients exhibited significantly elevated baseline methylation patterns in ZBTB7A, before the HU treatment, compared to HU responders (p*, 0.019) and to control group of healthy individuals (p*, 0.021), which resembles a potential epigenetic barrier for the γ-globin expression. γ-Globin expression in vitro matched with detected HbF levels during patients' monitoring tests (in vivo) under HU treatment, implying a good reproducibility of the in vitro HU epigenetic effect. LRF/ZBTB7A expression was elevated only in the HU non-responders under the influence of HU. CONCLUSIONS This is one of the very first pharmacoepigenomic studies indicating that the hypomethylation of ZBTB7A during HU treatment enhances the LRF expression, which by its turn suppresses the HbF resumption in the HU non-responders. Its role as an epigenetic regulator of hemoglobin switching is also supported by the wide distribution of ZBTB7A-binding sites within the 5' CpG sequences of all studied human HBB cluster "modifier genes." Also, the baseline methylation level of selective CpGs in ZBTB7A and GATA2 could be an indicator of the negative HU response among the β-type hemoglobinopathy patients.
Collapse
Affiliation(s)
- Vasiliki Chondrou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Eleana F Stavrou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Georgios Markopoulos
- Faculty of Medicine, Biology Laboratory, University of Ioannina, Ioannina, Greece
| | - Alexandra Kouraklis-Symeonidis
- Thalassemia and Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Vasilios Fotopoulos
- School of Science and Technology, Digital Systems and Media Computing Laboratory, Hellenic Open University, Patras, Greece
| | - Argiris Symeonidis
- Medical School, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Efthymia Vlachaki
- Thalassemia Unit, "Hippokrateio" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia and Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Argyro Sgourou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece.
| |
Collapse
|
225
|
Wienert B, Martyn GE, Funnell APW, Quinlan KGR, Crossley M. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies. Trends Genet 2018; 34:927-940. [PMID: 30287096 DOI: 10.1016/j.tig.2018.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/23/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Disorders in hemoglobin (hemoglobinopathies) were the first monogenic diseases to be characterized and remain among the most common and best understood genetic conditions. Moreover, the study of the β-globin locus provides a textbook example of developmental gene regulation. The fetal γ-globin genes (HBG1/HBG2) are ordinarily silenced around birth, whereupon their expression is replaced by the adult β-globin genes (HBB primarily and HBD). Over 50 years ago it was recognized that mutations that cause lifelong persistence of fetal γ-globin expression ameliorate the debilitating effects of mutations in β-globin. Since then, research has focused on therapeutically reactivating the fetal γ-globin genes. Here, we summarize recent discoveries, focusing on the influence of genome editing technologies, including CRISPR-Cas9, and emerging gene therapy approaches.
Collapse
Affiliation(s)
- Beeke Wienert
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia; Innovative Genomics Institute, University of California, Berkeley, CA, USA; Present address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia; Present address: Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
226
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
227
|
Psatha N, Reik A, Phelps S, Zhou Y, Dalas D, Yannaki E, Levasseur DN, Urnov FD, Holmes MC, Papayannopoulou T. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:313-326. [PMID: 30182035 PMCID: PMC6120587 DOI: 10.1016/j.omtm.2018.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
In the present report, we carried out clinical-scale editing in adult mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs) using zinc-finger nuclease-mediated disruption of BCL11a to upregulate the expression of γ-globin (fetal hemoglobin). In these cells, disruption of the erythroid-specific enhancer of the BCL11A gene increased endogenous γ-globin expression to levels that reached or exceeded those observed following knockout of the BCL11A coding region without negatively affecting survival or in vivo long-term proliferation of edited HSPCs and other lineages. In addition, BCL11A enhancer modification in mobilized CD34+ cells from patients with β-thalassemia major resulted in a readily detectable γ-globin increase with a preferential increase in G-gamma, leading to an improved phenotype and, likely, a survival advantage for maturing erythroid cells after editing. Furthermore, we documented that both normal and β-thalassemia HSPCs not only can be efficiently expanded ex vivo after editing but can also be successfully edited post-expansion, resulting in enhanced early in vivo engraftment compared with unexpanded cells. Overall, this work highlights a novel and effective treatment strategy for correcting the β-thalassemia phenotype by genome editing.
Collapse
Affiliation(s)
- Nikoletta Psatha
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Susan Phelps
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Demetri Dalas
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evangelia Yannaki
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.,Hematology Department, BMT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | | | | | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
228
|
Rivers A, Jagadeeswaran R, Lavelle D. Potential role of LSD1 inhibitors in the treatment of sickle cell disease: a review of preclinical animal model data. Am J Physiol Regul Integr Comp Physiol 2018; 315:R840-R847. [PMID: 30067082 DOI: 10.1152/ajpregu.00440.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (Ingram VM. Nature 180: 326-328, 1957), which triggers the polymerization of deoxygenated sickle hemoglobin (HbS). Approximately 100,000 SCD patients in the United States and millions worldwide (Piel FB, et al. PLoS Med 10: e1001484, 2013) suffer from chronic hemolytic anemia, painful crises, multisystem organ damage, and reduced life expectancy (Rees DC, et al. Lancet 376: 2018-2031, 2010; Serjeant GR. Cold Spring Harb Perspect Med 3: a011783, 2013). Hematopoietic stem cell transplantation can be curative, but the majority of patients do not have a suitable donor (Talano JA, Cairo MS. Eur J Haematol 94: 391-399, 2015). Advanced gene-editing technologies also offer the possibility of a cure (Goodman MA, Malik P. Ther Adv Hematol 7: 302-315, 2016; Lettre G, Bauer DE. Lancet 387: 2554-2564, 2016), but the likelihood that these strategies can be mobilized to treat the large numbers of patients residing in developing countries is remote. A pharmacological treatment to increase fetal hemoglobin (HbF) as a therapy for SCD has been a long-sought goal, because increased levels of HbF (α2γ2) inhibit the polymerization of HbS (Poillin WN, et al. Proc Natl Acad Sci USA 90: 5039-5043, 1993; Sunshine HR, et al. J Mol Biol 133: 435-467, 1979) and are associated with reduced symptoms and increased lifespan of SCD patients (Platt OS, et al. N Engl J Med 330: 1639-1644, 1994; Platt OS, et al. N Engl J Med 325: 11-16, 1991). Only two drugs, hydroxyurea and l-glutamine, are approved by the US Food and Drug Administration for treatment of SCD. Hydroxyurea is ineffective at HbF induction in ~50% of patients (Charache S, et al. N Engl J Med 332: 1317-1322, 1995). While polymerization of HbS has been traditionally considered the driving force in the hemolysis of SCD, the excessive reactive oxygen species generated from red blood cells, with further amplification by intravascular hemolysis, also are a major contributor to SCD pathology. This review highlights a new class of drugs, lysine-specific demethylase (LSD1) inhibitors, that induce HbF and reduce reactive oxygen species.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
229
|
Moir-Meyer G, Cheong PL, Olijnik AA, Brown J, Knight S, King A, Kurita R, Nakamura Y, Gibbons RJ, Higgs DR, Buckle VJ, Babbs C. Robust CRISPR/Cas9 Genome Editing of the HUDEP-2 Erythroid Precursor Line Using Plasmids and Single-Stranded Oligonucleotide Donors. Methods Protoc 2018; 1:E28. [PMID: 31164570 PMCID: PMC6481050 DOI: 10.3390/mps1030028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022] Open
Abstract
The study of cellular processes and gene regulation in terminal erythroid development has been greatly facilitated by the generation of an immortalised erythroid cell line derived from Human Umbilical Derived Erythroid Precursors, termed HUDEP-2 cells. The ability to efficiently genome edit HUDEP-2 cells and make clonal lines hugely expands their utility as the insertion of clinically relevant mutations allows study of potentially every genetic disease affecting red blood cell development. Additionally, insertion of sequences encoding short protein tags such as Strep, FLAG and Myc permits study of protein behaviour in the normal and disease state. This approach is useful to augment the analysis of patient cells as large cell numbers are obtainable with the additional benefit that the need for specific antibodies may be circumvented. This approach is likely to lead to insights into disease mechanisms and provide reagents to allow drug discovery. HUDEP-2 cells provide a favourable alternative to the existing immortalised erythroleukemia lines as their karyotype is much less abnormal. These cells also provide sufficient material for a broad range of analyses as it is possible to generate in vitro-differentiated erythroblasts in numbers 4-7 fold higher than starting cell numbers within 9-12 days of culture. Here we describe an efficient, robust and reproducible plasmid-based methodology to introduce short (<20 bp) DNA sequences into the genome of HUDEP-2 cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 Cas9 system combined with single-stranded oligodeoxynucleotide (ssODN) donors. This protocol produces genetically modified lines in ~30 days and could also be used to generate knock-out and knock-in mutations.
Collapse
Affiliation(s)
- Gemma Moir-Meyer
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Pak Leng Cheong
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Aude-Anais Olijnik
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Samantha Knight
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, UK.
| | - Andrew King
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, 1-1-3 Shibadaimon, Minato-ku, Tokyo 105-8521, Japan.
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Koyadai 3-1-1, Tsukuba 305-0074, Japan.
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Christian Babbs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
230
|
Grevet JD, Lan X, Hamagami N, Edwards CR, Sankaranarayanan L, Ji X, Bhardwaj SK, Face CJ, Posocco DF, Abdulmalik O, Keller CA, Giardine B, Sidoli S, Garcia BA, Chou ST, Liebhaber SA, Hardison RC, Shi J, Blobel GA. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 2018; 361:285-290. [PMID: 30026227 PMCID: PMC6257981 DOI: 10.1126/science.aao0932] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 04/15/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022]
Abstract
Increasing fetal hemoglobin (HbF) levels in adult red blood cells provides clinical benefit to patients with sickle cell disease and some forms of β-thalassemia. To identify potentially druggable HbF regulators in adult human erythroid cells, we employed a protein kinase domain-focused CRISPR-Cas9-based genetic screen with a newly optimized single-guide RNA scaffold. The screen uncovered the heme-regulated inhibitor HRI (also known as EIF2AK1), an erythroid-specific kinase that controls protein translation, as an HbF repressor. HRI depletion markedly increased HbF production in a specific manner and reduced sickling in cultured erythroid cells. Diminished expression of the HbF repressor BCL11A accounted in large part for the effects of HRI depletion. Taken together, these results suggest HRI as a potential therapeutic target for hemoglobinopathies.
Collapse
Affiliation(s)
- Jeremy D Grevet
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher R Edwards
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurabh K Bhardwaj
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyne J Face
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David F Posocco
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
231
|
Shet AS, Thein SL. Therapeutic advances in sickle cell disease in the last decade. Indian J Med Res 2018; 145:708-712. [PMID: 29067969 PMCID: PMC5674537 DOI: 10.4103/ijmr.ijmr_1153_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arun S Shet
- Sickle Cell Branch, National Heart, Lung & Blood Institute, The National Institutes of Health, Bethesda, MD 20892-1589, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung & Blood Institute, The National Institutes of Health, Bethesda, MD 20892-1589, USA
| |
Collapse
|
232
|
Li C, Psatha N, Gil S, Wang H, Papayannopoulou T, Lieber A. HDAd5/35 ++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells. Mol Ther Methods Clin Dev 2018; 9:390-401. [PMID: 30038942 PMCID: PMC6054697 DOI: 10.1016/j.omtm.2018.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/26/2018] [Indexed: 01/12/2023]
Abstract
We generated helper-dependent HDAd5/35++ adenovirus vectors expressing CRISPR/Cas9 for potential hematopoietic stem cells (HSCs) gene therapy of β-thalassemia and sickle cell disease through re-activation of fetal γ-globin expression (HDAd-globin-CRISPR). The process of CRISPR/Cas9 gene transfer using these vectors was not associated with death of human CD34+ cells and did not affect their in vitro expansion and erythroid differentiation. However, functional assays for primitive HSCs, e.g., multi-lineage progenitor colony formation and engraftment in irradiated NOD/Shi-scid/interleukin-2 receptor γ (IL-2Rγ) null (NSG) mice, revealed toxicity of HDAd-globin-CRISPR vectors related to the prolonged expression and activity of CRISPR/Cas9. To control the duration of CRISPR/Cas9 activity, we generated an HDAd5/35++ vector that expressed two anti-CRISPR (Acr) peptides (AcrII4 and AcrII2) capable of binding to the CRISPR/Cas9 complex (HDAd-Acr). CD34+ cells that were sequentially infected with HDAd-CRISPR and HDAd-Acr engrafted at a significantly higher rate. Target site disruption frequencies in engrafted human cells were similar to those in pre-transplantation CD34+ cells, indicating that genome-edited primitive HSCs survived. In vitro differentiated HSCs isolated from transplanted mice demonstrated increased γ-globin expression as a result of genome editing. Our data indicate that the HDAd-Acr vector can be used as a tool to reduce HSC cytotoxicity of the CRISPR/Cas9 complex.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
233
|
Antony JS, Haque AA, Lamsfus-Calle A, Daniel-Moreno A, Mezger M, Kormann MS. CRISPR/Cas9 system: A promising technology for the treatment of inherited and neoplastic hematological diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/acg2.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Justin S. Antony
- Department of Pediatrics I; Pediatric Infectiology and Immunology; Translational Genomics and Gene Therapy in Pediatrics; University of Tübingen; Tübingen Germany
- University Children's Hospital; Department of Paediatrics I, Hematology and Oncology; University of Tübingen; Tübingen Germany
- Department of Hematology, Oncology; Clinical Immunology; University of Tübingen; Tübingen Germany
| | - A.K.M. Ashiqul Haque
- Department of Pediatrics I; Pediatric Infectiology and Immunology; Translational Genomics and Gene Therapy in Pediatrics; University of Tübingen; Tübingen Germany
| | - Andrés Lamsfus-Calle
- University Children's Hospital; Department of Paediatrics I, Hematology and Oncology; University of Tübingen; Tübingen Germany
| | - Alberto Daniel-Moreno
- University Children's Hospital; Department of Paediatrics I, Hematology and Oncology; University of Tübingen; Tübingen Germany
| | - Markus Mezger
- University Children's Hospital; Department of Paediatrics I, Hematology and Oncology; University of Tübingen; Tübingen Germany
| | - Michael S.D. Kormann
- Department of Pediatrics I; Pediatric Infectiology and Immunology; Translational Genomics and Gene Therapy in Pediatrics; University of Tübingen; Tübingen Germany
| |
Collapse
|
234
|
Ramos Pittol JM, Oruba A, Mittler G, Saccani S, van Essen D. Zbtb7a is a transducer for the control of promoter accessibility by NF-kappa B and multiple other transcription factors. PLoS Biol 2018; 16:e2004526. [PMID: 29813070 PMCID: PMC5993293 DOI: 10.1371/journal.pbio.2004526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/08/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
Gene expression in eukaryotes is controlled by DNA sequences at promoter and enhancer regions, whose accessibility for binding by regulatory proteins dictates their specific patterns of activity. Here, we identify the protein Zbtb7a as a factor required for inducible changes in accessibility driven by transcription factors (TFs). We show that Zbtb7a binds to a significant fraction of genomic promoters and enhancers, encompassing many target genes of nuclear factor kappa B (NFκB) p65 and a variety of other TFs. While Zbtb7a binding is not alone sufficient to directly activate promoters, it is required to enable TF-dependent control of accessibility and normal gene expression. Using p65 as a model TF, we show that Zbtb7a associates with promoters independently of client TF binding. Moreover, the presence of prebound Zbtb7a can specify promoters that are amenable to TF-induced changes in accessibility. Therefore, Zbtb7a represents a widely used promoter factor that transduces signals from other TFs to enable control of accessibility and regulation of gene expression. Gene activation is driven by the binding of regulatory proteins to the specific DNA sequences that control each gene. However, these sequences are not always accessible for binding in every type of cell, and so differences in their accessibility can underlie the range of cell types in which particular genes can be activated. Although several cellular processes can alter the accessibilities of these sequences, it is still often unclear how these processes are directed to act at specific genes. We have discovered that the protein Zbtb7a binds near numerous gene-regulatory sequences throughout the genome and that it enables other DNA-binding proteins to trigger changes in their accessibility and to activate nearby genes. However, unlike many other factors that control gene activation, the binding of Zbtb7a alone does not seem to be sufficient to switch on gene expression; instead, its function is required for activation of genes that are independently bound by a specific set of transcription factors (TFs), and it could therefore be considered to “transduce” their gene-regulatory activities. The implication of this is that the presence or absence of Zbtb7a at any gene in a particular cell type may represent one of the aspects that can determine whether that gene is able to be activated or not.
Collapse
Affiliation(s)
- José Miguel Ramos Pittol
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Oruba
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Simona Saccani
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail: (DE); (SS)
| | - Dominic van Essen
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail: (DE); (SS)
| |
Collapse
|
235
|
Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood 2018; 131:2915-2928. [PMID: 29789357 DOI: 10.1182/blood-2018-03-838540] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Disorders involving β-globin gene mutations, primarily β-thalassemia and sickle cell disease, represent a major target for hematopoietic stem/progenitor cell (HSPC) gene therapy. This includes CRISPR/Cas9-mediated genome editing approaches in adult CD34+ cells aimed toward the reactivation of fetal γ-globin expression in red blood cells. Because models involving erythroid differentiation of CD34+ cells have limitations in assessing γ-globin reactivation, we focused on human β-globin locus-transgenic (β-YAC) mice. We used a helper-dependent human CD46-targeting adenovirus vector expressing CRISPR/Cas9 (HDAd-HBG-CRISPR) to disrupt a repressor binding region within the γ-globin promoter. We transduced HSPCs from β-YAC/human CD46-transgenic mice ex vivo and subsequently transplanted them into irradiated recipients. Furthermore, we used an in vivo HSPC transduction approach that involves HSPC mobilization and the intravenous injection of HDAd-HBG-CRISPR into β-YAC/CD46-transgenic mice. In both models, we demonstrated efficient target site disruption, resulting in a pronounced switch from human β- to γ-globin expression in red blood cells of adult mice that was maintained after secondary transplantation of HSPCs. In long-term follow-up studies, we did not detect hematological abnormalities, indicating that HBG promoter editing does not negatively affect hematopoiesis. This is the first study that shows successful in vivo HSPC genome editing by CRISPR/Cas9.
Collapse
|
236
|
Biomarker signatures of sickle cell disease severity. Blood Cells Mol Dis 2018; 72:1-9. [PMID: 29778312 DOI: 10.1016/j.bcmd.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
Abstract
Identifying sickle cell disease patients at high risk of complications could lead to personalized treatment and better prognosis but despite many advances prediction of the clinical course of these patients remains elusive. We propose a system-type approach to discover profiles of multiple, common biomarkers that correlate with morbidity and mortality in sickle cell disease. We used cluster analysis to discover 17 signatures of 17 common circulating biomarkers in 2320 participants of the Cooperative Study of Sickle Cell Disease, and evaluated the association of these signatures with risk for stroke, pain, leg ulceration, acute chest syndrome, avascular necrosis, seizure, death, and trend of fetal hemoglobin and hemolysis using longitudinally collected data. The analysis shows that some of the signatures are associated with reduced risk for complications, while others are associated with increased risk for complications. We also show that these signatures repeat in two more contemporary studies of sickle cell disease and correlate with recently discovered biomarkers of pulmonary vascular disease. With replication and further study, these biomarker signatures could become an important and affordable precision medicine tool to aid treatment and management of the disease.
Collapse
|
237
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
238
|
Martyn GE, Wienert B, Yang L, Shah M, Norton LJ, Burdach J, Kurita R, Nakamura Y, Pearson RCM, Funnell APW, Quinlan KGR, Crossley M. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet 2018; 50:498-503. [PMID: 29610478 DOI: 10.1038/s41588-018-0085-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/02/2018] [Indexed: 01/26/2023]
Abstract
β-hemoglobinopathies such as sickle cell disease (SCD) and β-thalassemia result from mutations in the adult HBB (β-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 (γ-globin) genes is a therapeutic goal for treating SCD and β-thalassemia 1 . Some forms of hereditary persistence of fetal hemoglobin (HPFH), a rare benign condition in which individuals express the γ-globin gene throughout adulthood, are caused by point mutations in the γ-globin gene promoter at regions residing ~115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at -115 and -200 bp, respectively. Furthermore, introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR-Cas9 disrupted repressor binding and raised γ-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene.
Collapse
Affiliation(s)
- Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Beeke Wienert
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Lu Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Ibaraki, Japan
| | - Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
239
|
Abstract
Thalassemia is a disorder of hemoglobin characterized by reduced or absent production of one of the globin chains in human red blood cells with relative excess of the other. Impaired synthesis of β-globin results in β-thalassemia, whereas defective synthesis of α-globin leads to α-thalassemia. Despite being a monogenic disorder, thalassemia exhibits remarkable clinical heterogeneity that is directly related to the intracellular imbalance between α- and β-like globin chains. Novel insights into the genetic modifiers have contributed to the understanding of the correlation between genotype and phenotype and are being explored as therapeutic pathways to cure this life-limiting disease.
Collapse
Affiliation(s)
- Sachith Mettananda
- Molecular Hematology Unit, Medical Research Council (MRC), Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama 11010, Sri Lanka
| | - Douglas R Higgs
- Molecular Hematology Unit, Medical Research Council (MRC), Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; National Institute for Health Research, Oxford Biomedical Research Centre, Blood Theme, Oxford University Hospitals, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
240
|
Morrison TA, Wilcox I, Luo HY, Farrell JJ, Kurita R, Nakamura Y, Murphy GJ, Cui S, Steinberg MH, Chui DHK. A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells Mol Dis 2018; 69:1-9. [PMID: 29227829 PMCID: PMC5783741 DOI: 10.1016/j.bcmd.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
The HBS1L-MYB intergenic region (chr6q23) regulates erythroid cell proliferation, maturation, and fetal hemoglobin (HbF) expression. An enhancer element within this locus, highlighted by a 3-bp deletion polymorphism (rs66650371), is known to interact with the promoter of the neighboring gene, MYB, to increase its expression, thereby regulating HbF production. RNA polymerase II binding and a 50-bp transcript from this enhancer region reported in ENCODE datasets suggested the presence of a long noncoding RNA (lncRNA). We characterized a novel 1283bp transcript (HMI-LNCRNA; chr6:135,096,362-135,097,644; hg38) that was transcribed from the enhancer region of MYB. Within erythroid cells, HMI-LNCRNA was almost exclusively present in nucleus, and was much less abundant than the mRNA for MYB. HMI-LNCRNA expression was significantly higher in erythroblasts derived from cultured adult peripheral blood CD34+ cells which expressed more HBB, compared to erythroblasts from cultured cord blood CD34+ cells which expressed much more HBG. Down-regulation of HMI-LNCRNA in HUDEP-2 cells, which expressed mostly HBB, significantly upregulated HBG expression both at the mRNA (200-fold) and protein levels, and promoted erythroid maturation. No change was found in the expression of BCL11A and other key transcription factors known to modulate HBG expression. HMI-LNCRNA plays an important role in regulating HBG expression, and its downregulation can result in a significant increase in HbF. HMI-LNCRNA might be a potential therapeutic target for HbF induction treatment in sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Tasha A Morrison
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ibifiri Wilcox
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hong-Yuan Luo
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - John J Farrell
- Department of Medicine, Section of Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Ibaraki, Japan
| | - George J Murphy
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shuaiying Cui
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Martin H Steinberg
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - David H K Chui
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
241
|
Loucari CC, Patsali P, van Dijk TB, Stephanou C, Papasavva P, Zanti M, Kurita R, Nakamura Y, Christou S, Sitarou M, Philipsen S, Lederer CW, Kleanthous M. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies. Hum Gene Ther Methods 2018; 29:60-74. [PMID: 29325430 PMCID: PMC5806072 DOI: 10.1089/hgtb.2017.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood-derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Constantinos C. Loucari
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Thamar B. van Dijk
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, The Netherlands
| | - Coralea Stephanou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiota Papasavva
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Maria Zanti
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | | | | | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, The Netherlands
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
242
|
Asadov C, Alimirzoeva Z, Mammadova T, Aliyeva G, Gafarova S, Mammadov J. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol 2018; 108:5-21. [PMID: 29380178 DOI: 10.1007/s12185-018-2411-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/19/2023]
Abstract
β-Thalassemia intermedia is a clinical condition of intermediate gravity between β-thalassemia minor, the asymptomatic carrier, and β-thalassemia major, the transfusion-dependent severe anemia. It is characterized by a significant clinical polymorphism, which is attributable to its genetic heterogeneity. Ineffective erythropoiesis, chronic anemia, and iron overload contribute to the clinical complications of thalassemia intermedia through stepwise pathophysiological mechanisms. These complications, including splenomegaly, extramedullary erythropoiesis, iron accumulation, leg ulcers, thrombophilia, and bone abnormalities can be managed via fetal hemoglobin induction, occasional transfusions, chelation, and in some cases, stem cell transplantation. Given its clinical diversity, thalassemia intermedia patients require tailored approaches to therapy. Here we present an overview and novel approaches to the genetic basis, pathophysiological mechanisms, clinical complications, and optimal management of thalassemia intermedia.
Collapse
Affiliation(s)
- Chingiz Asadov
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan.
| | - Zohra Alimirzoeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Tahira Mammadova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Gunay Aliyeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Shahla Gafarova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Jeyhun Mammadov
- Thalassemia Centre, Fataly Khan Khoysky Str. 128, AZ1072, Baku, Azerbaijan
| |
Collapse
|
243
|
Abstract
Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.
Collapse
Affiliation(s)
- Jinfen J Yik
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
244
|
Vinjamur DS, Bauer DE. Growing and Genetically Manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) Cell Lines. Methods Mol Biol 2018; 1698:275-284. [PMID: 29076097 DOI: 10.1007/978-1-4939-7428-3_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The recently established human umbilical cord blood-derived erythroid progenitor (HUDEP) cell lines have equipped red blood cell researchers with valuable in vitro models of erythroid development. Of the three established HUDEP cell lines, HUDEP-2 cells express predominantly adult β-globin and most closely resemble adult erythroid cells. This chapter describes culture protocols for the maintenance and erythroid differentiation of HUDEP-2 cells. Methods to genetically manipulate HUDEP-2 cells using a CRISPR/Cas9 nuclease-based approach are also discussed.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA. .,Dana-Farber Cancer Institute, Harvard Medical School, Harvard Stem Cell Institute, Karp 8211, 1 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
245
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
246
|
Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol 2017; 180:630-643. [PMID: 29193029 DOI: 10.1111/bjh.15038] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The major β-haemoglobinopathies, sickle cell disease and β-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stuart H Orkin
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
247
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
248
|
Habara AH, Shaikho EM, Steinberg MH. Fetal hemoglobin in sickle cell anemia: The Arab-Indian haplotype and new therapeutic agents. Am J Hematol 2017; 92:1233-1242. [PMID: 28736939 PMCID: PMC5647233 DOI: 10.1002/ajh.24872] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/28/2022]
Abstract
Fetal hemoglobin (HbF) has well-known tempering effects on the symptoms of sickle cell disease and its levels vary among patients with different haplotypes of the sickle hemoglobin gene. Compared with sickle cell anemia haplotypes found in patients of African descent, HbF levels in Saudi and Indian patients with the Arab-Indian (AI) haplotype exceed that in any other haplotype by nearly twofold. Genetic association studies have identified some loci associated with high HbF in the AI haplotype but these observations require functional confirmation. Saudi patients with the Benin haplotype have HbF levels almost twice as high as African patients with this haplotype but this difference is unexplained. Hydroxyurea is still the only FDA approved drug for HbF induction in sickle cell disease. While most patients treated with hydroxyurea have an increase in HbF and some clinical improvement, 10 to 20% of adults show little response to this agent. We review the genetic basis of HbF regulation focusing on sickle cell anemia in Saudi Arabia and discuss new drugs that can induce increased levels of HbF.
Collapse
Affiliation(s)
- Alawi H Habara
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Elmutaz M Shaikho
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Martin H Steinberg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
249
|
Dai Y, Chen T, Ijaz H, Cho EH, Steinberg MH. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol 2017; 92:1177-1186. [PMID: 28776729 DOI: 10.1002/ajh.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
High fetal hemoglobin (HbF, α2 γ2 ) levels ameliorate the clinical manifestations of sickle cell disease and β thalassemia. The mechanisms that repress HbF expression and silence γ-globin genes in adults are incompletely characterized and only a single HbF inducer, hydroxyurea, is approved for treatment, and only in patients with sickle cell disease. We identified SIRT1, a protein deacetylase, as a new inducer of γ-globin. SIRT1 knockdown decreased, while SIRT1 ectopic expression upregulated γ-globin gene (HBG) expression in primary human erythroid cells and in K562 cells. The small molecule SIRT1 activators SRT2104 and SRT1720 enhanced HBG expression in cord blood human erythroblasts and reactivated silenced HBG in adult human erythroblasts. Furthermore, SIRT1 binds in the β-globin gene cluster locus control region (LCR) and HBG promoters, promotes the looping of the LCR to HBG promoter, and increases the binding of RNA polymerase II and H4K16Ac in the HBG promoter. SIRT1 suppressed the expression of the HBG suppressors BCL11A, KLF1, HDAC1 and HDAC2. Lastly, SIRT1 did not change the proliferation of human erythroid progenitor cells or the expression of differentiation marker CD235a. These data suggest that SIRT1 activates HBG expression through facilitating LCR looping to the HBG promoter, inhibiting the expression of transcriptional suppressors of HBG, and indirectly increasing histone acetylation in the HBG promoter. SIRT1 is a potential therapeutic target for γ-globin gene induction, and small molecule SIRT1 activators might serve as a lead compound for the development of new HbF inducers.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Tyngwei Chen
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Heba Ijaz
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Elizabeth H. Cho
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
250
|
Antoniani C, Romano O, Miccio A. Concise Review: Epigenetic Regulation of Hematopoiesis: Biological Insights and Therapeutic Applications. Stem Cells Transl Med 2017; 6:2106-2114. [PMID: 29080249 PMCID: PMC5702521 DOI: 10.1002/sctm.17-0192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome‐wide scale, the cis‐regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage‐restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis‐regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis‐regulatory regions to reactivate fetal hemoglobin for the treatment of β‐hemoglobinopathies. Epigenetic studies allowed the definition of cis‐regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis‐regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis‐regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine2017;6:2106–2114
Collapse
Affiliation(s)
- Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Oriana Romano
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|