201
|
Chen XQ, Tan I, Leung T, Lim L. The myotonic dystrophy kinase-related Cdc42-binding kinase is involved in the regulation of neurite outgrowth in PC12 cells. J Biol Chem 1999; 274:19901-5. [PMID: 10391936 DOI: 10.1074/jbc.274.28.19901] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myotonic dystrophy kinase-related Cdc42-binding kinase (MRCKalpha) has been implicated in the morphological activities of Cdc42 in nonneural cells. Both MRCKalpha and the kinase-related Rho-binding kinase (ROKalpha) are involved in nonmuscle myosin light-chain phosphorylation and associated actin cytoskeleton reorganization. We now show that in PC12 cells, overexpression of the kinase domain of MRCKalpha and ROKalpha resulted in retraction of neurites formed on nerve growth factor (NGF) treatment, as observed with RhoA. However, introduction of kinase-dead MRCKalpha did not result in NGF-independent neurite outgrowth as observed with dominant negative kinase-dead ROKalpha or the Rho inhibitor C3. Neurite outgrowth induced by NGF or kinase-dead ROKalpha was inhibited by dominant negative Cdc42(N17), Rac1(N17), and the Src homology 3 domain of c-Crk, indicating the participation of common downstream components. Neurite outgrowth induced by either agent was blocked by kinase-dead MRCKalpha lacking the p21-binding domain or by a minimal C-terminal regulatory region consisting of the cysteine-rich domain/pleckstrin homology domain plus a region with homology to citron. The latter region alone was an effective blocker of NGF-induced outgrowth. These results suggest that although ROKalpha is involved in neurite retraction promoted by RhoA, the related MRCKalpha is conversely involved in neurite outgrowth promoted by Cdc42 and Rac.
Collapse
Affiliation(s)
- X Q Chen
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
202
|
Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Nature 1999; 399:379-83. [PMID: 10360578 DOI: 10.1038/20726] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Rho-family GTP-hydrolysing proteins (GTPases), Cdc42, Rac and Rho, act as molecular switches in signalling pathways that regulate cytoskeletal architecture, gene expression and progression of the cell cycle. Cdc42 and Rac transmit many signals through GTP-dependent binding to effector proteins containing a Cdc42/Rac-interactive-binding (CRIB) motif. One such effector, the Wiskott-Aldrich syndrome protein (WASP), is postulated to link activation of Cdc42 directly to the rearrangement of actin. Human mutations in WASP cause severe defects in haematopoletic cell function, leading to clinical symptoms of thrombocytopenia, immunodeficiency and eczema. Here we report the solution structure of a complex between activated Cdc42 and a minimal GTPase-binding domain (GBD) from WASP. An extended amino-terminal GBD peptide that includes the CRIB motif contacts the switch I, beta2 and alpha5 regions of Cdc42. A carboxy-terminal beta-hairpin and alpha-helix pack against switch II. The Phe-X-His-X2-His portion of the CRIB motif and the alpha-helix appear to mediate sensitivity to the nucleotide switch through contacts to residues 36-40 of Cdc42. Discrimination between the Rho-family members is likely to be governed by GBD contacts to the switch I and alpha5 regions of the GTPases. Structural and biochemical data suggest that GBD-sequence divergence outside the CRIB motif may reflect additional regulatory interactions with functional domains that are specific to individual effectors.
Collapse
Affiliation(s)
- N Abdul-Manan
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V, Matsuura Y, Kaibuchi K. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Biophys Biochem Cytol 1999; 145:347-61. [PMID: 10209029 PMCID: PMC2133101 DOI: 10.1083/jcb.145.2.347] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adducin is a membrane skeletal protein that binds to actin filaments (F-actin) and thereby promotes the association of spectrin with F-actin to form a spectrin-actin meshwork beneath plasma membranes such as ruffling membranes. Rho-associated kinase (Rho- kinase), which is activated by the small guanosine triphosphatase Rho, phosphorylates alpha-adducin and thereby enhances the F-actin-binding activity of alpha-adducin in vitro. Here we identified the sites of phosphorylation of alpha-adducin by Rho-kinase as Thr445 and Thr480. We prepared antibody that specifically recognized alpha-adducin phosphorylated at Thr445, and found by use of this antibody that Rho-kinase phosphorylated alpha-adducin at Thr445 in COS7 cells in a Rho-dependent manner. Phosphorylated alpha-adducin accumulated in the membrane ruffling area of Madin-Darby canine kidney (MDCK) epithelial cells and the leading edge of scattering cells during the action of tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF). The microinjection of Botulinum C3 ADP-ribosyl-transferase, dominant negative Rho-kinase, or alpha-adducinT445A,T480A (substitution of Thr445 and Thr480 by Ala) inhibited the TPA-induced membrane ruffling in MDCK cells and wound-induced migration in NRK49F cells. alpha-AdducinT445D,T480D (substitution of Thr445 and Thr480 by Asp), but not alpha-adducinT445A,T480A, counteracted the inhibitory effect of the dominant negative Rho-kinase on the TPA-induced membrane ruffling in MDCK cells. Taken together, these results indicate that Rho-kinase phosphorylates alpha-adducin downstream of Rho in vivo, and that the phosphorylation of adducin by Rho-kinase plays a crucial role in the regulation of membrane ruffling and cell motility.
Collapse
Affiliation(s)
- Y Fukata
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Moncrieff CL, Bailey ME, Morrison N, Johnson KJ. Cloning and chromosomal localization of human Cdc42-binding protein kinase beta. Genomics 1999; 57:297-300. [PMID: 10198171 DOI: 10.1006/geno.1999.5769] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The p21 GTPases, Rho and Cdc42, regulate numerous cellular functions by binding to members of a serine/threonine protein kinase subfamily. These functions include the remodeling of the cell cytoskeleton that is a feature of cell growth and differentiation. Two of these p21 GTPase-regulated kinases, the myotonic dystrophy protein kinase-related Cdc42-binding kinases (MRCKalpha and beta), have been recently characterized in rat. Both of these proteins phosphorylate nonmuscle myosin light chain, a prerequisite for the activation of actin-myosin contractility. Here we report the cDNA cloning of the human homologue of MRCKbeta, CDC42BPB, which was found by Northern blot analysis to be expressed in a wide range of tissues. The human CDC42BPB gene maps to cytogenetic band 14q32.3 by FISH analysis.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 14/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Myotonin-Protein Kinase
- Protein-Tyrosine Kinases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Tissue Distribution
Collapse
Affiliation(s)
- C L Moncrieff
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 6NU
| | | | | | | |
Collapse
|
205
|
Castellano F, Montcourrier P, Guillemot JC, Gouin E, Machesky L, Cossart P, Chavrier P. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr Biol 1999; 9:351-60. [PMID: 10209117 DOI: 10.1016/s0960-9822(99)80161-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cdc42, a GTP-binding protein of the Rho family, controls actin cytoskeletal organization and helps to generate actin-based protruding structures, such as filopodia. In vitro, Cdc42 regulates actin polymerization by facilitating the creation of free barbed ends - the more rapidly growing ends of actin filaments - and subsequent elongation at these ends. The Wiskott- Aldrich syndrome protein, WASP, which has a pleckstrin-homology domain and a Cdc42/Rac-binding motif, has been implicated in cell signaling and cytoskeleton reorganization. We have investigated the consequences of local recruitment of activated Cdc42 or WASP to the plasma membrane. RESULTS We used an activated Cdc42 protein that could be recruited to an engineered membrane receptor by adding rapamycin as a bridge, and added antibody-coupled beads to aggregate these receptors. Inducible recruitment of Cdc42 to clusters of receptors stimulated actin polymerization, resulting in the formation of membrane protrusions. Cdc42-induced protrusions were enriched in the vasodilator-stimulated phosphoprotein VASP and the focal-adhesion-associated proteins zyxin and ezrin. The Cdc42 effector WASP could also induce the formation of protrusions, albeit of different morphology. CONCLUSIONS This is the first demonstration that the local recruitment of activated Cdc42 or its downstream effector, WASP, to a membrane receptor in whole cells is sufficient to trigger actin polymerization that results in the formation of membrane protrusions. Our data suggest that Cdc42-induced actin-based protrusions result from the local and serial recruitment of cytoskeletal proteins including zyxin, VASP, and ezrin.
Collapse
Affiliation(s)
- F Castellano
- Centre d'Immunologie, INSERM-CNRS de Marseille-Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
Clustering of integrins into focal adhesions and focal complexes is regulated by the actin cytoskeleton. In turn, actin dynamics are governed by Rho family GTPases. Integrin-mediated adhesion activates these GTPases, triggering assembly of filopodia, lamellipodia and stress fibers. In the past few years, signaling pathways have begun to be identified that promote focal adhesion disassembly and integrin dispersal. Many of these pathways result in decreased myosin-mediated cell contractility.
Collapse
Affiliation(s)
- S M Schoenwaelder
- The Department of Cell Biology and Anatomy, 108 Taylor Hall, CB#7090, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
207
|
Abstract
Cdc42p is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42p family display between 75 and 100% amino acid identity and are functional as well as structural homologs. Cdc42p transduces signals to the actin cytoskeleton to initiate and maintain polarized gorwth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42p plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42p regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42p mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42p has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. While much is known about Cdc42p structure and functional interactions, little is known about the mechanism(s) by which it transduces signals within the cell. Future research should focus on this question as well as on the detailed analysis of the interactions of Cdc42p with its regulators and downstream effectors.
Collapse
Affiliation(s)
- D I Johnson
- Department of Microbiology & Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405,
| |
Collapse
|
208
|
Abstract
Synaptic NMDA-type glutamate receptors are anchored to the second of three PDZ (PSD-95/Discs large/ZO-1) domains in the postsynaptic density (PSD) protein PSD-95. Here, we report that citron, a protein target for the activated form of the small GTP-binding protein Rho, preferentially binds the third PDZ domain of PSD-95. In GABAergic neurons from the hippocampus, citron forms a complex with PSD-95 and is concentrated at the postsynaptic side of glutamatergic synapses. Citron is expressed only at low levels in glutamatergic neurons in the hippocampus and is not detectable at synapses onto these neurons. In contrast to citron, p135 SynGAP, an abundant synaptic Ras GTPase-activating protein that can bind to all three PDZ domains of PSD-95, and Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) are concentrated postsynaptically at glutamatergic synapses on glutamatergic neurons. CaM kinase II is not expressed and p135 SynGAP is expressed in less than half of hippocampal GABAergic neurons. Segregation of citron into inhibitory neurons does not occur in other brain regions. For example, citron is expressed at high levels in most thalamic neurons, which are primarily glutamatergic and contain CaM kinase II. In several other brain regions, citron is present in a subset of neurons that can be either GABAergic or glutamatergic and can sometimes express CaM kinase II. Thus, in the hippocampus, signal transduction complexes associated with postsynaptic NMDA receptors are different in glutamatergic and GABAergic neurons and are specialized in a way that is specific to the hippocampus.
Collapse
|
209
|
Abstract
The Rho GTPases are simple enzymes with complex roles in regulating cell morphology, gene transcription, cell cycle progression, apoptosis and tumour progression. The picture has been further complicated by the steady rise in the number of known Rho GTPases as well as in the number of known regulators and target proteins of these GTPases. Recent implications of Rho effectors in human disease, however, might give important clues to how specificity is achieved in cell signalling pathways employing Rho GTPases.
Collapse
Affiliation(s)
- P Aspenström
- Ludwig Institute for Cancer Research Box 595 Biomedical Center S-752 24 Uppsala Sweden.
| |
Collapse
|
210
|
Signaling through rho gtpases in phagocytes. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1874-5172(99)80033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
211
|
Zhang W, Vazquez L, Apperson M, Kennedy MB. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J Neurosci 1999; 19:96-108. [PMID: 9870942 PMCID: PMC6782379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1998] [Revised: 10/08/1998] [Accepted: 10/20/1998] [Indexed: 02/09/2023] Open
Abstract
Synaptic NMDA-type glutamate receptors are anchored to the second of three PDZ (PSD-95/Discs large/ZO-1) domains in the postsynaptic density (PSD) protein PSD-95. Here, we report that citron, a protein target for the activated form of the small GTP-binding protein Rho, preferentially binds the third PDZ domain of PSD-95. In GABAergic neurons from the hippocampus, citron forms a complex with PSD-95 and is concentrated at the postsynaptic side of glutamatergic synapses. Citron is expressed only at low levels in glutamatergic neurons in the hippocampus and is not detectable at synapses onto these neurons. In contrast to citron, p135 SynGAP, an abundant synaptic Ras GTPase-activating protein that can bind to all three PDZ domains of PSD-95, and Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) are concentrated postsynaptically at glutamatergic synapses on glutamatergic neurons. CaM kinase II is not expressed and p135 SynGAP is expressed in less than half of hippocampal GABAergic neurons. Segregation of citron into inhibitory neurons does not occur in other brain regions. For example, citron is expressed at high levels in most thalamic neurons, which are primarily glutamatergic and contain CaM kinase II. In several other brain regions, citron is present in a subset of neurons that can be either GABAergic or glutamatergic and can sometimes express CaM kinase II. Thus, in the hippocampus, signal transduction complexes associated with postsynaptic NMDA receptors are different in glutamatergic and GABAergic neurons and are specialized in a way that is specific to the hippocampus.
Collapse
Affiliation(s)
- W Zhang
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
212
|
Oshiro N, Fukata Y, Kaibuchi K. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem 1998; 273:34663-6. [PMID: 9856983 DOI: 10.1074/jbc.273.52.34663] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates moesin at Thr558 in vitro. Here, using a site- and phosphorylation state-specific antibody, we found that the expression of dominant active RhoA in COS7 cells induced moesin phosphorylation and the formation of microvilli-like structures at apical membranes where the Thr558-phosphorylated moesin accumulated, whereas the expression of dominant negative Rho-kinase inhibited both of these processes. The expression of dominant active Rho-kinase also induced moesin phosphorylation. When COS7 cells expressing moesin or moesinT558A (substitution of Thr by Ala) were cultured under serum-depleted conditions, there were few microvilli-like structures, whereas microvilli-like structures remained in the cells expressing moesinT558D (substitution of Thr by Asp). The expression of moesinT558A inhibited the dominant active RhoA-induced formation of microvilli-like structures. These results indicate that Rho-kinase regulates moesin phosphorylation downstream of Rho in vivo and that the phosphorylation of moesin by Rho-kinase plays a crucial role in the formation of microvilli-like structures.
Collapse
Affiliation(s)
- N Oshiro
- Division of Signal Transduction, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | |
Collapse
|
213
|
Crawford JM, Harden N, Leung T, Lim L, Kiehart DP. Cellularization in Drosophila melanogaster is disrupted by the inhibition of rho activity and the activation of Cdc42 function. Dev Biol 1998; 204:151-64. [PMID: 9851849 DOI: 10.1006/dbio.1998.9061] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of cytoskeletal dynamics is essential for cell shape change and morphogenesis. Drosophila melanogaster embryos offer a well-defined system for observing alterations in the cytoskeleton during the process of cellularization, a specialized form of cytokinesis. During cellularization, the actomyosin cytoskeleton forms a hexagonal array and drives invagination of the plasma membrane between the nuclei located at the cortex of the syncytial blastoderm. Rho, Rac, and Cdc42 proteins are members of the Rho subfamily of Ras-related G proteins that are involved in the formation and maintenance of the actin cytoskeleton throughout phylogeny and in D. melanogaster. To investigate how Rho subfamily activity affects the cytoskeleton during cellularization stages, embryos were microinjected with C3 exoenzyme from Clostridium botulinum or with wild-type, constitutively active, or dominant negative versions of Rho, Rac, and Cdc42 proteins. C3 exoenzyme ADP-ribosylates and inactivates Rho with high specificity, whereas constitutively active dominant mutations remain in the activated GTP-bound state to activate downstream effectors. Dominant negative mutations likely inhibit endogenous small G protein activity by sequestering exchange factors. Of the 10 agents microinjected, C3 exoenzyme, constitutively active Cdc42, and dominant negative Rho have a specific and indistinguishable effect: the actomyosin cytoskeleton is disrupted, cellularization halts, and embryogenesis arrests. Time-lapse video records of DIC imaged embryos show that nuclei in injected regions move away from the cortex of the embryo, thereby phenocopying injections of cytochalasin or antimyosin. Rhodamine phalloidin staining reveals that the actin-based hexagonal array normally seen during cellularization is disrupted in a dose-dependent fashion. Additionally, DNA stain reveals that nuclei in the microinjected embryos aggregate in regions that correspond to actin disruption. These embryos halt in cellularization and do not proceed to gastrulation. We conclude that Rho activity and Cdc42 regulation are required for cytoskeletal function in actomyosin-driven furrow canal formation and nuclear positioning.
Collapse
Affiliation(s)
- J M Crawford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710-7599, USA
| | | | | | | | | |
Collapse
|
214
|
Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, Saya H, Kaibuchi K, Inagaki M. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Biophys Biochem Cytol 1998; 143:1249-58. [PMID: 9832553 PMCID: PMC2133074 DOI: 10.1083/jcb.143.5.1249] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, regulates formation of stress fibers and focal adhesions, myosin fiber organization, and neurite retraction through the phosphorylation of cytoskeletal proteins, including myosin light chain, the ERM family proteins (ezrin, radixin, and moesin) and adducin. Rho-kinase was found to phosphorylate a type III intermediate filament (IF) protein, glial fibrillary acidic protein (GFAP), exclusively at the cleavage furrow during cytokinesis. In the present study, we examined the roles of Rho-kinase in cytokinesis, in particular organization of glial filaments during cytokinesis. Expression of the dominant-negative form of Rho-kinase inhibited the cytokinesis of Xenopus embryo and mammalian cells, the result being production of multinuclei. We then constructed a series of mutant GFAPs, where Rho-kinase phosphorylation sites were variously mutated, and expressed them in type III IF-negative cells. The mutations induced impaired segregation of glial filament (GFAP filament) into postmitotic daughter cells. As a result, an unusually long bridge-like cytoplasmic structure formed between the unseparated daughter cells. Alteration of other sites, including the cdc2 kinase phosphorylation site, led to no remarkable defect in glial filament separation. These results suggest that Rho-kinase is essential not only for actomyosin regulation but also for segregation of glial filaments into daughter cells which in turn ensures correct cytokinetic processes.
Collapse
Affiliation(s)
- Y Yasui
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Suetsugu S, Miki H, Takenawa T. The essential role of profilin in the assembly of actin for microspike formation. EMBO J 1998; 17:6516-26. [PMID: 9822597 PMCID: PMC1170999 DOI: 10.1093/emboj/17.22.6516] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Profilin was first identified as an actin monomer binding protein; however, recent reports indicate its involvement in actin polymerization. To date, there is no direct evidence of a functional role in vivo for profilin in actin cytoskeletal reorganization. Here, we prepared a profilin mutant (H119E) defective in actin binding, but retaining the ability to bind to other proteins. This mutant profilin I suppresses actin polymerization in microspike formation induced by N-WASP, the essential factor in microspike formation. Profilin associates both in vivo and in vitro with N-WASP at proline-rich sites different from those to which Ash/Grb2 binds. This association between profilin and N-WASP is required for N-WASP-induced efficient microspike elongation. Moreover, we succeeded in reconstituting microspike formation in permeabilized cells using profilin I combined with N-WASP and its regulator, Cdc42. These findings provide the first evidence that profilin is a key molecule linking a signaling network to rapid actin polymerization in microspike formation.
Collapse
Affiliation(s)
- S Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
216
|
Sin WC, Chen XQ, Leung T, Lim L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol Cell Biol 1998; 18:6325-39. [PMID: 9774649 PMCID: PMC109219 DOI: 10.1128/mcb.18.11.6325] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The regulation of morphological changes in eukaryotic cells is a complex process involving major components of the cytoskeleton including actin microfilaments, microtubules, and intermediate filaments (IFs). The putative effector of RhoA, RhoA-binding kinase alpha (ROKalpha), is a serine/threonine kinase that has been implicated in the reorganization of actin filaments and in myosin contractility. Here, we show that ROKalpha also directly affects the structural integrity of IFs. Overexpression of active ROKalpha, like that of RhoA, caused the collapse of filamentous vimentin, a type III IF. A RhoA-binding-deficient, kinase-inactive ROKalpha inhibited the collapse of vimentin IFs induced by RhoA in HeLa cells. In vitro, ROKalpha bound and phosphorylated vimentin at its head-rod domain, thereby inhibiting the assembly of vimentin. ROKalpha colocalized predominantly with the filamentous vimentin network, which remained intact in serum-starved cells. Treatment of cells with vinblastine, a microtubule-disrupting agent, also resulted in filamentous vimentin collapse and concomitant ROKalpha translocation to the cell periphery. ROKalpha translocation did not occur when the vimentin network remained intact in vinblastine-treated cells at 4 degreesC or in the presence of the dominant-negative RhoAN19 mutant. Transient translocation of ROKalpha was also observed in cells subjected to heat shock, which caused the disassembly of the vimentin network. Thus, the translocation of ROKalpha to the cell periphery upon overexpression of RhoAV14 or growth factor treatment is associated with disassembly of vimentin IFs. These results indicate that Rho effectors known to act on microfilaments may be involved in regulating the assembly of IFs. Vimentin when phosphorylated also exhibits reduced affinity for the inactive ROKalpha. The translocation of ROKalpha from IFs to the cell periphery upon action by activated RhoA and ROKalpha suggests that ROKalpha may initiate its own cascade of activation.
Collapse
Affiliation(s)
- W C Sin
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
217
|
Neudauer CL, Joberty G, Tatsis N, Macara IG. Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr Biol 1998; 8:1151-60. [PMID: 9799731 DOI: 10.1016/s0960-9822(07)00486-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Rho-family GTPases have central roles in cytoskeletal organization, proliferation, differentiation and apoptosis. Multiple factors possessing overlapping specificities for Rho GTPases have been identified. The Rho GTPases Cdc42 and Rac share many regulators and effectors, yet produce different phenotypes when expressed as gain-of-function mutants in cells. The Rho-family member TC10 has remained almost completely uncharacterized, so it was of interest to determine whether TC10 has unique cellular effects and interacts with the same targets as Cdc42 and Rac. RESULTS A gain-of-function TC10 mutant protein expressed in fibroblasts induced cell rounding, loss of stress fibers and formation of peripheral extensions. The extensions were longer than those induced by the analogous Cdc42 mutant protein. Cells expressing TC10 also possessed fewer membrane ruffles and stress fibers than those expressing Cdc42. TC10 mRNA was most highly expressed in heart and skeletal muscle. The GTPase activity of TC10 was lower than that of Cdc42, and TC10 possessed a lower affinity for, but greater responsiveness to, the p50Rho GTPase-activating protein (p50RhoGAP) than did Cdc42. TC10 stimulated Jun N-terminal kinase (JNK) and p21-activated kinase (PAK) activities and interacted with a set of effectors (alpha-, beta- and gammaPAK, MRCKalpha/beta, MLK2, N-WASP and MSE55) that overlaps with those for Cdc42 and Rac. TC10 did not interact with MLK3 or WASP, and interacted only weakly with ACK-1. CONCLUSIONS TC10 possesses distinct features, but exhibits a phenotype most closely related to that of Cdc42. It interacts with a similar subset of effectors to Cdc42 but not with MLK3, WASP or ACK-1. It is regulated differentially by p50RhoGAP.
Collapse
Affiliation(s)
- C L Neudauer
- Center for Cell Signaling University of Virginia Charlottesville, Virginia, 22908, USA
| | | | | | | |
Collapse
|
218
|
Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T, Bito H, Ishizaki T, Narumiya S. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 1998; 394:491-4. [PMID: 9697773 DOI: 10.1038/28873] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During mitosis, a ring containing actin and myosin appears beneath the equatorial surface of animal cells. This ring then contracts, forms a cleavage furrow and divides the cell, a step known as cytokinesis. The two daughter cells often remain connected by an intercellular bridge which contains a refringent structure known as the midbody. How the appearance of this ring is regulated is unclear, although the small GTPase Rho, which controls the formation of actin structures, is known to be essential. Protein kinases are also thought to participate in cytokinesis. We now show that a splice variant of a Rho target protein, named citron, contains a protein kinase domain that is related to the Rho-associated kinases ROCK14 and ROK, which regulate myosin-based contractility. Citron kinase localizes to the cleavage furrow and midbody of HeLa cells; Rho is also localized in the midbody. We find that overexpression of citron mutants results in the production of multinucleate cells and that a kinase-active mutant causes abnormal contraction during cytokinesis. We propose that citron kinase regulates cytokinesis at a step after Rho in the contractile process.
Collapse
Affiliation(s)
- P Madaule
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 1998; 18:2153-63. [PMID: 9528787 PMCID: PMC121452 DOI: 10.1128/mcb.18.4.2153] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AlphaPAK in a constitutively active form can exert morphological effects (E. Manser, H.-Y. Huang, T.-H. Loo, X.-Q. Chen, J.-M. Dong, T. Leung, and L. Lim, Mol. Cell. Biol. 17:1129-1143, 1997) resembling those of Cdc42G12V. PAK family kinases, conserved from yeasts to humans, are directly activated by Cdc42 or Rac1 through interaction with a conserved N-terminal motif (corresponding to residues 71 to 137 in alphaPAK). alphaPAK mutants with substitutions in this motif that resulted in severely reduced Cdc42 binding can be recruited normally to Cdc42G12V-driven focal complexes. Mutation of residues in the C-terminal portion of the motif (residues 101 to 137), though not affecting Cdc42 binding, produced a constitutively active kinase, suggesting this to be a negative regulatory region. Indeed, a 67-residue polypeptide encoding alphaPAK83-149 potently inhibited GTPgammaS-bound Cdc42-mediated kinase activation of both alphaPAK and betaPAK. Coexpression of this PAK inhibitor with Cdc42G12V prevented the formation of peripheral actin microspikes and associated loss of stress fibers normally induced by the p21. Coexpression of PAK inhibitor with Rac1G12V also prevented loss of stress fibers but not ruffling induced by the p21. Coexpression of alphaPAK83-149 completely blocked the phenotypic effects of hyperactive alphaPAKL107F in promoting dissolution of focal adhesions and actin stress fibers. These results, coupled with previous observations with constitutively active PAK, demonstrate that these kinases play an important role downstream of Cdc42 and Rac1 in cytoskeletal reorganization.
Collapse
Affiliation(s)
- Z S Zhao
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|