201
|
Eriksen RS, Mitarai N, Sneppen K. On Phage Adsorption to Bacterial Chains. Biophys J 2020; 119:1896-1904. [PMID: 33069271 PMCID: PMC7677248 DOI: 10.1016/j.bpj.2020.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
Bacteria often arrange themselves in various spatial configurations, which changes how they interact with their surroundings. In this work, we investigate how the structure of the bacterial arrangements influences the adsorption of bacteriophages. We quantify how the adsorption rate scales with the number of bacteria in the arrangement and show that the adsorption rates for microcolonies (increasing with exponent ∼1/3) and bacterial chains (increasing with exponent ∼0.5-0.8) are substantially lower than for well-mixed bacteria (increasing with exponent 1). We further show that, after infection, the spatially clustered arrangements reduce the effective burst size by more than 50% and cause substantial superinfections in a very short time interval after phage lysis.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
202
|
Roy D, Huguet KT, Grenier F, Burrus V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation. Nucleic Acids Res 2020; 48:8815-8827. [PMID: 32556263 PMCID: PMC7498323 DOI: 10.1093/nar/gkaa518] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redβ and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance.
Collapse
Affiliation(s)
- David Roy
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Kevin T Huguet
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Frédéric Grenier
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| |
Collapse
|
203
|
Gurung D, Blumenthal RM. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. MICROBIOLOGY-SGM 2020; 166:1047-1064. [PMID: 33085588 DOI: 10.1099/mic.0.000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
Collapse
Affiliation(s)
- Deepti Gurung
- Present address: Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA.,Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| |
Collapse
|
204
|
Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. Two Lineages of Pseudomonas aeruginosa Filamentous Phages: Structural Uniformity over Integration Preferences. Genome Biol Evol 2020; 12:1765-1781. [PMID: 32658245 PMCID: PMC7549136 DOI: 10.1093/gbe/evaa146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa filamentous (Pf) bacteriophages are important factors contributing to the pathogenicity of this opportunistic bacterium, including biofilm formation and suppression of bacterial phagocytosis by macrophages. In addition, the capacity of Pf phages to form liquid crystal structures and their high negative charge density makes them potent sequesters of cationic antibacterial agents, such as aminoglycoside antibiotics or host antimicrobial peptides. Therefore, Pf phages have been proposed as a potential biomarker for risk of antibiotic resistance development. The majority of studies describing biological functions of Pf viruses have been performed with only three of them: Pf1, Pf4, and Pf5. However, our analysis revealed that Pf phages exist as two evolutionary lineages (I and II), characterized by substantially different structural/morphogenesis properties, despite sharing the same integration sites in the host chromosomes. All aforementioned model Pf phages are members of the lineage I. Hence, it is reasonable to speculate that their interactions with P. aeruginosa and impact on its pathogenicity may be not completely extrapolated to the lineage II members. Furthermore, in order to organize the present numerical nomenclature of Pf phages, we propose a more informative approach based on the insertion sites, that is, Pf-tRNA-Gly, -Met, -Sec, -tmRNA, and -DR (direct repeats), which are fully compatible with one of five types of tyrosine integrases/recombinases XerC/D carried by these viruses. Finally, we discuss possible evolutionary mechanisms behind this division and consequences from the perspective of virus-virus, virus-bacterium, and virus-human interactions.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| |
Collapse
|
205
|
All living cells are cognitive. Biochem Biophys Res Commun 2020; 564:134-149. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Collapse
|
206
|
Structure of the space of taboo-free sequences. J Math Biol 2020; 81:1029-1057. [PMID: 32940748 PMCID: PMC7560954 DOI: 10.1007/s00285-020-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/19/2020] [Indexed: 11/29/2022]
Abstract
Models of sequence evolution typically assume that all sequences are possible. However, restriction enzymes that cut DNA at specific recognition sites provide an example where carrying a recognition site can be lethal. Motivated by this observation, we studied the set of strings over a finite alphabet with taboos, that is, with prohibited substrings. The taboo-set is referred to as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {T}$$\end{document}T and any allowed string as a taboo-free string. We consider the so-called Hamming graph \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T), whose vertices are taboo-free strings of length n and whose edges connect two taboo-free strings if their Hamming distance equals one. Any (random) walk on this graph describes the evolution of a DNA sequence that avoids taboos. We describe the construction of the vertex set of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T). Then we state conditions under which \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T) and its suffix subgraphs are connected. Moreover, we provide an algorithm that determines if all these graphs are connected for an arbitrary \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {T}$$\end{document}T. As an application of the algorithm, we show that about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$87\%$$\end{document}87% of bacteria listed in REBASE have a taboo-set that induces connected taboo-free Hamming graphs, because they have less than four type II restriction enzymes. On the other hand, four properly chosen taboos are enough to disconnect one suffix subgraph, and consequently connectivity of taboo-free Hamming graphs could change depending on the composition of restriction sites.
Collapse
|
207
|
Eriksen RS, Krishna S. Defence versus growth in a hostile world: lessons from phage and bacteria. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201118. [PMID: 33047060 PMCID: PMC7540767 DOI: 10.1098/rsos.201118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Bacterial communities are often highly diverse with several closely related species (or strains) coexisting together. These bacteria compete for resources and the competitive exclusion principle predicts that all but the fastest-growing bacteria will go extinct. When exposed to phage, it is predicted that bacterial strains with restriction-modification (RM) systems can circumvent the competitive exclusion principle and reach diversity of the order of the phage burst size. We show that with a trade-off between bacterial growth rates and the strength of their RM systems, the diversity of such an ecosystem can further increase several fold beyond the burst size limit. Moreover, we find that the ratio of the growth rate of a bacterial strain to the imperfection of its RM system is an excellent predictor of (i) whether the strain will go extinct or not, and (ii) the biomass of the strain if it survives. In contrast, the growth rate alone is not a determinant of either of these properties. Our work provides a quantitative example of a model ecosystem where the fitness of a species is determined not by growth rate, but by a trade-off between growth and defence against predators.
Collapse
Affiliation(s)
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
208
|
Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther 2020; 42:1659-1680. [DOI: 10.1016/j.clinthera.2020.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|
209
|
Type II Restriction-Modification System from Gardnerella vaginalis ATCC 14018. Pathogens 2020; 9:pathogens9090703. [PMID: 32867033 PMCID: PMC7559349 DOI: 10.3390/pathogens9090703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Intensive horizontal gene transfer may generate diversity and heterogeneity within the genus Gardnerella. Restriction-modification (R-M) systems and CRISPR-Cas are the principal defense tools against foreign DNA in bacteria. Nearly half of the tested Gardnerella spp. isolates harbored the CRISPR-Cas system. Several putative R-M systems of Gardnerella spp. strains were identified in the REBASE database. However, there was no experimental evidence for restriction endonuclease (REase) activity in the isolates. We showed that G. vaginalis strain ATCC 14018 contains the REase R.Gva14018I, which recognizes GGCC and most probably generates blunt ends on cleavage. Bioinformatics evidence and the activity of recombinant methyltransferase M.Gva14018I in vivo indicate that ATCC 14018 possesses a HaeIII-like R-M system. The truncated R.Gva14018I-4 lacking the C-terminal region was expressed in Escherichia coli and displayed wild-type REase specificity. Polyclonal antibodies against R.Gva14018I-4 detected the wild-type REase in the cell lysate of ATCC 14018. The cofactor requirements for activity and bioinformatics analysis indicated that R.Gva14018I belongs to the PD-(D/E)XK family of REases. The REase-like activity was observed in 5 of 31 tested Gardnerella spp. strains, although none of these matched the DNA digestion pattern of R.Gva14018I.
Collapse
|
210
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
211
|
Zhou Y, Tian D, Tang Y, Yu L, Huang Y, Li G, Li M, Wang Y, Yang Z, Poirel L, Jiang X. High-risk KPC-producing Klebsiella pneumoniae lack type I R-M systems. Int J Antimicrob Agents 2020; 56:106050. [DOI: 10.1016/j.ijantimicag.2020.106050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022]
|
212
|
Yano H, Alam MZ, Rimbara E, Shibata TF, Fukuyo M, Furuta Y, Nishiyama T, Shigenobu S, Hasebe M, Toyoda A, Suzuki Y, Sugano S, Shibayama K, Kobayashi I. Networking and Specificity-Changing DNA Methyltransferases in Helicobacter pylori. Front Microbiol 2020; 11:1628. [PMID: 32765461 PMCID: PMC7379913 DOI: 10.3389/fmicb.2020.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic DNA base methylation plays important roles in gene expression regulation. We here describe a gene expression regulation network consisting of many DNA methyltransferases each frequently changing its target sequence-specificity. Our object Helicobacter pylori, a bacterium responsible for most incidence of stomach cancer, carries a large and variable repertoire of sequence-specific DNA methyltransferases. By creating a dozen of single-gene knockout strains for the methyltransferases, we revealed that they form a network controlling methylome, transcriptome and adaptive phenotype sets. The methyltransferases interact with each other in a hierarchical way, sometimes regulated positively by one methyltransferase but negatively with another. Motility, oxidative stress tolerance and DNA damage repair are likewise regulated by multiple methyltransferases. Their regulation sometimes involves translation start and stop codons suggesting coupling of methylation, transcription and translation. The methyltransferases frequently change their sequence-specificity through gene conversion of their target recognition domain and switch their target sets to remodel the network. The emerging picture of a metamorphosing gene regulation network, or firework, consisting of epigenetic systems ever-changing their specificity in search for adaptation, provides a new paradigm in understanding global gene regulation and adaptive evolution.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Md Zobaidul Alam
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Emiko Rimbara
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | | | | | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Mitsuyasu Hasebe
- National Institute for Basic Biology (NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Diseases, School of Medicine, Kyorin University, Mitaka, Japan.,Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
213
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
214
|
Wang HC, Lin SJ, Mohapatra A, Kumar R, Wang HC. A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms 2020; 8:E996. [PMID: 32635298 PMCID: PMC7409025 DOI: 10.3390/microorganisms8070996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special Vibrio parahaemolyticus strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, pirAvp and pirBvp, targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors. However, in addition to pirAvp and pirBvp, pVA1 also contains about ~90 other open-reading frames (ORFs), which may encode functional proteins. NCBI BLASTp annotations of the functional roles of 40 pVA1 genes reveal transposases, conjugation factors, and antirestriction proteins that are involved in horizontal gene transfer, plasmid transmission, and maintenance, as well as components of type II and III secretion systems that may facilitate the toxic effects of pVA1-containing Vibrio spp. There is also evidence of a post-segregational killing (PSK) system that would ensure that only pVA1 plasmid-containing bacteria could survive after segregation. Here, in this review, we assess the functional importance of these pVA1 genes and consider those which might be worthy of further study.
Collapse
Affiliation(s)
- Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Arpita Mohapatra
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Mits School of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
215
|
Evseev P, Sykilinda N, Gorshkova A, Kurochkina L, Ziganshin R, Drucker V, Miroshnikov K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020; 12:E721. [PMID: 32635178 PMCID: PMC7412058 DOI: 10.3390/v12070721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| |
Collapse
|
216
|
Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2020; 117:14322-14330. [PMID: 32518115 DOI: 10.1073/pnas.2002933117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.
Collapse
|
217
|
Comparative Genomic Analysis Provides Insights into the Phylogeny, Resistome, Virulome, and Host Adaptation in the Genus Ewingella. Pathogens 2020; 9:pathogens9050330. [PMID: 32354059 PMCID: PMC7281767 DOI: 10.3390/pathogens9050330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Ewingella americana is a cosmopolitan bacterial pathogen that has been isolated from many hosts. Here, we sequenced a high-quality genome of E. americana B6-1 isolated from Flammulina filiformis, an important cultivated mushroom, performed a comparative genomic analysis with four other E. americana strains from various origins, and tested the susceptibility of B6-1 to antibiotics. The genome size, predicted genes, and GC (guanine-cytosine) content of B6-1 was 4.67 Mb, 4301, and 53.80%, respectively. The origin of the strains did not significantly affect the phylogeny, but mobile genetic elements shaped the evolution of the genus Ewingella. The strains encoded a set of common genes for type secretion, virulence effectors, CAZymes, and toxins required for pathogenicity in all hosts. They also had antibiotic resistance, pigments to suppress or evade host defense responses, as well as genes for adaptation to different environmental conditions, including temperature, oxidation, and nutrients. These findings provide a better understanding of the virulence, antibiotic resistance, and host adaptation strategies of Ewingella, and they also contribute to the development of effective control strategies.
Collapse
|
218
|
Trancoso I, Morimoto R, Boehm T. Co-evolution of mutagenic genome editors and vertebrate adaptive immunity. Curr Opin Immunol 2020; 65:32-41. [PMID: 32353821 PMCID: PMC7768089 DOI: 10.1016/j.coi.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
The adaptive immune systems of all vertebrates rely on self-DNA mutating enzymes to assemble their antigen receptors in lymphocytes of their two principal lineages. In jawed vertebrates, the RAG1/2 recombinase directs V(D)J recombination of B cell and T cell receptor genes, whereas the activation-induced cytidine deaminase AID engages in their secondary modification. The recombination activating genes (RAG) 1 and 2 evolved from an ancient transposon-encoded genome modifier into a self-DNA mutator serving adaptive immunity; this was possible as a result of domestication, involving several changes in RAG1 and RAG2 proteins suppressing transposition and instead facilitating-coupled cleavage and recombination. By contrast, recent evidence supports the notion that the antigen receptors of T-like and B-like cells of jawless vertebrates, designated variable lymphocyte receptors (VLRs), are somatically assembled through a process akin to gene conversion that is believed to be dependent on the activities of distant relatives of AID, the cytidine deaminases CDA1 and CDA2, respectively. It appears, therefore, that the precursors of AID and CDAs underwent a domestication process that changed their target range from foreign nucleic acids to self-DNA; this multi-step evolutionary process ensured that the threat to host genome integrity was minimized. Here, we review recent findings illuminating the evolutionary steps associated with the domestication of the two groups of genome editors, RAG1/2 and cytidine deaminases, indicating how they became the driving forces underlying the emergence of vertebrate adaptive immune systems.
Collapse
Affiliation(s)
- Inês Trancoso
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
219
|
Tao X, Xu T, Kempher ML, Liu J, Zhou J. Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metab Eng 2020; 60:110-118. [PMID: 32294528 DOI: 10.1016/j.ymben.2020.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022]
Abstract
Lignocellulose has been used for production of sustainable biofuels and value-added chemicals. However, the low-efficiency bioconversion of lignocellulose greatly contributes to a high production cost. Here, we employed CRISPR-Cas9 editing to improve cellulose degradation efficiency by editing a regulatory element of the cip-cel gene cluster in Clostridium cellulolyticum. Insertion of a synthetic promoter (P4) and an endogenous promoter (P2) in the mspI-deficient parental strain (Δ2866) created chromosomal integrants, P4-2866 and P2-2866, respectively. Both engineered strains increased the transcript abundance of downstream polycistronic genes and enhanced in vitro cellulolytic activities of isolated cellulosomes. A high cellulose load of 20 g/L suppressed cellulose degradation in the parental strain in the first 150 h fermentation; whereas P4-2866 and P2-2866 hydrolyzed 29% and 53% of the cellulose, respectively. Both engineered strains also demonstrated a greater growth rate and a higher cell biomass yield. Interestingly, the Δ2866 parental strain demonstrated better thermotolerance than the wildtype strain, and promoter insertion further enhanced thermotolerance. Similar improvements in cell growth and cellulose degradation were reproduced by promoter insertion in the wildtype strain and a lactate production-defective mutant (LM). P2 insertion in LM increased ethanol titer by 65%. Together, the editing of regulatory elements of catabolic gene clusters provides new perspectives on improving cellulose bioconversion in microbes.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Tao Xu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jiantao Liu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
220
|
Bacteriophage-Insensitive Mutants of Antimicrobial-Resistant Salmonella Enterica are Altered in their Tetracycline Resistance and Virulence in Caco-2 Intestinal Cells. Int J Mol Sci 2020; 21:ijms21051883. [PMID: 32164202 PMCID: PMC7084636 DOI: 10.3390/ijms21051883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages have shown promise as therapeutic alternatives to antibiotics for the control of infectious bacteria, including the human pathogen Salmonella. However, the development of effective phage-based applications requires the elucidation of key interactions between phages and target hosts, particularly since host resistance to phage is inevitable. Little is known about the alteration of host phenotypes following the development of resistance to phage. The aim of this study is to evaluate the antibiotic susceptibility and virulence of a Salmonella isolate following the development of resistance to bacteriophage SI1. We observed enhanced susceptibility to tetracycline and decreased invasion capacity in a differentiated Caco-2 intestinal cell line. Whole genome sequence analysis revealed an array of mutations, most notably, truncations in vgrG1_2, a core gene involved in Type VI secretion and mutations in the lipopolysaccharide, thereby indicating the plausible attachment site of phage SI1. These findings shed light on understanding the underlying mechanism for phage immunity within the host. Importantly, we reveal an associated genetic cost to the bacterial host with developing resistance to phages. Taken together, these results will aid in advancing strategies to delay or eliminate the development of host resistance when designing informed phage-based antimicrobials.
Collapse
|
221
|
Mastrorilli E, Petrin S, Orsini M, Longo A, Cozza D, Luzzi I, Ricci A, Barco L, Losasso C. Comparative genomic analysis reveals high intra-serovar plasticity within Salmonella Napoli isolated in 2005-2017. BMC Genomics 2020; 21:202. [PMID: 32131727 PMCID: PMC7057659 DOI: 10.1186/s12864-020-6588-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) is among the top serovars causing human infections in Italy, although it is relatively uncommon in other European countries; it is mainly isolated from humans and the environment, but neither the reservoir nor its route of infection are clearly defined. This serovar is characterized by high genomic diversity, and molecular evidences revealed important similarities with typhoidal serovars. RESULTS 179 S. Napoli genomes as well as 239 genomes of typhoidal and non-typhoidal serovars were analyzed in a comparative genomic study. Phylogenetic analysis and draft genome characterization in terms of Multi Locus Sequence Typing (MLST), plasmid replicons, Salmonella Pathogenicity Islands (SPIs), antimicrobial resistance genes (ARGs), phages, biocide and metal-tolerance genes confirm the high genetic variability of S. Napoli, also revealing a within-serovar phylogenetic structure more complex than previously known. Our work also confirms genomic similarity of S. Napoli to typhoidal serovars (S. Typhi and S. Paratyphi A), with S. Napoli samples clustering primarily according to ST, each being characterized by specific genomic traits. Moreover, two major subclades of S. Napoli can be clearly identified, with ST-474 being biphyletic. All STs span among isolation sources and years of isolation, highlighting the challenge this serovar poses to define its epidemiology and evolution. Altogether, S. Napoli strains carry less SPIs and less ARGs than other non-typhoidal serovars and seldom acquire plasmids. However, we here report the second case of an extended-spectrum β-lactamases (ESBLs) producing S. Napoli strain and the first cases of multidrug resistant (MDR) S. Napoli strains, all isolated from humans. CONCLUSIONS Our results provide evidence of genomic plasticity of S. Napoli, highlighting genomic similarity with typhoidal serovars and genomic features typical of non-typhoidal serovars, supporting the possibility of survival in different niches, both enteric and non-enteric. Presence of horizontally acquired ARGs and MDR profiles rises concerns regarding possible selective pressure exerted by human environment on this pathogen.
Collapse
Affiliation(s)
- Eleonora Mastrorilli
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
- Present address: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sara Petrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy.
| | - Alessandra Longo
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| | - Debora Cozza
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ida Luzzi
- Istituto Superiore di Sanità, Rome, Italy
| | - Antonia Ricci
- Istituto Zooprofilattico Sperimentale delle Venezie, Food Safety Department, Legnaro, Italy
| | - Lisa Barco
- Istituto Zooprofilattico Sperimentale delle Venezie, Food Safety Department, Legnaro, Italy
| | - Carmen Losasso
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| |
Collapse
|
222
|
Chen XJ, Zhang Z, Li YJ, Zhuo L, Sheng DH, Li YZ. Insights into the persistence and phenotypic effects of the endogenous and cryptic plasmid pMF1 in its host strain Myxococcus fulvus 124B02. FEMS Microbiol Ecol 2020; 96:5698802. [PMID: 31917409 DOI: 10.1093/femsec/fiaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/08/2020] [Indexed: 11/12/2022] Open
Abstract
Many endogenous plasmids carry no noticeable benefits for their bacterial hosts, and the persistence of these 'cryptic plasmids' and their functional impacts are mostly unclear. In this study, we investigated these uncertainties using the social bacterium Myxococcus fulvus 124B02 and its endogenous plasmid pMF1. pMF1 possesses diverse genes that originated from myxobacteria, suggesting a longstanding co-existence of the plasmid with various myxobacterial species. The curing of pMF1 from 124B02 had almost no phenotypic effects on the host. Laboratory evolution experiments showed that the 124B02 strain retained pMF1 when subcultured on dead Escherichia coli cells but lost pMF1 when subcultured on living E. coli cells or on casitone medium; these results indicated that the persistence of pMF1 in 124B02 was environment-dependent. Curing pMF1 caused the mutant to lose the ability to predate and develop fruiting bodies more quickly than the pMF1-containing strain after they were subcultured on dead E. coli cells, which indicated that the presence of pMF1 in M. fulvus 124B02 has some long-term effects on its host. The results provide some new insights into the persistence and impacts of cryptic plasmids in their natural bacterial cells.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
223
|
Tryjanowski P, Nowakowski JJ, Indykiewicz P, Andrzejewska M, Śpica D, Sandecki R, Mitrus C, Goławski A, Dulisz B, Dziarska J, Janiszewski T, Minias P, Świtek S, Tobolka M, Włodarczyk R, Szczepańska B, Klawe JJ. Campylobacter in wintering great tits Parus major in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7570-7577. [PMID: 31885068 DOI: 10.1007/s11356-019-07502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Domestic and wild mammals, domestic birds and particularly wild birds are considered to be reservoirs of many species of Enterobacteriaceae, and also important human enteric pathogens, e.g., the bacteria of the genus Campylobacter that occur in their digestive tracts. These species may be vectors of antimicrobial resistance dissemination in the environment, because they may have contact with an environment contaminated with antibiotics. Bird feeders have been suggested as potential dispersal centres between wild wintering birds whose feeding is supported by humans. Therefore, we checked for the presence of Campylobacter bacteria among great tits Parus major, the most common bird species on bird feeders in Poland. Samples (n = 787 cloacal swabs) were collected in urban and rural areas of Poland. Bacterial species were identified using multiplex PCR, and 23 (2.9%) positive tests for Campylobacter spp. were found; in ten samples, C. jejuni was detected. The odds ratio of Campylobacter infection in rural birds was over 2.5 times higher than urban birds. Ten samples with C. jejuni were tested for antibiotic resistance, and all were sensitive to azithromycin, erythromycin and gentamycin, while six isolates were resistant to tetracycline, and five were resistant to ciprofloxacin. Four Campylobacter isolates were resistant to both these antibiotics.
Collapse
Affiliation(s)
- Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
| | - Jacek J Nowakowski
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, University of Technology and Life Sciences, Ks. A. Kordeckiego 20, 85-225, Bydgoszcz, Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Dorota Śpica
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | | | - Cezary Mitrus
- Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-631, Wrocław, Poland
| | - Artur Goławski
- Department of Zoology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110, Siedlce, Poland
| | - Beata Dulisz
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Joanna Dziarska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Tomasz Janiszewski
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Stanisław Świtek
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Marcin Tobolka
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Radosław Włodarczyk
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Bernadeta Szczepańska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
224
|
Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-Assisted Genome of Candidatus Fukatsuia symbiotica; the Enigmatic "X-Type" Symbiont of Aphids. Genome Biol Evol 2020; 11:3510-3522. [PMID: 31725149 PMCID: PMC7145644 DOI: 10.1093/gbe/evz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia
| | | | | | | | | | | | | |
Collapse
|
225
|
Stenmark B, Harrison OB, Eriksson L, Anton BP, Fomenkov A, Roberts RJ, Tooming-Klunderud A, Bratcher HB, Bray JE, Thulin-Hedberg S, Maiden MCJ, Mölling P. Complete genome and methylome analysis of Neisseria meningitidis associated with increased serogroup Y disease. Sci Rep 2020; 10:3644. [PMID: 32108139 PMCID: PMC7046676 DOI: 10.1038/s41598-020-59509-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Invasive meningococcal disease (IMD) due to serogroup Y Neisseria meningitidis emerged in Europe during the 2000s. Draft genomes of serogroup Y isolates in Sweden revealed that although the population structure of these isolates was similar to other serogroup Y isolates internationally, a distinct strain (YI) and more specifically a sublineage (1) of this strain was responsible for the increase of serogroup Y IMD in Sweden. We performed single molecule real-time (SMRT) sequencing on eight serogroup Y isolates from different sublineages to unravel the genetic and epigenetic factors delineating them, in order to understand the serogroup Y emergence. Extensive comparisons between the serogroup Y sublineages of all coding sequences, complex genomic regions, intergenic regions, and methylation motifs revealed small point mutations in genes mainly encoding hypothetical and metabolic proteins, and non-synonymous variants in genes involved in adhesion, iron acquisition, and endotoxin production. The methylation motif CACNNNNNTAC was only found in isolates of sublineage 2. Only seven genes were putatively differentially expressed, and another two genes encoding hypothetical proteins were only present in sublineage 2. These data suggest that the serogroup Y IMD increase in Sweden was most probably due to small changes in genes important for colonization and transmission.
Collapse
Affiliation(s)
- Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | | | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Holly B Bratcher
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sara Thulin-Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
226
|
Wang HT, Xiao FH, Li GH, Kong QP. Identification of DNA N 6-methyladenine sites by integration of sequence features. Epigenetics Chromatin 2020; 13:8. [PMID: 32093759 PMCID: PMC7038560 DOI: 10.1186/s13072-020-00330-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/03/2020] [Indexed: 02/21/2023] Open
Abstract
Background An increasing number of nucleic acid modifications have been profiled with the development of sequencing technologies. DNA N6-methyladenine (6mA), which is a prevalent epigenetic modification, plays important roles in a series of biological processes. So far, identification of DNA 6mA relies primarily on time-consuming and expensive experimental approaches. However, in silico methods can be implemented to conduct preliminary screening to save experimental resources and time, especially given the rapid accumulation of sequencing data. Results In this study, we constructed a 6mA predictor, p6mA, from a series of sequence-based features, including physicochemical properties, position-specific triple-nucleotide propensity (PSTNP), and electron–ion interaction pseudopotential (EIIP). We performed maximum relevance maximum distance (MRMD) analysis to select key features and used the Extreme Gradient Boosting (XGBoost) algorithm to build our predictor. Results demonstrated that p6mA outperformed other existing predictors using different datasets. Conclusions p6mA can predict the methylation status of DNA adenines, using only sequence files. It may be used as a tool to help the study of 6mA distribution pattern. Users can download it from https://github.com/Konglab404/p6mA.
Collapse
Affiliation(s)
- Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, 650223, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, 650223, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming Key Laboratory of Healthy Aging Study, Kunming, 650223, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.
| |
Collapse
|
227
|
Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, Aung EE, Nugroho C, Roman-Reyna V, Burgos MR, Capistrano P, Dossa SG, Onaga G, Saloma C, Cruz CV, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. THE ISME JOURNAL 2020; 14:492-505. [PMID: 31666657 PMCID: PMC6976662 DOI: 10.1038/s41396-019-0545-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
Abstract
The impact of modern agriculture on the evolutionary trajectory of plant pathogens is a central question for crop sustainability. The Green Revolution replaced traditional rice landraces with high-yielding varieties, creating a uniform selection pressure that allows measuring the effect of such intervention. In this study, we analyzed a unique historical pathogen record to assess the impact of a major resistance gene, Xa4, in the population structure of Xanthomonas oryzae pv. oryzae (Xoo) collected in the Philippines in a span of 40 years. After the deployment of Xa4 in the early 1960s, the emergence of virulent pathogen groups was associated with the increasing adoption of rice varieties carrying Xa4, which reached 80% of the total planted area. Whole genomes analysis of a representative sample suggested six major pathogen groups with distinctive signatures of selection in genes related to secretion system, cell-wall degradation, lipopolysaccharide production, and detoxification of host defense components. Association genetics also suggested that each population might evolve different mechanisms to adapt to Xa4. Interestingly, we found evidence of strong selective sweep affecting several populations in the mid-1980s, suggesting a major bottleneck that coincides with the peak of Xa4 deployment in the archipelago. Our study highlights how modern agricultural practices facilitate the adaptation of pathogens to overcome the effects of standard crop improvement efforts.
Collapse
Affiliation(s)
- Ian Lorenzo Quibod
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Genelou Atieza-Grande
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Eula Gems Oreiro
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Denice Palmos
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Marian Hanna Nguyen
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sapphire Thea Coronejo
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ei Ei Aung
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cipto Nugroho
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Assessment Institute for Agricultural Technology Southeast Sulawesi, Indonesian Agency for Agricultural Research and Development, Jl. M. Yamin No. 89 Puwatu, Kendari, 93114, Indonesia
| | - Veronica Roman-Reyna
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria Ruby Burgos
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Pauline Capistrano
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sylvestre G Dossa
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Food and Agriculture Organization of the United Nations, Immeuble Bel Espace-Batterie IV, Libreville, Gabon
| | - Geoffrey Onaga
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cynthia Saloma
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Casiana Vera Cruz
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ricardo Oliva
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
228
|
Liu Q, Zhang H, Huang X. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. FEBS J 2020; 287:626-644. [PMID: 31730297 DOI: 10.1111/febs.15139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune defense systems, which are widely distributed in bacteria and Archaea, can provide sequence-specific protection against foreign DNA or RNA in some cases. However, the evolution of defense systems in bacterial hosts did not lead to the elimination of phages, and some phages carry anti-CRISPR genes that encode products that bind to the components mediating the defense mechanism and thus antagonize CRISPR-Cas immune systems of bacteria. Given the extensive application of CRISPR-Cas9 technologies in gene editing, in this review, we focus on the anti-CRISPR proteins (Acrs) that inhibit CRISPR-Cas systems for gene editing. We describe the discovery of Acrs in immune systems involving type I, II, and V CRISPR-Cas immunity, discuss the potential function of Acrs in inactivating type II and V CRISPR-Cas systems for gene editing and gene modulation, and provide an outlook on the development of important biotechnology tools for genetic engineering using Acrs.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Hongxia Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, China
| |
Collapse
|
229
|
The arms race between bacteria and their phage foes. Nature 2020; 577:327-336. [PMID: 31942051 DOI: 10.1038/s41586-019-1894-8] [Citation(s) in RCA: 501] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
Bacteria are under immense evolutionary pressure from their viral invaders-bacteriophages. Bacteria have evolved numerous immune mechanisms, both innate and adaptive, to cope with this pressure. The discovery and exploitation of CRISPR-Cas systems have stimulated a resurgence in the identification and characterization of anti-phage mechanisms. Bacteriophages use an extensive battery of counter-defence strategies to co-exist in the presence of these diverse phage defence mechanisms. Understanding the dynamics of the interactions between these microorganisms has implications for phage-based therapies, microbial ecology and evolution, and the development of new biotechnological tools. Here we review the spectrum of anti-phage systems and highlight their evasion by bacteriophages.
Collapse
|
230
|
Zhang Y, Zhang Z, Zhang H, Zhao Y, Zhang Z, Xiao J. PADS Arsenal: a database of prokaryotic defense systems related genes. Nucleic Acids Res 2020; 48:D590-D598. [PMID: 31620779 PMCID: PMC7145686 DOI: 10.1093/nar/gkz916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Defense systems are vital weapons for prokaryotes to resist heterologous DNA and survive from the constant invasion of viruses, and they are widely used in biochemistry investigation and antimicrobial drug research. So far, numerous types of defense systems have been discovered, but there is no comprehensive defense systems database to organize prokaryotic defense gene datasets. To fill this gap, we unveil the prokaryotic antiviral defense system (PADS) Arsenal (https://bigd.big.ac.cn/padsarsenal), a public database dedicated to gathering, storing, analyzing and visualizing prokaryotic defense gene datasets. The initial version of PADS Arsenal integrates 18 distinctive categories of defense system with the annotation of 6 600 264 genes retrieved from 63,701 genomes across 33 390 species of archaea and bacteria. PADS Arsenal provides various ways to retrieve defense systems related genes information and visualize them with multifarious function modes. Moreover, an online analysis pipeline is integrated into PADS Arsenal to facilitate annotation and evolutionary analysis of defense genes. PADS Arsenal can also visualize the dynamic variation information of defense genes from pan-genome analysis. Overall, PADS Arsenal is a state-of-the-art open comprehensive resource to accelerate the research of prokaryotic defense systems.
Collapse
Affiliation(s)
- Yadong Zhang
- National Genomics Data Center, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhewen Zhang
- National Genomics Data Center, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Zhang
- National Genomics Data Center, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Zhao
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Zaichao Zhang
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jingfa Xiao
- National Genomics Data Center, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
231
|
Comparative Analysis of Whole-Genome and Methylome Profiles of a Smooth and a Rough Mycobacterium abscessus Clinical Strain. G3-GENES GENOMES GENETICS 2020; 10:13-22. [PMID: 31719113 PMCID: PMC6945021 DOI: 10.1534/g3.119.400737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium abscessus is a fast growing Mycobacterium species mainly causing skin and respiratory infections in human. M. abscessus is resistant to numerous drugs, which is a major challenge for the treatment. In this study, we have sequenced the genomes of two clinical M. abscessus strains having rough and smooth morphology, using the single molecule real-time and Illumina HiSeq sequencing technology. In addition, we reported the first comparative methylome profiles of a rough and a smooth M. abscessus clinical strains. The number of N4-methylcytosine (4mC) and N6-methyladenine (6mA) modified bases obtained from smooth phenotype were two-fold and 1.6 fold respectively higher than that of rough phenotype. We have also identified 4 distinct novel motifs in two clinical strains and genes encoding antibiotic-modifying/targeting enzymes and genes associated with intracellular survivability having different methylation patterns. To our knowledge, this is the first report about genome-wide methylation profiles of M. abscessus strains and identification of a natural linear plasmid (15 kb) in this critical pathogen harboring methylated bases. The pan-genome analysis of 25 M. abscessus strains including two clinical strains revealed an open pan genome comprises of 7596 gene clusters. Likewise, structural variation analysis revealed that the genome of rough phenotype strain contains more insertions and deletions than the smooth phenotype and that of the reference strain. A total of 391 single nucleotide variations responsible for the non-synonymous mutations were detected in clinical strains compared to the reference genome. The comparative genomic analysis elucidates the genome plasticity in this emerging pathogen. Furthermore, the detection of genome-wide methylation profiles of M. abscessus clinical strains may provide insight into the significant role of DNA methylation in pathogenicity and drug resistance in this opportunistic pathogen.
Collapse
|
232
|
Huang T, Xiong T, Peng Z, Xiao YS, Liu ZG, Hu M, Xie MY. Genomic analysis revealed adaptive mechanism to plant-related fermentation of Lactobacillus plantarum NCU116 and Lactobacillus spp. Genomics 2020; 112:703-711. [DOI: 10.1016/j.ygeno.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/23/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
|
233
|
Gopinath A, Kulkarni M, Ahmed I, Chouhan OP, Saikrishnan K. The conserved aspartate in motif III of b family AdoMet-dependent DNA methyltransferase is important for methylation. J Biosci 2020; 45:10. [PMID: 31965988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases) are involved in diverse cellular functions. These enzymes show little sequence conservation but have a conserved structural fold. The DNA MTases have characteristic motifs that are involved in AdoMet binding, DNA target recognition and catalysis. Motif III of these MTases have a highly conserved acidic residue, often an aspartate, whose functional significance is not clear. Here, we report a mutational study of the residue in the β family MTase of the Type III restriction-modification enzyme EcoP15I. Replacement of this residue by alanine affects its methylation activity. We propose that this residue contributes to the affinity of the enzyme for AdoMet. Analysis of the structures of DNA, RNA and protein MTases reveal that the acidic residue is conserved in all of them, and interacts with N6 of the adenine moiety of AdoMet. Interestingly, in the SET-domain protein lysine MTases, which have a fold different from other AdoMet-dependent MTases, N6 of the adenine moiety is hydrogen bonded to the main chain carbonyl group of the histidine residue of the highly conserved motif III. Our study reveals the evolutionary conservation of a carbonyl group in DNA, RNA and protein AdoMet-dependent MTases for specific interaction by hydrogen bond with AdoMet, despite the lack of overall sequence conservation.
Collapse
Affiliation(s)
- Aathira Gopinath
- Division of Biology, Indian Institute of Science Education and Research, Pune 411 008, India
| | | | | | | | | |
Collapse
|
234
|
Monticolo F, Palomba E, Termolino P, Chiaiese P, de Alteriis E, Mazzoleni S, Chiusano ML. The Role of DNA in the Extracellular Environment: A Focus on NETs, RETs and Biofilms. FRONTIERS IN PLANT SCIENCE 2020; 11:589837. [PMID: 33424885 PMCID: PMC7793654 DOI: 10.3389/fpls.2020.589837] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
The capacity to actively release genetic material into the extracellular environment has been reported for bacteria, archaea, fungi, and in general, for microbial communities, but it is also described in the context of multicellular organisms, animals and plants. This material is often present in matrices that locate outside the cells. Extracellular matrices have important roles in defense response and disease in microbes, animal and plants cells, appearing as barrier against pathogen invasion or for their recognition. Specifically, neutrophils extracellular traps (NETs) in animals and root extracellular traps (RETs) in plants, are recognized to be important players in immunity. A growing amount of evidence revealed that the extracellular DNA, in these contexts, plays an active role in the defense action. Moreover, the protective role of extracellular DNA against antimicrobials and mechanical stress also appears to be confirmed in bacterial biofilms. In parallel, recent efforts highlighted different roles of self (homologous) and non-self (heterologous) extracellular DNA, paving the way to discussions on its role as a "Damage-associated molecular pattern" (DAMP). We here provide an evolutionary overview on extracellular DNA in extracellular matrices like RETs, NETs, and microbial biofilms, discussing on its roles and inferring on possible novel functionalities.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council, Portici, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | - Stefano Mazzoleni
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
- *Correspondence: Maria Luisa Chiusano,
| |
Collapse
|
235
|
Wang Y, Luo L, Li Q, Wang H, Wang Y, Sun H, Xu J, Lan R, Ye C. Genomic dissection of the most prevalent Listeria monocytogenes clone, sequence type ST87, in China. BMC Genomics 2019; 20:1014. [PMID: 31870294 PMCID: PMC6929445 DOI: 10.1186/s12864-019-6399-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 12/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Listeria monocytogenes consists of four lineages that occupy a wide variety of ecological niches. Sequence type (ST) 87 (serotype 1/2b), belonging to lineage I, is one of the most common STs isolated from food products, food associated environments and sporadic listeriosis in China. Here, we performed a comparative genomic analysis of the L. monocytogenes ST87 clone by sequencing 71 strains representing a diverse range of sources, different geographical locations and isolation years. Results The core genome and pan genome of ST87 contained 2667 genes and 3687 genes respectively. Phylogenetic analysis based on core genome SNPs divided the 71 strains into 10 clades. The clinical strains were distributed among multiple clades. Four clades contained strains from multiple geographic regions and showed high genetic diversity. The major gene content variation of ST87 genomes was due to putative prophages, with eleven hotspots of the genome that harbor prophages. All strains carry an intact CRISRP/Cas system. Two major CRISPR spacer profiles were found which were not clustered phylogenetically. A large plasmid of about 90 Kb, which carried heavy metal resistance genes, was found in 32.4% (23/71) of the strains. All ST87 strains harbored the Listeria pathogenicity island (LIPI)-4 and a unique 10-open read frame (ORF) genomic island containing a novel restriction-modification system. Conclusion Whole genome sequence analysis of L. monocytogenes ST87 enabled a clearer understanding of the population structure and the evolutionary history of ST87 L. monocytogenes in China. The novel genetic elements identified may contribute to its virulence and adaptation to different environmental niches. Our findings will be useful for the development of effective strategies for the prevention and treatment of listeriosis caused by this prevalent clone.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
236
|
Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor. Nucleic Acids Res 2019; 47:9542-9556. [PMID: 31372643 PMCID: PMC6765115 DOI: 10.1093/nar/gkz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Restriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Aleksandra Szczuka
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Leszek P Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
237
|
Crippen CS, Lee YJ, Hutinet G, Shajahan A, Sacher JC, Azadi P, de Crécy-Lagard V, Weigele PR, Szymanski CM. Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of Campylobacter Viruses. J Virol 2019; 93:e01111-19. [PMID: 31511377 PMCID: PMC6854489 DOI: 10.1128/jvi.01111-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Several reports have demonstrated that Campylobacter bacteriophage DNA is refractory to manipulation, suggesting that these phages encode modified DNA. The characterized Campylobacter jejuni phages fall into two phylogenetic groups within the Myoviridae: the genera Firehammervirus and Fletchervirus Analysis of genomic nucleosides from several of these phages by high-pressure liquid chromatography-mass spectrometry confirmed that 100% of the 2'-deoxyguanosine (dG) residues are replaced by modified bases. Fletcherviruses replace dG with 2'-deoxyinosine, while the firehammerviruses replace dG with 2'-deoxy-7-amido-7-deazaguanosine (dADG), noncanonical nucleotides previously described, but a 100% base substitution has never been observed to have been made in a virus. We analyzed the genome sequences of all available phages representing both groups to elucidate the biosynthetic pathway of these noncanonical bases. Putative ADG biosynthetic genes are encoded by the Firehammervirus phages and functionally complement mutants in the Escherichia coli queuosine pathway, of which ADG is an intermediate. To investigate the mechanism of DNA modification, we isolated nucleotide pools and identified dITP after phage infection, suggesting that this modification is made before nucleotides are incorporated into the phage genome. However, we were unable to observe any form of dADG phosphate, implying a novel mechanism of ADG incorporation into an existing DNA strand. Our results imply that Fletchervirus and Firehammervirus phages have evolved distinct mechanisms to express dG-free DNA.IMPORTANCE Bacteriophages are in a constant evolutionary struggle to overcome their microbial hosts' defenses and must adapt in unconventional ways to remain viable as infectious agents. One mode of adaptation is modifying the viral genome to contain noncanonical nucleotides. Genome modification in phages is becoming more commonly reported as analytical techniques improve, but guanosine modifications have been underreported. To date, two genomic guanosine modifications have been observed in phage genomes, and both are low in genomic abundance. The significance of our research is in the identification of two novel DNA modification systems in Campylobacter-infecting phages, which replace all guanosine bases in the genome in a genus-specific manner.
Collapse
Affiliation(s)
- Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, Massachusetts, USA
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, Florida, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, Florida, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, Massachusetts, USA
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
238
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
239
|
Atack JM, Guo C, Yang L, Zhou Y, Jennings MP. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J 2019; 34:1038-1051. [PMID: 31914596 PMCID: PMC7383803 DOI: 10.1096/fj.201901536rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/27/2022]
Abstract
Over recent years several examples of randomly switching methyltransferases, associated with Type III restriction‐modification (R‐M) systems, have been described in pathogenic bacteria. In every case examined, changes in simple DNA sequence repeats result in variable methyltransferase expression and result in global changes in gene expression, and differentiation of the bacterial cell into distinct phenotypes. These epigenetic regulatory systems are called phasevarions, phase‐variable regulons, and are widespread in bacteria, with 17.4% of Type III R‐M system containing simple DNA sequence repeats. A distinct, recombination‐driven random switching system has also been described in Streptococci in Type I R‐M systems that also regulate gene expression. Here, we interrogate the most extensive and well‐curated database of R‐M systems, REBASE, by searching for all possible simple DNA sequence repeats in the hsdRMS genes that encode Type I R‐M systems. We report that 7.9% of hsdS, 2% of hsdM, and of 4.3% of hsdR genes contain simple sequence repeats that are capable of mediating phase variation. Phase variation of both hsdM and hsdS genes will lead to differential methyltransferase expression or specificity, and thereby the potential to control phasevarions. These data suggest that in addition to well characterized phasevarions controlled by Type III mod genes, and the previously described Streptococcal Type I R‐M systems that switch via recombination, approximately 10% of all Type I R‐M systems surveyed herein have independently evolved the ability to randomly switch expression via simple DNA sequence repeats.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Chengying Guo
- College of Plant Protection, Shandong Agricultural University, Taian City, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian City, China
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
240
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
241
|
Functional Traits Co-Occurring with Mobile Genetic Elements in the Microbiome of the Atacama Desert. DIVERSITY 2019. [DOI: 10.3390/d11110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mobile genetic elements (MGEs) play an essential role in bacterial adaptation and evolution. These elements are enriched within bacterial communities from extreme environments. However, very little is known if specific genes co-occur with MGEs in extreme environments and, if so, what their function is. We used shotgun-sequencing to analyse the metagenomes of 12 soil samples and characterized the composition of MGEs and the genes co-occurring with them. The samples ranged from less arid coastal sites to the inland hyperarid core of the Atacama Desert, as well as from sediments below boulders, protected from UV-irradiation. MGEs were enriched at the hyperarid sites compared with sediments from below boulders and less arid sites. MGEs were mostly co-occurring with genes belonging to the Cluster Orthologous Group (COG) categories “replication, recombination and repair,” “transcription” and “signal transduction mechanisms.” In general, genes coding for transcriptional regulators and histidine kinases were the most abundant genes proximal to MGEs. Genes involved in energy production were significantly enriched close to MGEs at the hyperarid sites. For example, dehydrogenases, reductases, hydrolases and chlorite dismutase and other enzymes linked to nitrogen metabolism such as nitrite- and nitro-reductase. Stress response genes, including genes involved in antimicrobial and heavy metal resistance genes, were rarely found near MGEs. The present study suggests that MGEs could play an essential role in the adaptation of the soil microbiome in hyperarid desert soils by the modulation of housekeeping genes such as those involved in energy production.
Collapse
|
242
|
Mtimka S, Pillay P, Rashamuse K, Gildenhuys S, Tsekoa TL. Functional screening of a soil metagenome for DNA endonucleases by acquired resistance to bacteriophage infection. Mol Biol Rep 2019; 47:353-361. [PMID: 31643043 DOI: 10.1007/s11033-019-05137-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
Endonucleases play a crucial role as reagents in laboratory research and diagnostics. Here, metagenomics was used to functionally screen a fosmid library for endonucleases. A fosmid library was constructed using metagenomic DNA isolated from soil sampled from the unique environment of the Kogelberg Nature Reserve in the Western Cape of South Africa. The principle of acquired immunity against phage infection was used to develop a plate-based screening technique for the isolation of restriction endonucleases from the library. Using next-generation sequencing and bioinformatics tools, sequence data were generated and analysed, revealing 113 novel open reading frames (ORFs) encoding putative endonuclease genes and ORFs of unknown identity and function. One endonuclease designated Endo52 was selected from the putative endonuclease ORFs and was recombinantly produced in Escherichia coli Rosetta™ (DE3) pLysS. Endo52 was purified by immobilised metal affinity chromatography and yielded 0.437 g per litre of cultivation volume. Its enzyme activity was monitored by cleaving lambda DNA and pUC19 plasmid as substrates, and it demonstrated non-specific endonuclease activity. In addition to endonuclease-like genes, the screen identified several unknown genes. These could present new phage resistance mechanisms and are an opportunity for future investigations.
Collapse
Affiliation(s)
- Sibongile Mtimka
- Biomanufacturing Technologies, CSIR Future Production: Chemicals, P O Box 395, Pretoria, 0001, South Africa.,Department of Life & Consumer Sciences, College of Agriculture & Environmental Sciences, University of South Africa, Florida Campus (The Science Hub), Florida, P O Box 392, Johannesburg, South Africa
| | - Priyen Pillay
- Biomanufacturing Technologies, CSIR Future Production: Chemicals, P O Box 395, Pretoria, 0001, South Africa
| | - Konanani Rashamuse
- Biomanufacturing Technologies, CSIR Future Production: Chemicals, P O Box 395, Pretoria, 0001, South Africa
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture & Environmental Sciences, University of South Africa, Florida Campus (The Science Hub), Florida, P O Box 392, Johannesburg, South Africa
| | - Tsepo L Tsekoa
- Biomanufacturing Technologies, CSIR Future Production: Chemicals, P O Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
243
|
Deng Y, Xu H, Su Y, Liu S, Xu L, Guo Z, Wu J, Cheng C, Feng J. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics 2019; 20:761. [PMID: 31640552 PMCID: PMC6805501 DOI: 10.1186/s12864-019-6137-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi. RESULTS V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs (tetm, tetb, qnrs, dfra17, and sul2) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi, increasing its pathogenicity and drug resistance. CONCLUSION This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Haidong Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China.
| |
Collapse
|
244
|
Labroussaa F, Baby V, Rodrigue S, Lartigue C. [Whole genome transplantation: bringing natural or synthetic bacterial genomes back to life]. Med Sci (Paris) 2019; 35:761-770. [PMID: 31625898 DOI: 10.1051/medsci/2019154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of synthetic genomics (SG) allowed the emergence of several groundbreaking techniques including the synthesis, assembly and engineering of whole bacterial genomes. The successful implantation of those methods, which culminated in the creation of JCVI-syn3.0 the first nearly minimal bacterium with a synthetic genome, mainly results from the use of the yeast Saccharomyces cerevisiae as a transient host for bacterial genome replication and modification. Another method played a key role in the resounding success of this project: bacterial genome transplantation (GT). GT consists in the transfer of bacterial genomes cloned in yeast, back into a cellular environment suitable for the expression of their genetic content. While successful using many mycoplasma species, a complete understanding of the factors governing GT will most certainly help unleash the power of the entire SG pipeline to other genetically intractable bacteria.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, PO Box, CH-3001 Bern, Suisse
| | - Vincent Baby
- UMR 1332 Biologie du fruit et pathologie, INRA Bordeaux-Aquitaine, 71 avenue E. Bourlaux, 33882 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l'université, Sherbrooke, Québec, Canada
| | - Carole Lartigue
- UMR 1332 Biologie du fruit et pathologie, INRA Bordeaux-Aquitaine, 71 avenue E. Bourlaux, 33882 Villenave d'Ornon, France
| |
Collapse
|
245
|
Yang J, Zhang X, Blumenthal RM, Cheng X. Detection of DNA Modifications by Sequence-Specific Transcription Factors. J Mol Biol 2019:S0022-2836(19)30568-6. [PMID: 31626807 DOI: 10.1016/j.jmb.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
The establishment, detection, and alteration or elimination of epigenetic DNA modifications are essential to controlling gene expression ranging from bacteria to mammals. The DNA methylations occurring at cytosine and adenine are carried out by SAM-dependent methyltransferases. Successive oxidations of 5-methylcytosine (5mC) by Tet dioxygenases generate 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC) derivatives; thus, DNA elements with multiple methylation sites can have a wide range of modification states. In contrast, oxidation of N6-methyladenine by homologs of Escherichia coli AlkB removes the methyl group directly. Both Tet and AlkB enzymes are 2-oxoglutarate- and Fe(II)-dependent dioxygenases. DNA-binding proteins decode the modification status of specific genomic regions. This article centers on two families of sequence-specific transcription factors: bZIP (basic leucine-zipper) proteins, exemplified by the AP-1 and CEBPβ recognition of 5mC; and bHLH (basic helix-loop-helix) proteins, exemplified by MAX and TCF4 recognition of 5caC. We discuss the impact of template strand DNA modification on the activities of DNA and RNA polymerases, and the varied tendencies of modifications to alter base pairing and their interactions with DNA repair enzymes.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
246
|
Sánchez-Busó L, Golparian D, Parkhill J, Unemo M, Harris SR. Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Sci Rep 2019; 9:14685. [PMID: 31605008 PMCID: PMC6789123 DOI: 10.1038/s41598-019-51102-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
Restriction-Modification systems (RMS) are one of the main mechanisms of defence against foreign DNA invasion and can have an important role in the regulation of gene expression. The obligate human pathogen Neisseria gonorrhoeae carries one of the highest loads of RMS in its genome; between 13 to 15 of the three main types. Previous work has described their organization in the reference genome FA1090 and has inferred the associated methylated motifs. Here, we studied the structure of RMS and target methylated motifs in 25 gonococcal strains sequenced with Single Molecule Real-Time (SMRT) technology, which provides data on DNA modification. The results showed a variable picture of active RMS in different strains, with phase variation switching the activity of Type III RMS, and both the activity and specificity of a Type I RMS. Interestingly, the Dam methylase was found in place of the NgoAXI endonuclease in two of the strains, despite being previously thought to be absent in the gonococcus. We also identified the real methylation target of NgoAXII as 5′-GCAGA-3′, different from that previously described. Results from this work give further insights into the diversity and dynamics of RMS and methylation patterns in N. gonorrhoeae.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. .,Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
247
|
A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang. Appl Environ Microbiol 2019; 85:AEM.01001-19. [PMID: 31399407 DOI: 10.1128/aem.01001-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (ΔpglX) was constructed. Interestingly, m6A methylation of the 5'-ACRCAG-3' motif was eliminated in the ΔpglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ΔpglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5'-ACRCAG-3'). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ΔpglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCE Lactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria.
Collapse
|
248
|
Amoako DG, Somboro AM, Abia ALK, Allam M, Ismail A, Bester LA, Essack SY. Genome Mining and Comparative Pathogenomic Analysis of An Endemic Methicillin-Resistant Staphylococcus Aureus (MRSA) Clone, ST612-CC8-t1257-SCCmec_IVd(2B), Isolated in South Africa. Pathogens 2019; 8:E166. [PMID: 31569754 PMCID: PMC6963616 DOI: 10.3390/pathogens8040166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
This study undertook genome mining and comparative genomics to gain genetic insights into the dominance of the methicillin-resistant Staphylococcus aureus (MRSA) endemic clone ST612-CC8-t1257-SCCmec_IVd(2B), obtained from the poultry food chain in South Africa. Functional annotation of the genome revealed a vast array of similar central metabolic, cellular and biochemical networks within the endemic clone crucial for its survival in the microbial community. In-silico analysis of the clone revealed the possession of uniform defense systems, restriction-modification system (type I and IV), accessory gene regulator (type I), arginine catabolic mobile element (type II), and type 1 clustered, regularly interspaced, short palindromic repeat (CRISPR)Cas array (N = 7 ± 1), which offer protection against exogenous attacks. The estimated pathogenic potential predicted a higher probability (average Pscore ≈ 0.927) of the clone being pathogenic to its host. The clone carried a battery of putative virulence determinants whose expression are critical for establishing infection. However, there was a slight difference in their possession of adherence factors (biofilm operon system) and toxins (hemolysins and enterotoxins). Further analysis revealed a conserved environmental tolerance and persistence mechanisms related to stress (oxidative and osmotic), heat shock, sporulation, bacteriocins, and detoxification, which enable it to withstand lethal threats and contribute to its success in diverse ecological niches. Phylogenomic analysis with close sister lineages revealed that the clone was closely related to the MRSA isolate SHV713 from Australia. The results of this bioinformatic analysis provide valuable insights into the biology of this endemic clone.
Collapse
Affiliation(s)
- Daniel Gyamfi Amoako
- Infection Genomics and Applied Bioinformatics Division, Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
249
|
Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 2019; 366:5251984. [PMID: 30561594 PMCID: PMC6322438 DOI: 10.1093/femsle/fny291] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
Collapse
Affiliation(s)
- Rosa A Börner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Amalie M Axelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
250
|
Rideau F, Le Roy C, Sagné E, Renaudin H, Pereyre S, Henrich B, Dordet-Frisoni E, Citti C, Lartigue C, Bébéar C. Random transposon insertion in the Mycoplasma hominis minimal genome. Sci Rep 2019; 9:13554. [PMID: 31537861 PMCID: PMC6753208 DOI: 10.1038/s41598-019-49919-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma hominis is an opportunistic human pathogen associated with genital and neonatal infections. Until this study, the lack of a reliable transformation method for the genetic manipulation of M. hominis hindered the investigation of the pathogenicity and the peculiar arginine-based metabolism of this bacterium. A genomic analysis of 20 different M. hominis strains revealed a number of putative restriction-modification systems in this species. Despite the presence of these systems, a reproducible polyethylene glycol (PEG)-mediated transformation protocol was successfully developed in this study for three different strains: two clinical isolates and the M132 reference strain. Transformants were generated by transposon mutagenesis with an efficiency of approximately 10-9 transformants/cell/µg plasmid and were shown to carry single or multiple mini-transposons randomly inserted within their genomes. One M132-mutant was observed to carry a single-copy transposon inserted within the gene encoding P75, a protein potentially involved in adhesion. However, no difference in adhesion was observed in cell-assays between this mutant and the M132 parent strain. Whole genome sequencing of mutants carrying multiple copies of the transposon further revealed the occurrence of genomic rearrangements. Overall, this is the first time that genetically modified strains of M. hominis have been obtained by random mutagenesis using a mini-transposon conferring resistance to tetracycline.
Collapse
Affiliation(s)
- Fabien Rideau
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Chloé Le Roy
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Hélène Renaudin
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Sabine Pereyre
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, Gironde, France. .,University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, Gironde, France.
| | - Cécile Bébéar
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France. .,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.
| |
Collapse
|