201
|
Yebra MJ, Viana R, Monedero V, Deutscher J, Pérez-Martínez G. An Esterase Gene from Lactobacillus casei Cotranscribed with Genes Encoding a Phosphoenolpyruvate:Sugar Phosphotransferase System and Regulated by a LevR-Like Activator and σ 54 Factor. J Mol Microbiol Biotechnol 2005; 8:117-28. [PMID: 15925903 DOI: 10.1159/000084567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new esterase-encoding gene was found in the draft genome sequence of Lactobacillus casei BL23 (CECT5275). It is located in an operon together with genes encoding the EIIA, EIIB, EIIC, and EIID proteins of a mannose class phosphoenolpyruvate:sugar phosphotransferase system. After overproduction in Escherichia coli and purification, the esterase could hydrolyze acetyl sugars, hence the operon was named esu for esterase-sugar uptake genes. Upstream of the genes encoding the EII components (esuABCD) and the esterase (esuE), two genes transcribed in the opposite sense were found which encode a Bacillus subtilis LevR-like transcriptional activator (esuR) and a sigma54-like transcriptional factor (rpoN). As compared with the wild-type strain, elevated fructose phosphorylation was detected in L. casei mutants constitutively expressing the esu operon. However, none of the many sugars tested could induce the esu operon. The fact that EsuE exhibits esterase activity on acetyl sugars suggests that this operon could be involved in the uptake and metabolism of esterified sugars. Expression of the esu operon is similar to that of the B. subtilis lev operon: it contains a -12,-24 consensus promoter typical of sigma54-regulated genes, and EsuR and RpoN are essential for its transcription which is negatively regulated by EIIB(Esu). The esuABCDE transcription unit represents the first sigma54-regulated operon in lactobacilli. Furthermore, replacement of His852 in the phosphoenolpyruvate:sugar phosphotransferase system regulation domain II of EsuR with Ala indicated that the transcription activator function of EsuR is inhibited by EIIB(Esu)-mediated phosphorylation at His852.
Collapse
Affiliation(s)
- María J Yebra
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | | | |
Collapse
|
202
|
Chen S, Liu L, Zhou X, Elmerich C, Li JL. Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr→Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 2005; 273:415-22. [PMID: 15887032 DOI: 10.1007/s00438-005-1146-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Regulation of NifA activity in Azospirillum brasilense depends on GlnB (a PII protein), and it was previously reported that the target of GlnB activity is the N-terminal domain of NifA. Furthermore, mutation of the Tyr residue at position 18 in the N-terminal domain resulted in a NifA protein that did not require GlnB for activity under nitrogen fixation conditions. We report here that a NifA double mutant in which the Tyr residues at positions 18 and 53 of NifA N-were simultaneously replaced by Phe (NifA-Y1853F) displays high nitrogenase activity, which is still regulatable by ammonia, but not by GlnB. The yeast two-hybrid technique was used to investigate whether GlnB can physically interact with wild-type and mutant NifA proteins. GlnB was found to interact directly with the N-terminal GAF domain of wild-type NifA, but not with its central or C-terminal domain. GlnB could still bind to the single NifA mutants Y18F and Y53F. In contrast, no interaction was detected between GlnB and the double mutant NifA-Y18/53F or between GlnB and NifA-Y43.
Collapse
Affiliation(s)
- Sanfeng Chen
- Department of Microbiology and National Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | | | | | | | | |
Collapse
|
203
|
Xue J, Hunter I, Steinmetz T, Peters A, Ray B, Miller KW. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance. Appl Environ Microbiol 2005; 71:1283-90. [PMID: 15746330 PMCID: PMC1065182 DOI: 10.1128/aem.71.3.1283-1290.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genes that are important for class IIa bacteriocin interaction and resistance in Listeria species, transposon Tn917 knockout libraries were constructed for Listeria innocua strain Lin11 and screened for mutants that are resistant to pediocin AcH. A highly resistant mutant (G7) (MIC > 20 microg/ml; 1,000-fold less susceptible than the wild type), in which the transposon integrated into the putative promoter of the lin0142 gene, was isolated. lin0142 is located immediately upstream of the mpt operon (mptA/mptC/mptD) that encodes the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system permease EIItMan, which serves as a docking protein for class IIa bacteriocins. The transcription of the mpt operon is known to be positively controlled by sigma54 factor and ManR (a sigma54-associated activator). Transcripts for lin0142 and mpt were undetectable in the G7 mutant, based on quantitative real-time reverse transcriptase PCR analysis. When the wild-type lin0142 gene was expressed at a 7.9-fold-elevated level in the mutant via a multicopy-number plasmid, the level of mpt mRNA became 70% higher than that in the wild-type strain. In addition, the complementation strain reverted back to the pediocin AcH-susceptible phenotype. The levels of manR and rpoN (sigma54) mRNAs were not directly influenced by the level of lin0142 transcription. lin0142 is the only one of the three mpt regulatory genes whose transcription is induced, albeit slightly (1.2-fold), by glucose. The combined results show that the lin0142 gene encodes a novel activator of the mpt operon. The Lin0142 protein contains a winged-helix DNA-binding motif and is distantly related to the Crp-Fnr family of transcription regulators.
Collapse
Affiliation(s)
- Junfeng Xue
- Department of Molecular Biology, University of Wyoming, PO Box 3944, Laramie, WY 82071-3944, USA
| | | | | | | | | | | |
Collapse
|
204
|
Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M, Zhang X. Structural insights into the activity of enhancer-binding proteins. Science 2005; 307:1972-5. [PMID: 15790859 PMCID: PMC2756573 DOI: 10.1126/science.1105932] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.
Collapse
Affiliation(s)
- Mathieu Rappas
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Jorg Schumacher
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Fabienne Beuron
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hajime Niwa
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Patricia Bordes
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Catherine A Keetch
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Carol V Robinson
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
- To whom correspondence should be addressed.
| |
Collapse
|
205
|
Tucker N, D'autréaux B, Spiro S, Dixon R. DNA binding properties of the Escherichia coli nitric oxide sensor NorR: towards an understanding of the regulation of flavorubredoxin expression. Biochem Soc Trans 2005; 33:181-3. [PMID: 15667300 DOI: 10.1042/bst0330181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitric oxide is an intermediate of denitrification, and is one of the radical species deployed by macrophages against invading pathogens, therefore bacterial responses to NO are of considerable importance. The Escherichia coli flavorubredoxin and its associated oxidoreductase reduce NO to nitrous oxide under anaerobic conditions, and are encoded by the norVW transcription unit. Expression of norVW requires the NO sensing regulatory protein NorR and is dependent on RNA polymerase containing the alternative sigma factor, σ54. We have purified NorR and shown that it binds to three sites in the norVW promoter region, located 75–140 bp upstream of the experimentally verified transcription start site. We have also identified two binding sites for the integration host factor, one between the NorR sites and the σ54-RNA polymerase binding site, and a second downstream of the norVW transcription start site. Comparison of the norVW promoters of enteric bacteria along with known and putative NorR-regulated promoters from Vibrio, Ralstonia and Pseudomonas species suggests that NorR binding sites contain an invariant GT(N7)AC motif flanking an AT-rich central region. The identification of a consensus for NorR binding sites will help to elucidate additional members of the NorR regulon.
Collapse
Affiliation(s)
- N Tucker
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
206
|
Jelsbak L, Givskov M, Kaiser D. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc Natl Acad Sci U S A 2005; 102:3010-5. [PMID: 15668379 PMCID: PMC549468 DOI: 10.1073/pnas.0409371102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer-binding proteins. Here we report the finding of an unusual group of 12 genes encoding sigma(54)-dependent enhancer-binding proteins containing a forkhead-associated (FHA) domain as their N-terminal sensory domain. FHA domains in other proteins recognize phosphothreonine residues. An insertion mutation in one of these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response to the morphogenetic C-signal. Immunoblots specific for C-signal and FruA imply that the site of Mx4885 action is downstream of FruA synthesis on the C-signal transduction pathway. Mx4885 may help to coordinate the level of intracellular phosphorylated FruA (FruA-P) with the level of C-signal displayed on the signal donor cell. Because FHA domains respond to phosphothreonine-containing proteins, these results suggest a regulatory link to the abundant Ser/Thr protein kinases in M. xanthus.
Collapse
Affiliation(s)
- Lars Jelsbak
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
207
|
Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL. Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bacteriol 2005; 187:396-9. [PMID: 15601726 PMCID: PMC538816 DOI: 10.1128/jb.187.1.396-399.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida JLR11 releases nitrogen from the 2,4,6-trinitrotoluene (TNT) ring as nitrite or ammonium. These processes can occur simultaneously, as shown by the observation that a nasB mutant impaired in the reduction of nitrite to ammonium grew at a slower rate than the parental strain. Nitrogen from TNT is assimilated via the glutamine syntethase-glutamate synthase (GS-GOGAT) pathway, as evidenced by the inability of GOGAT mutants to use TNT. This pathway is also used to assimilate ammonium from reduced nitrate and nitrite. Three mutants that had insertions in ntrC, nasT, and cnmA, which encode regulatory proteins, failed to grow on nitrite but grew on TNT, although slower than the wild type.
Collapse
Affiliation(s)
- Antonio Caballero
- Consejo Superior de Investigaciones Cientificas, Estación Experimental del Zaidin, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | | | | | | |
Collapse
|
208
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
The number of E. coli genes/operons regulated from sites distant from the gene, though limited, steadily increases. The regulation of the ula genes, in charge of L-ascorbate utilization, as well as the negative autoregulation of the non-related lambdaCI and 186CI repressors, for efficient switching of the corresponding phages from lysogeny to lysis, are recent examples. The interaction between the two GalR dimers, separated by 114 bp, undetectable in vitro, has been genetically mapped. lac repressor-operator loops might insulate a gene and its expression from the genomic environment. The genes in charge of nitrogen assimilation sequentially react to ammonia deprivation, via an increasing intracellular NRI concentration. Other sigma54-dependent genes are activated in response to various stimuli.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à distance, CNRS, 121, av. Philippe-Auguste, 75011 Paris, France.
| |
Collapse
|
210
|
Bächler C, Schneider P, Bähler P, Lustig A, Erni B. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J 2004; 24:283-93. [PMID: 15616579 PMCID: PMC545809 DOI: 10.1038/sj.emboj.7600517] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 11/22/2004] [Indexed: 11/09/2022] Open
Abstract
Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize either ATP (in animals, plants, bacteria) or the bacterial phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) as a source of high-energy phosphate. The PTS-dependent kinase of Escherichia coli consists of three subunits: DhaK contains the Dha binding site, DhaL contains ADP as cofactor for the double displacement of phosphate from DhaM to Dha, and DhaM provides a phospho-histidine relay between the PTS and DhaL::ADP. DhaR is a transcription activator belonging to the AAA+ family of enhancer binding proteins. It stimulates transcription of the dhaKLM operon from a sigma70 promoter and autorepresses dhaR transcription. Genetic and biochemical studies indicate that the enzyme subunits DhaL and DhaK act antagonistically as coactivator and corepressor of the transcription activator by mutually exclusive binding to the sensing domain of DhaR. In the presence of Dha, DhaL is dephosphorylated and DhaL::ADP displaces DhaK and stimulates DhaR activity. In the absence of Dha, DhaL::ADP is converted by the PTS to DhaL::ATP, which does not bind to DhaR.
Collapse
Affiliation(s)
- Christoph Bächler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Philipp Schneider
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Priska Bähler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Ariel Lustig
- Division of Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Bernhard Erni
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
- Departement für Chemie und Biochemie, Universität Bern, Freiestr. 3, 3012 Bern, Switzerland. Tel.: +41 31 631 4346; Fax: +41 31 631 4887; E-mail:
| |
Collapse
|
211
|
Schmeling S, Narmandakh A, Schmitt O, Gad'on N, Schühle K, Fuchs G. Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004; 186:8044-57. [PMID: 15547277 PMCID: PMC529068 DOI: 10.1128/jb.186.23.8044-8057.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via para-carboxylation of phenol (biological Kolbe-Schmitt carboxylation). In the first step, phenol is converted to phenylphosphate which is then carboxylated to 4-hydroxybenzoate in the second step. Phenylphosphate formation is catalyzed by the novel enzyme phenylphosphate synthase, which was studied. Phenylphosphate synthase consists of three proteins whose genes are located adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [(14)C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following reaction: phenol + MgATP + H(2)O-->phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in phenylphosphate is derived from the beta-phosphate group of ATP. The free energy of ATP hydrolysis obviously favors the trapping of phenol (K(m), 0.04 mM), even at a low ambient substrate concentration. The reaction is stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-beta-synthase domains of unknown function but does not show significant overall similarity to known proteins. The molecular and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit with interesting modifications.
Collapse
Affiliation(s)
- Sirko Schmeling
- Institut Biologie II, Mikrobiologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
212
|
Büsch A, Pohlmann A, Friedrich B, Cramm R. A DNA region recognized by the nitric oxide-responsive transcriptional activator NorR is conserved in beta- and gamma-proteobacteria. J Bacteriol 2004; 186:7980-7. [PMID: 15547270 PMCID: PMC529094 DOI: 10.1128/jb.186.23.7980-7987.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(54)-dependent regulator NorR activates transcription of target genes in response to nitric oxide (NO) or NO-generating agents. In Ralstonia eutropha H16, NorR activates transcription of the dicistronic norAB operon that encodes NorA, a protein of unknown function, and NorB, a nitric oxide reductase. A constitutively activating NorR derivative (NorR'), in which the N-terminal signaling domain was replaced by MalE, specifically bound to the norAB upstream region as revealed by gel retardation analysis. Within a 73-bp DNA segment protected by MalE-NorR' in a DNase I footprint assay, three conserved inverted repeats, GGT-(N(7))-ACC (where N is any base), that we consider to be NorR-binding boxes were identified. Mutations altering the spacing or the base sequence of these repeats resulted in an 80 to 90% decrease of transcriptional activation by wild-type NorR. Genome database analyses demonstrate that the GT-(N(7))-AC core of the inverted repeat is found in several proteobacteria upstream of gene loci encoding proteins of nitric oxide metabolism, including nitric oxide reductase (NorB), flavorubredoxin (NorV), NO dioxygenase (Hmp), and hybrid cluster protein (Hcp).
Collapse
Affiliation(s)
- Andrea Büsch
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
213
|
Solera D, Arenghi FLG, Woelk T, Galli E, Barbieri P. TouR-mediated effector-independent growth phase-dependent activation of the sigma54 Ptou promoter of Pseudomonas stutzeri OX1. J Bacteriol 2004; 186:7353-63. [PMID: 15489447 PMCID: PMC523194 DOI: 10.1128/jb.186.21.7353-7363.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the catabolic touABCDEF operon, encoding the toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1, is driven by the sigma(54)-dependent Ptou promoter, whose activity is controlled by the phenol-responsive NtrC-like activator TouR. In this paper we describe for the first time a peculiar characteristic of this system, namely, that Ptou transcription is activated in a growth phase-dependent manner in the absence of genuine effectors of the cognate TouR regulator. This phenomenon, which we named gratuitous activation, was observed in the native strain P. stutzeri OX1, as well as in a Pseudomonas putida PaW340 host harboring the reconstructed tou regulatory circuit. Regulator-promoter swapping experiments demonstrated that the presence of TouR is necessary and sufficient for imposing gratuitous activation on the Ptou promoter, as well as on other sigma(54)-dependent catabolic promoters, whereas the highly similar phenol-responsive activator DmpR is unable to activate the Ptou promoter in the absence of effectors. We show that this phenomenon is specifically triggered by carbon source exhaustion but not by nitrogen starvation. An updated model of the tou regulatory circuit is presented.
Collapse
Affiliation(s)
- Dafne Solera
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
214
|
Kropinski AM, Hayward M, Agnew MD, Jarrell KF. The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 2004; 9:99-109. [PMID: 15841342 DOI: 10.1007/s00792-004-0425-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The sequence of the genome of the first alkaliphilic bacteriophage has been determined. Temperate phage BCJA1 possesses a terminally redundant genome of approximately 41 kb, with a mol% G + C content of 41.7 and 59 genes arranged predominantly into two divergent transcriptons. The integrase gene of this phage is unique in that it contains a ribosomal slippage site. While this type of translational regulation occurs in the synthesis of transposase, this is the first time that it has been observed in a bacteriophage integrase. The DNA replication, recombination, packaging, and morphogenesis proteins show their greatest sequence similarity to phages and prophages from the genus Streptococcus. Host specificity, lysin, and lysogeny maintenance functions are most closely related to genes from Bacillus species.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Department of Microbiology and Immunology, Queens University, Kingston, ON, K7L 3N6, Canada.
| | | | | | | |
Collapse
|
215
|
Martinez-Argudo I, Little R, Dixon R. A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. Proc Natl Acad Sci U S A 2004; 101:16316-21. [PMID: 15534211 PMCID: PMC528952 DOI: 10.1073/pnas.0405312101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/18/2022] Open
Abstract
NifL is an antiactivator that tightly regulates transcription of genes required for nitrogen fixation in Azotobacter vinelandii by controlling the activity of its partner protein NifA, a member of the family of sigma(54)-dependent transcriptional activators. Although the C-terminal region of A. vinelandii NifL shows homology to the transmitter domains of histidine protein kinases, signal transduction between NifL and NifA is conveyed by means of protein-protein interactions rather than by phosphorylation. Binding of the ligand 2-oxoglutarate to NifA plays a crucial role in preventing inhibition by NifL under conditions appropriate for nitrogen fixation. We have used a suppressor screen to identify a critical arginine residue (R306) in NifL that is required to release NifA from inhibition under appropriate environmental conditions. Amino acid substitutions at position 306 result in constitutive inhibition of NifA activity by NifL, thus preventing nitrogen fixation. Biochemical studies with one of the mutant proteins demonstrate that the substitution alters the conformation of NifL significantly and prevents the response of NifA to 2-oxoglutarate. We propose that arginine 306 is critical for the propagation of signals perceived by A. vinelandii NifL in response to the redox and fixed-nitrogen status and is required for a conformational switch that inactivates the inhibitory function of NifL under conditions appropriate for nitrogen fixation.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | |
Collapse
|
216
|
Tucker NP, D'Autréaux B, Studholme DJ, Spiro S, Dixon R. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J Bacteriol 2004; 186:6656-60. [PMID: 15375149 PMCID: PMC516610 DOI: 10.1128/jb.186.19.6656-6660.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli nitric oxide sensor NorR was shown to bind to the promoter region of the norVW transcription unit, forming at least two distinct complexes detectable by gel retardation. Three binding sites for NorR and two integration host factor binding sites were identified in the norR-norV intergenic region. The derived consensus sequence for NorR binding sites was used to search for novel members of the E. coli NorR regulon and to show that NorR binding sites are partially conserved in other members of the proteobacteria.
Collapse
|
217
|
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 2004; 70:4961-70. [PMID: 15294836 PMCID: PMC492332 DOI: 10.1128/aem.70.8.4961-4970.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed and successfully implemented the use of in situ-synthesized 45-mer oligonucleotide DNA microarrays (XeoChips) for genome-wide expression profiling of Burkholderia xenovorans LB400, which is among the best aerobic polychlorinated biphenyl degraders known so far. We conducted differential gene expression profiling during exponential growth on succinate, benzoate, and biphenyl as sole carbon sources and investigated the transcriptome of early-stationary-phase cells grown on biphenyl. Based on these experiments, we outlined metabolic pathways and summarized other cellular functions in the organism relevant for biphenyl and benzoate degradation. All genes previously identified as being directly involved in biphenyl degradation were up-regulated when cells were grown on biphenyl compared to expression in succinate-grown cells. For benzoate degradation, however, genes for an aerobic coenzyme A activation pathway were up-regulated in biphenyl-grown cells, while the pathway for benzoate degradation via hydroxylation was up-regulated in benzoate-grown cells. The early-stationary-phase biphenyl-grown cells showed similar expression of biphenyl pathway genes, but a surprising up-regulation of C(1) metabolic pathway genes was observed. The microarray results were validated by quantitative reverse transcription PCR with a subset of genes of interest. The XeoChips showed a chip-to-chip variation of 13.9%, compared to the 21.6% variation for spotted oligonucleotide microarrays, which is less variation than that typically reported for PCR product microarrays.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Affiliation(s)
- Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | | |
Collapse
|
219
|
Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system. J Bacteriol 2004; 186:4543-55. [PMID: 15231787 PMCID: PMC438589 DOI: 10.1128/jb.186.14.4543-4555.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022] Open
Abstract
A proteome analysis of Lactobacillus casei mutants that are affected in carbon catabolite repression revealed that a 15-kDa protein was strongly overproduced in a ptsHI47T mutant. This protein was identified as EIIA of a mannose class phosphotransferase system (PTS). A 7.1-kb DNA fragment containing the EIIA-encoding open reading frame and five other genes was sequenced. The first gene encodes a protein resembling the RpoN (sigma54)-dependent Bacillus subtilis transcription activator LevR. The following pentacistronic operon is oriented in the opposite direction and encodes four proteins with strong similarity to the proteins of the B. subtilis Lev-PTS and one protein of unknown function. The genes present on the 7.1-kb DNA fragment were therefore called levR and levABCDX. The levABCDX operon was induced by fructose and mannose. No "-12, -24" promoter typical of RpoN-dependent genes precedes the L. casei lev operon, and its expression was therefore RpoN independent but required LevR. Phosphorylation of LevR by P approximately His-HPr stimulates its activity, while phosphorylation by P approximately EIIBLev inhibits it. Disruption of the EIIBLev-encoding levB gene therefore led to strong constitutive expression of the lev operon, which was weaker in a strain carrying a ptsI mutation preventing phosphorylation by both P approximately EIIBLev and P approximately His-HPr. Expression of the L. casei lev operon is also subject to P-Ser-HPr-mediated catabolite repression. The observed slow phosphoenolpyruvate- and ATP-dependent phosphorylation of HPrI47T as well as the slow phosphoryl group transfer from the mutant P approximately His-HPr to EIIALev are assumed to be responsible for the elevated expression of the lev operon in the ptsHI47T mutant.
Collapse
Affiliation(s)
- Alain Mazé
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-INAPG-CNRS, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Jakobsen JS, Jelsbak L, Jelsbak L, Welch RD, Cummings C, Goldman B, Stark E, Slater S, Kaiser D. Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J Bacteriol 2004; 186:4361-8. [PMID: 15205438 PMCID: PMC421606 DOI: 10.1128/jb.186.13.4361-4368.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/18/2004] [Indexed: 11/20/2022] Open
Abstract
A search of the M1genome sequence, which includes 97% of the Myxococcus xanthus genes, identified 53 sequence homologs of sigma54-dependent enhancer binding proteins (EBPs). A DNA microarray was constructed from the M1genome that includes those homologs and 318 other M. xanthus genes for comparison. To screen the developmental program with this array, an RNA extract from growing cells was compared with one prepared from developing cells at 12 h. Previous reporter studies had shown that M. xanthus has initiated development and has begun to express many developmentally regulated genes by 12 h. The comparison revealed substantial increases in the expression levels of 11 transcription factors that may respond to environmental stimuli. Six of the 53 EBP homologs were expressed at significantly higher levels at 12 h of development than during growth. Three were previously unknown genes, and they were inactivated to look for effects on fruiting body development. One knockout mutant produced fruiting bodies of abnormal shape that depended on the composition of the medium.
Collapse
Affiliation(s)
- Jimmy S Jakobsen
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Schumacher J, Zhang X, Jones S, Bordes P, Buck M. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. J Mol Biol 2004; 338:863-75. [PMID: 15111053 DOI: 10.1016/j.jmb.2004.02.071] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.
Collapse
Affiliation(s)
- Jörg Schumacher
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
222
|
Xu H, Gu B, Nixon BT, Hoover TR. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator. J Bacteriol 2004; 186:3499-507. [PMID: 15150237 PMCID: PMC415754 DOI: 10.1128/jb.186.11.3499-3507.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activators of sigma54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open complex between the promoter and RNA polymerase. These activators are modular, consisting of an N-terminal regulatory domain, a C-terminal DNA-binding domain, and a central activation domain belonging to the AAA+ superfamily of ATPases. The AAA+ domain of Sinorhizobium meliloti C4-dicarboxylic acid transport protein D (DctD) is sufficient to activate transcription. Deletion analysis of the 3' end of dctD identified the minimal functional C-terminal boundary of the AAA+ domain of DctD as being located between Gly-381 and Ala-384. Histidine-tagged versions of the DctD AAA+ domain were purified and characterized. The DctD AAA+ domain was significantly more soluble than DctD(Delta(1-142)), a truncated DctD protein consisting of the AAA+ and DNA-binding domains. In addition, the DctD AAA+ domain was more homogeneous than DctD(Delta(1-142)) when analyzed by native gel electrophoresis, migrating predominantly as a single high-molecular-weight species, while DctD(Delta(1-142)) displayed multiple species. The DctD AAA+ domain, but not DctD(Delta(1-142)), formed a stable complex with sigma54 in the presence of the ATP transition state analogue ADP-aluminum fluoride. The DctD AAA+ domain activated transcription in vitro, but many of the transcripts appeared to terminate prematurely, suggesting that the DctD AAA+ domain interfered with transcription elongation. Thus, the DNA-binding domain of DctD appears to have roles in controlling the oligomerization of the AAA+ domain and modulating interactions with sigma54 in addition to its role in recognition of upstream activation sequences.
Collapse
Affiliation(s)
- Hao Xu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
223
|
Martinez-Argudo I, Little R, Dixon R. Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 2004; 52:1731-44. [PMID: 15186421 DOI: 10.1111/j.1365-2958.2004.04089.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NifA protein from Azotobacter vinelandii belongs to a family of enhancer binding proteins (EBPs) that activate transcription by RNA polymerase containing the sigma factor sigma(54). These proteins have conserved AAA+ domains that catalyse ATP hydrolysis to drive conformational changes necessary for open complex formation by sigma(54)-RNA polymerase. The activity of the NifA protein is highly regulated in response to redox and fixed nitrogen through interaction with the antiactivator protein NifL. Binding of NifL to NifA inhibits the ATPase activity of NifA, and this interaction is controlled by the amino-terminal GAF domain of NifA that binds 2-oxoglutarate. Mutations conferring resistance to NifL are located in both the GAF and the AAA+ domains of NifA. To investigate the mechanism by which the GAF domain regulates the activity of the AAA+ domain, we screened for second-site mutations that suppress the NifL-resistant phenotype of mutations in the AAA+ domain. One suppressor mutation, F119S, in the GAF domain restores inhibition by NifL to an AAA+ domain mutation, E356K, in response to fixed nitrogen but not in response to oxygen. The biochemical properties of this mutant protein are consistent with the in vivo phenotype and demonstrate that interdomain suppression results in sensitivity to inhibition by NifL in the presence of the signal transduction protein GlnK, but not to the oxidized form of NifL. In the absence of an AAA+ domain mutation, the F119S mutation confers hypersensitivity to repression by NifL. Isothermal titration calorimetry demonstrates that this mutation prevents binding of 2-oxoglutarate to the GAF domain. Our data support a model in which the GAF domain plays an essential role in preventing inhibition by NifL under conditions appropriate for nitrogen fixation. These observations are of general significance in considering how the activities of EBPs are controlled in response to environmental signals.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
224
|
Niehus E, Gressmann H, Ye F, Schlapbach R, Dehio M, Dehio C, Stack A, Meyer TF, Suerbaum S, Josenhans C. Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol 2004; 52:947-61. [PMID: 15130117 DOI: 10.1111/j.1365-2958.2004.04006.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The flagellar system of Helicobacter pylori, which comprises more than 40 mostly unclustered genes, is essential for colonization of the human stomach mucosa. In order to elucidate the complex transcriptional circuitry of flagellar biosynthesis in H. pylori and its link to other cell functions, mutants in regulatory genes governing flagellar biosynthesis (rpoN, flgR, flhA, flhF, HP0244) and whole-genome microarray technology were used in this study. The regulon controlled by RpoN, its activator FlgR (FleR) and the cognate histidine kinase HP0244 (FleS) was characterized on a genome-wide scale for the first time. Seven novel genes (HP1076, HP1233, HP1154/1155, HP0366/367, HP0869) were identified as belonging to RpoN-associated flagellar regulons. The hydrogenase accessory gene HP0869 was the only annotated non-flagellar gene in the RpoN regulon. Flagellar basal body components FlhA and FlhF were characterized as functional equivalents to master regulators in H. pylori, as their absence led to a general reduction of transcripts in the RpoN (class 2) and FliA (class 3) regulons, and of 24 genes newly attributed to intermediate regulons, under the control of two or more promoters. FlhA- and FlhF-dependent regulons comprised flagellar and non-flagellar genes. Transcriptome analysis revealed that negative feedback regulation of the FliA regulon was dependent on the antisigma factor FlgM. FlgM was also involved in FlhA- but not FlhF-dependent feedback control of the RpoN regulon. In contrast to other bacteria, chemotaxis and flagellar motor genes were not controlled by FliA or RpoN. A true master regulator of flagellar biosynthesis is absent in H. pylori, consistent with the essential role of flagellar motility and chemotaxis for this organism.
Collapse
Affiliation(s)
- Eike Niehus
- Institute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
We have developed a set of graph theory-based tools, which we call Comparative Analysis of Protein Domain Organization (CADO), to survey and compare protein domain organizations of different organisms. In the language of CADO, the organization of protein domains in a given organism is shown as a domain graph in which protein domains are represented as vertices, and domain combinations, defined as instances of two domains found in one protein, are represented as edges. CADO provides a new way to analyze and compare whole proteomes, including identifying the consensus and difference of domain organization between organisms. CADO was used to analyze and compare >50 bacterial, archaeal, and eukaryotic genomes. Examples and overviews presented here include the analysis of the modularity of domain graphs and the functional study of domains based on the graph topology. We also report on the results of comparing domain graphs of two organisms, Pyrococcus horikoshii (an extremophile) and Haemophilus influenzae (a parasite with reduced genome) with other organisms. Our comparison provides new insights into the genome organization of these organisms. Finally, we report on the specific domain combinations characterizing the three kingdoms of life, and the kingdom "signature" domain organizations derived from those specific domain combinations.
Collapse
Affiliation(s)
- Yuzhen Ye
- Program in Bioinformatics and Systems Biology, The Burnham Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
226
|
Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. The NifL-NifA System: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 2004; 186:601-10. [PMID: 14729684 PMCID: PMC321506 DOI: 10.1128/jb.186.3.601-610.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
227
|
Abstract
sigma54 is unique among the bacterial sigma factors. Besides not being related in sequence with the rest of such factors, its mechanism of transcription initiation is completely different and requires the participation of a transcription activator. In addition, whereas the rest of the alternative sigma factors use to be involved in transcription of somehow related biological functions, this is not the case for sigma54 and many different and unrelated genes have been shown to be transcribed from sigma54-dependent promoters, ranging from flagellation, to utilization of several different carbon and nitrogen sources, or alginate biosynthesis. These genes have been characterized in many different bacterial species and, only until recently with the arrival of complete genome sequences, we have been able to look at the sigma54 functional role from a genomic perspective. Aided by computational methods, the sigma54 regulon has been studied both in Escherichia coli, Salmonella typhimurium and several species of the Rhizobiaceae. Here we present the analysis of the sigma54 regulon (sigmulon) in the complete genome of Pseudomonas putida KT2440. We have developed an improved method for the prediction of sigma54-dependent promoters which combines the scores of sigma54-RNAP target sequences and those of activator binding sites. In combination with other evidence obtained from the chromosomal context and the similarity with closely related bacteria, we have been able to predict more than 80% of the sigma54-dependent promoters of P. putida with high confidence. Our analysis has revealed new functions for sigma54 and, by means of comparative analysis with the previous studies, we have drawn a potential mechanism for the evolution of this regulatory system.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología, CSIC Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
228
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
229
|
Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. The NifL-NifA System: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 2004; 186:601-610. [PMID: 14729684 DOI: 10.1128/jb.186.3.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
230
|
Studholme DJ, Dixon R. In silico analysis of the sigma54-dependent enhancer-binding proteins in Pirellula species strain 1. FEMS Microbiol Lett 2004; 230:215-25. [PMID: 14757243 DOI: 10.1016/s0378-1097(03)00897-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The planctomycetes are a phylogenetically distinct group of bacteria, widespread in aquatic and terrestrial environments. Their cell walls lack peptidoglycan and their compartmentalised cells undergo a yeast-like budding cell division process. Many bacteria regulate a subset of their genes by an enhancer-dependent mechanism involving the alternative sigma factor sigma54 (RpoN, sigmaN) in association with sigma54-dependent transcriptional activators known as enhancer-binding proteins (EBPs). The sigma54-dependent regulon has previously been studied in several groups of bacteria, but not in the planctomycetes. We wished to exploit the recently published complete genome sequence of Pirellula species strain 1 to predict and analyse the sigma54-dependent regulon in this interesting group of bacteria. The genome of Pirellula species strain 1 encodes one homologue of sigma54, and 16 sigma54-dependent EBPs, including 10 two-component response regulators and a homologue of Escherichia coli RtcR. Two EBPs contain forkhead-associated domains, representing a novel protein domain combination not previously observed in bacterial EBPs and suggesting a novel link between the enhancer-dependent regulon and 'eukaryotic-like' protein phosphorylation in bacterial signal transduction. We identified several potential sigma54-dependent promoters upstream of genes and operons including two homologues of csrA, which encodes the global regulator CsrA, and rtcBA, encoding a RNA 3'-terminal phosphate cyclase. Phylogenetic analysis of EBP sequences from a wide range of bacterial taxa suggested that planctomycete EBPs fall into several distinct clades. Also the phylogeny of the sigma54 factors is broadly consistent with that of the host organisms. These results are consistent with a very ancient origin of sigma54 within the bacterial lineage. The repertoire of functions predicted to be under the control of the sigma54-dependent regulon in Pirellula shares some similarities (e.g. rtcBA) as well as exhibiting differences with that in other taxonomic groups of bacteria, reinforcing the evolutionarily dynamic nature of this regulon.
Collapse
|
231
|
Burrows PC. Investigating protein-protein interfaces in bacterial transcription complexes: a fragmentation approach. Bioessays 2004; 25:1150-3. [PMID: 14635249 DOI: 10.1002/bies.10388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transcription initiation by sigma(54)-RNA polymerase (RNAP) relies explicitly on a transient interaction with a complex molecular machine belonging to the AAA+ (ATPases associated with various cellular activities) superfamily. Members of the AAA+ superfamily convert chemical energy derived from NTP hydrolysis to a mechanical force used to remodel their target substrate. Recently Bordes and colleagues,1 using a protein fragmentation approach, identified a unique sequence within sigma(54)-dependent transcriptional activators that constitutes a sigma(54)-binding interface. This interface is not static, but subject to nucleotide-dependent movement which may represent a common mechanism for controlling output that has been adopted by other AAA+ proteins.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building Imperial College London, South Kensington Campus, London SW7 2AZ.
| |
Collapse
|
232
|
Rescalli E, Saini S, Bartocci C, Rychlewski L, De Lorenzo V, Bertoni G. Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J Biol Chem 2003; 279:7777-84. [PMID: 14672954 DOI: 10.1074/jbc.m310580200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
From crude protein extracts of Pseudomonas putida KT2440, we identified a small protein, TurA, able to bind to DNA fragments bearing the entire Pu promoter sequence of the TOL plasmid. The knock-out inactivation of the turA gene resulted in enhanced transcription initiation from the Pu promoter, initially suggesting a negative regulatory role of TurA on Pu expression. Ectopic expression of TurA both in P. putida and in Escherichia coli reporter strains and transcription in vitro of the Pu promoter in the presence of purified TurA confirmed the TurA repressor role on Pu activity. turA gene inactivation did not significantly alter two well characterized physiological regulations of the Pu expression in routine conditions of cultivation, exponential silencing, and carbon-mediated repression, respectively. However, the growth at suboptimal temperatures resulted in a TurA-dependent increase of Pu repression. These results strongly suggest that a physiological significance of the negative role of TurA on Pu activity could be limitation of the expression of the toluene-degrading enzymes at suboptimal growth temperatures. Therefore, the identification of TurA as Pu-binding protein revealed a novel physiological modulation of Pu promoter that is different from those strictly nutritional described previously.
Collapse
Affiliation(s)
- Emanuela Rescalli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, via Celoria 26, 20133 Milan, Italy, BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
233
|
Studholme DJ, Pau RN. A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiol 2003; 3:24. [PMID: 14641908 PMCID: PMC317290 DOI: 10.1186/1471-2180-3-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 12/02/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition metal molybdenum is essential for life. Escherichia coli imports this metal into the cell in the form of molybdate ions, which are taken up via an ABC transport system. In E. coli and other Proteobacteria molybdenum metabolism and homeostasis are regulated by the molybdate-responsive transcription factor ModE. RESULTS Orthologues of ModE are widespread amongst diverse prokaryotes, but not ubiquitous. We identified probable ModE-binding sites upstream of genes implicated in molybdenum metabolism in green sulphur bacteria and methanogenic Archaea as well as in Proteobacteria. We also present evidence of horizontal transfer of nitrogen fixation genes between green sulphur bacteria and methanogenic Archaea. CONCLUSIONS Whereas most of the archaeal helix-turn-helix-containing transcription factors belong to families that are Archaea-specific, ModE is unusual in that it is found in both Archaea and Bacteria. Moreover, its cognate upstream DNA recognition sequence is also conserved between Archaea and Bacteria, despite the fundamental differences in their core transcription machinery. ModE is the third example of a transcriptional regulator with a binding signal that is conserved in Bacteria and Archaea.
Collapse
Affiliation(s)
| | - Richard N Pau
- Department of Biochemistry and Molecular Biology, University of Melbourne. Parkville, Victoria, 3010. Australia
| |
Collapse
|
234
|
Yang XF, Alani SM, Norgard MV. The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 2003; 100:11001-6. [PMID: 12949258 PMCID: PMC196916 DOI: 10.1073/pnas.1834315100] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi (Bb), the agent of Lyme disease, exists in nature through a complex enzootic life cycle that involves both ticks and mammals. As Bb transitions between its two diverse niches, profound adaptive changes occur that are reflected in differential patterns of gene expression, particularly involving lipoprotein genes. Using a mutagenesis approach, we show that Rrp2 (gene BB0763), one of the proteins predicted by the Bb genome (www.tigr.org) to be a response regulator of a two-component sensory transduction system, is a pivotal regulator governing the expression of major membrane lipoproteins such as OspC, DbpA, and Mlp8, as well as many other mammalian infection-associated immunogens of Bb. Sequence analysis additionally suggested that Rrp2 is a bacterial enhancer-binding protein, essential for sigma54-dependent gene activation. Mutagenesis of a key amino acid residue within a putative activation domain revealed that Rrp2 controlled lipoprotein expression by governing the expression of the alternative sigma-factor sigmas in a sigma54-dependent manner. We therefore propose a signal transduction pathway involving Rrp2, sigma54, and sigmas, which in concert control the expression of key lipoproteins and other infection-associated immunogens in Bb.
Collapse
Affiliation(s)
- Xiaofeng F Yang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | | | |
Collapse
|
235
|
Dalet K, Arous S, Cenatiempo Y, Héchard Y. Characterization of a unique σ54–dependent PTS operon of the lactose family in Listeria monocytogenes. Biochimie 2003; 85:633-8. [PMID: 14505817 DOI: 10.1016/s0300-9084(03)00134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigma(54) subunit of the RNA polymerase directs the expression of specific operons in association with cognate activators. Three different activators have been detected in the Listeria monocytogenes genome on the basis of the high conservation of a specific domain. Among them, the LacR activator, of the LevR family, was found just upstream from a newly described sigma(54)-dependent operon, lpo, which presents a classical -24/-12 consensus promoter. The lpo operon encodes proteins similar to subunits of a PTS permease (EII) of the lactose family, namely LpoA (IIA) and LpoB (IIB). It also encodes a third putative protein, LpoO, with an unknown function but sharing high similarity with proteins also encoded within PTS operons from other bacteria and bearing a RGD motif. The expression of lpo was clearly dependent on LacR and sigma(54), and was induced by cellobiose, chitobiose and lactose. It underlies that the lpo operon likely encodes proteins involved in the utilization of these sugars by L. monocytogenes.
Collapse
Affiliation(s)
- Karine Dalet
- Laboratoire de Microbiologie Fondamentale et Appliquée, IBMIG, UFR Sciences, ESA CNRS 6031, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 cedex, Poitiers, France
| | | | | | | |
Collapse
|