201
|
Thomas DL, Lock M, Zabolotny JM, Mohan BR, Fraser NW. The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol 2002; 76:532-40. [PMID: 11752144 PMCID: PMC136830 DOI: 10.1128/jvi.76.2.532-540.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) 2-kb latency-associated transcript (LAT) is a stable intron, which accumulates in cells both lytically and latently infected with HSV-1. We have used a tetracycline-repressible expression system to determine the half-life of the 2-kb LAT RNA intron in the human neuroblastoma cell line SY5Y. Using Northern hybridization analyses of RNA isolated from transiently transfected SY5Y cells over time after repression of LAT expression, we measured the half-life of the 2-kb LAT to be approximately 24 h. Thus, unlike typical introns that are rapidly degraded in a matter of seconds following excision, the 2-kb LAT intron has a half-life similar to those of some of the more stable cellular mRNAs. Furthermore, a similar half-life was measured for the 2-kb LAT in transiently transfected nonneuronal monkey COS-1 cells, suggesting that the stability of the 2-kb LAT is neither cell type nor species specific. Previously, we found that the determinant responsible for the unusual stability of the 2-kb LAT maps to the 3' terminus of the intron. At this site is a nonconsensus intron branch point located adjacent to a predicted stem-loop structure that is hypothesized to prevent debranching by cellular enzymes. Here we show that mutations which alter the predicted stem-loop structure, such that branching is redirected, either reduce or abolish the stability of the 2-kb LAT intron.
Collapse
Affiliation(s)
- Darby L Thomas
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
202
|
Zanier K, Luyten I, Crombie C, Muller B, Schümperli D, Linge JP, Nilges M, Sattler M. Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression. RNA (NEW YORK, N.Y.) 2002; 8:29-46. [PMID: 11871659 PMCID: PMC1370228 DOI: 10.1017/s1355838202014061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.
Collapse
Affiliation(s)
- Katia Zanier
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Dominski Z, Erkmann JA, Yang X, Sànchez R, Marzluff WF. A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3'-end processing. Genes Dev 2002; 16:58-71. [PMID: 11782445 PMCID: PMC155312 DOI: 10.1101/gad.932302] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The stem-loop binding protein (SLBP) is the posttranscriptional regulator of histone mRNA in metazoan cells. SLBP binds histone pre-mRNAs and facilitates 3'-end processing by promoting stable association of U7 snRNP with the pre-mRNA. To identify other factors involved in histone pre-mRNA processing, we used a modified yeast two-hybrid assay in which SLBP and its RNA target were coexpressed as bait. A novel zinc finger protein, hZFP100, which interacts with the SLBP/RNA complex but not with free SLBP, was cloned. The interaction requires regions of SLBP that are important for histone pre-mRNA processing. Antibodies to hZFP100 precipitate U7 snRNA, and expression of hZFP100 in Xenopus oocytes stimulates processing of histone pre-mRNA, showing that hZFP100 is a component of the processing machinery.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
204
|
DeJong ES, Marzluff WF, Nikonowicz EP. NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein. RNA (NEW YORK, N.Y.) 2002; 8:83-96. [PMID: 11871662 PMCID: PMC1370231 DOI: 10.1017/s1355838202013869] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism and regulation. We have determined the structure of the 26-nt sequence by multidimensional NMR spectroscopy. There is a 16-nt stem-loop motif, with a conserved 6-bp stem and a 4-nt loop. The loop is closed by a conserved U.A base pair that terminates the canonical A-form stem. The pyrimidine-rich 4-nt loop, UUUC, is well organized with the three uridines stacking on the helix, and the fourth base extending across the major groove into the solvent. The flanking nucleotides at the base of the hairpin stem do not assume a unique conformation, despite the fact that the 5' flanking nucleotides are a critical component of the SLBP binding site.
Collapse
Affiliation(s)
- Eric S DeJong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
205
|
Keene JD. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci U S A 2001; 98:7018-24. [PMID: 11416181 PMCID: PMC34616 DOI: 10.1073/pnas.111145598] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following transcription and splicing, each mRNA of a mammalian cell passes into the cytoplasm where its fate is in the hands of a complex network of ribonucleoproteins (mRNPs). The success or failure of a gene to be expressed depends on the performance of this mRNP infrastructure. The entry, gating, processing, and transit of each mRNA through an mRNP network helps determine the composition of a cell's proteome. The machinery that regulates storage, turnover, and translational activation of mRNAs is not well understood, in part, because of the heterogeneous nature of mRNPs. Recently, subsets of cellular mRNAs clustered as members of mRNP complexes have been identified by using antibodies reactive with RNA-binding proteins, including ELAV/Hu, eIF-4E, and poly(A)-binding proteins. Cytoplasmic ELAV/Hu proteins are involved in the stability and translation of early response gene (ERG) transcripts and are expressed predominately in neurons. mRNAs recovered from ELAV/Hu mRNP complexes were found to have similar sequence elements, suggesting a common structural linkage among them. This approach opens the possibility of identifying transcripts physically clustered in vivo that may have similar fates or functions. Moreover, the proteins encoded by physically organized mRNAs may participate in the same biological process or structural outcome, not unlike operons and their polycistronic mRNAs do in prokaryotic organisms. Our goal is to understand the organization and flow of genetic information on an integrative systems level by analyzing the collective properties of proteins and mRNAs associated with mRNPs in vivo.
Collapse
Affiliation(s)
- J D Keene
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
206
|
Abstract
The regulation of mRNA decay is a major control point in gene expression. The stability of a particular mRNA is controlled by specific interactions between its structural elements and RNA-binding proteins that can be general or mRNA-specific. Regulated mRNA stability is achieved through fluctuations in half-lives in response to developmental or environmental stimuli like nutrient levels, cytokines, hormones and temperature shifts as well as environmental stresses like hypoxia, hypocalcemia, viral infection, and tissue injury. Furthermore, in specific disorders like some forms of neoplasia, thalassemia and Alzheimer's disease, deregulated mRNA stability can lead to the aberrant accumulation of mRNAs and the proteins they encode. This review presents a discussion of some recently identified examples of regulated and deregulated mRNA stability in order to illustrate the diversity of genes regulated by alterations in the degradation rates of their mRNAs.
Collapse
Affiliation(s)
- J Guhaniyogi
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, 08854, Piscataway, NJ, USA
| | | |
Collapse
|
207
|
Dominski Z, Erkmann JA, Greenland JA, Marzluff WF. Mutations in the RNA binding domain of stem-loop binding protein define separable requirements for RNA binding and for histone pre-mRNA processing. Mol Cell Biol 2001; 21:2008-17. [PMID: 11238936 PMCID: PMC86798 DOI: 10.1128/mcb.21.6.2008-2017.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of replication-dependent histone genes at the posttranscriptional level is controlled by stem-loop binding protein (SLBP). One function of SLBP is to bind the stem-loop structure in the 3' untranslated region of histone pre-mRNAs and facilitate 3' end processing. Interaction of SLBP with the stem-loop is mediated by the centrally located RNA binding domain (RBD). Here we identify several highly conserved amino acids in the RBD mutation of which results in complete or substantial loss of SLBP binding activity. We also identify residues in the RBD which do not contribute to binding to the stem-loop RNA but instead are required for efficient recruitment of U7 snRNP to histone pre-mRNA. Recruitment of the U7 snRNP to the pre-mRNA also depends on the 20-amino-acid region located immediately downstream of the RBD. A critical region of the RBD contains the sequence YDRY. The tyrosines are required for RNA binding, and the DR dipeptide is essential for processing but not for RNA binding. It is likely that the RBD of SLBP interacts directly with both the stem-loop RNA and other processing factor(s), most likely the U7 snRNP, to facilitate histone pre-mRNA processing.
Collapse
Affiliation(s)
- Z Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
208
|
Sullivan E, Santiago C, Parker ED, Dominski Z, Yang X, Lanzotti DJ, Ingledue TC, Marzluff WF, Duronio RJ. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev 2001; 15:173-87. [PMID: 11157774 PMCID: PMC312608 DOI: 10.1101/gad.862801] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem-loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3' end. Stem-loop-binding protein (SLBP) binds to the histone mRNA 3' end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3' ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3' end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle.
Collapse
Affiliation(s)
- E Sullivan
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Battle DJ, Doudna JA. The stem-loop binding protein forms a highly stable and specific complex with the 3' stem-loop of histone mRNAs. RNA (NEW YORK, N.Y.) 2001; 7:123-32. [PMID: 11214174 PMCID: PMC1370062 DOI: 10.1017/s1355838201001820] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Replication-dependent histone mRNAs end in a highly conserved 26-nt stem-loop structure. The stem-loop binding protein (SLBP), an evolutionarily conserved protein with no known homologs, interacts with the stem-loop in both the nucleus and cytoplasm and mediates nuclear-cytoplasmic transport as well as 3'-end processing of the pre-mRNA by the U7 snRNP. Here, we examined the affinity and specificity of the SLBP-RNA interaction. Nitrocellulose filter-binding experiments showed that the apparent equilibrium dissociation constant (Kd) between purified SLBP and the stem-loop RNA is 1.5 nM. Binding studies with a series of stem-loop variants demonstrated that conserved residues in the stem and loop, as well as the 5' and 3' flanking regions, are required for efficient protein recognition. Deletion analysis showed that 3 nt 5' of the stem and 1 nt 3' of the stem contribute to the binding energy. These data reveal that the high affinity complex between SLBP and the RNA involves sequence-specific contacts to the loop and the top of the stem, as well the base of the stem and its immediate flanking sequences. Together, these results suggest a novel mode of protein-RNA recognition that forms the core of a ribonucleoprotein complex central to the regulation of histone gene expression.
Collapse
Affiliation(s)
- D J Battle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|