201
|
Abstract
In recent years, it has become clear that gut microbiota plays a major role in the human body, both in health and disease. Because of that, the gut microbiome and its impact on human well-being are getting wider and wider attention. Studies focused on the liver are not an exception. However, the majority of the analyses are concentrated on the bacterial part of the gut microbiota, while the fungi living in the human intestines are often omitted or underappreciated. This review is focused on the gut mycobiome as an important factor that should be taken into consideration regarding liver homeostasis and its perturbations. We have collected the findings in this field and we discuss their importance. We aim to emphasize the fungal compositional changes related to liver diseases and, by that, provide novel insights into the directions of liver research and gut microbiota as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
202
|
Yan F, Zhang Q, Shi K, Zhang Y, Zhu B, Bi Y, Wang X. Gut microbiota dysbiosis with hepatitis B virus liver disease and association with immune response. Front Cell Infect Microbiol 2023; 13:1152987. [PMID: 37201112 PMCID: PMC10185817 DOI: 10.3389/fcimb.2023.1152987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background and aims Given hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) exhibits unique gut microbiota characteristics and a significant immunosuppressive tumor microenvironment. Thus, a better understanding of the correlation between gut microbiota and the immunosuppressive response may help predict occurrence and prognosis of HBV-HCC. Methods Here, in a cohort of ninety adults (healthy control n=30, HBV-cirrhosis n=30, HBV-HCC n=30) with clinical data, fecal 16S rRNA gene sequencing, matched peripheral blood immune response with flow cytometry analysis. Correlation between the gut microbiome of significantly different in HBV-HCC patients and clinical parameters as well as the peripheral immune response was assessed. Results We found that community structures and diversity of the gut microbiota in HBV-CLD patients become more unbalanced. Differential microbiota analysis that p:Acidobacteriota, p:Proteobacteria, p:Campilobacterota, f:Streptococcaceae, g:Klebsiella associated with inflammation were enriched. The beneficial bacteria of f:Clostridia UCG-014, f:Oscillospiraceae, f:_Rikenellaceae, g:_Barnesiella, g:Prevotella, g:Agathobacter were decreased. Functional analysis of gut microbiota revealed that lipopolysaccharide biosynthesis, lipid metabolism, butanoate metabolism were significantly elevated in HBV-CLD patients. Spearman's correlation analysis showed that Muribaculaceae, Akkermaniacaeae, [Eubacterium]_coprostanoligenes_group, RF39, Tannerellaceae have positive correlation with CD3+T, CD4+T and CD8+T cell counts while negatively correlated with liver dysfunction. Furthermore, paired peripheral blood showed a decreased proportion of CD3+T, CD4+T and CD8+T cells, while an increased T (Treg) cells. The immunosuppressive response of programmed cell death 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), immune receptor tyrosine based inhibitor motor (ITIM) domain (TIGIT), T-cell immune domain, and multiple domain 3 (TIM-3) of CD8+T cells were higher in HBV-HCC patients. They were positively correlated with harmful bacteria, such as Actinobaciota, Myxococota, Streptococcaceae and Eubacterium coprostanoligenes. Conclusions Our study indicated that gut beneficial bacteria, mainly Firmicutes and Bacteroides appeared dysbiosis in HBV-CLD patients. They have negative regulation of liver dysfunction and T cell immune response. It provides potential avenues for microbiome-based prevention and intervention for anti-tumor immune effects of HBV-CLD.
Collapse
|
203
|
Liu S, Yang X. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front Cell Infect Microbiol 2023; 13:1140126. [PMID: 36968098 PMCID: PMC10034054 DOI: 10.3389/fcimb.2023.1140126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
The liver is a vital metabolism and detoxification organ of human body, which is involved in the biotransformation and metabolism of the organism. Hepatitis - cirrhosis - liver cancer are significant and common part of liver diseases. The pathogenesis of liver diseases is generally as followed: inflammation and other pathogenic factors cause persistent damage to the liver, leading to the activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix. Patients with chronic hepatitis have a high risk of developing into liver fibrosis, cirrhosis, and even life-threatening liver cancer, which poses a great threat to public health.As the first organ to come into contact with blood from the gut, the liver is profoundly affected by the intestinal flora and its metabolites, with leaky gut and flora imbalance being the triggers of the liver's pathological response. So far, no one has reviewed the role of intestinal flora in this process from the perspective of the progression of hepatitis-cirrhosis-liver cancer and this article reviews the evidence supporting the effect of intestinal flora in the progression of liver disease.
Collapse
|
204
|
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20:37-49. [PMID: 36258033 PMCID: PMC9579565 DOI: 10.1038/s41575-022-00688-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
Heavy alcohol consumption is a major cause of morbidity and mortality. Globally, alcohol per-capita consumption rose from 5.5 litres in 2005 to 6.4 litres in 2016 and is projected to increase further to 7.6 litres in 2030. In 2019, an estimated 25% of global cirrhosis deaths were associated with alcohol. The global estimated age-standardized death rate (ASDR) of alcohol-associated cirrhosis was 4.5 per 100,000 population, with the highest and lowest ASDR in Africa and the Western Pacific, respectively. The annual incidence of hepatocellular carcinoma (HCC) among patients with alcohol-associated cirrhosis ranged from 0.9% to 5.6%. Alcohol was associated with approximately one-fifth of global HCC-related deaths in 2019. Between 2012 and 2017, the global estimated ASDR for alcohol-associated cirrhosis declined, but the ASDR for alcohol-associated liver cancer increased. Measures are required to curb heavy alcohol consumption to reduce the burden of alcohol-associated cirrhosis and HCC. Degree of alcohol intake, sex, older age, obesity, type 2 diabetes mellitus, gut microbial dysbiosis and genetic variants are key factors in the development of alcohol-associated cirrhosis and HCC. In this Review, we discuss the global epidemiology, projections and risk factors for alcohol-associated cirrhosis and HCC.
Collapse
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France
- Unité INSERM 995, Faculté de médecine, Lille, France
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Departamento de Gastrenterologia, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
205
|
Zhu LR, Li SS, Zheng WQ, Ni WJ, Cai M, Liu HP. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front Immunol 2023; 14:1086078. [PMID: 36817459 PMCID: PMC9933143 DOI: 10.3389/fimmu.2023.1086078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota not only constitutes intestinal microenvironment homeostasis and human health but also exerts indispensable roles in the occurrence and progression of multiple liver diseases, including alcohol-related liver disease, nonalcoholic fatty liver disease, autoimmune liver disease and liver cancer. Given the therapeutic status of these diseases, their prevention and early therapy are crucial, and the detailed mechanism of gut microbiota in liver disease urgently needs to be explored. Meanwhile, multiple studies have shown that various traditional Chinese medicines, such as Si Miao Formula, Jiangzhi Granules, Liushen Capsules, Chaihu-Shugan Power, Cassiae Semen and Gynostemma, as well as some natural products, including Costunolide, Coprinus comatus polysaccharide, Antarctic krill oil, Oridonin and Berberine, can repair liver injury, improve fatty liver, regulate liver immunity, and even inhibit liver cancer through multiple targets, links, and pathways. Intriguingly, the aforementioned effects demonstrated by these traditional Chinese medicines and natural products have been shown to be closely related to the gut microbiota, directly driving the strategy of traditional Chinese medicines and natural products to regulate the gut microbiota as one of the breakthroughs in the treatment of liver diseases. Based on this, this review comprehensively summarizes and discusses the characteristics, functions and potential mechanisms of these medicines targeting gut microbiota during liver disease treatment. Research on the potential effects on gut microbiota and the regulatory mechanisms of traditional Chinese medicine and natural products provides novel insights and significant references for developing liver disease treatment strategies. In parallel, such explorations will enhance the comprehension of traditional Chinese medicine and natural products modulating gut microbiota during disease treatment, thus facilitating their clinical investigation and application.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Shan-Shan Li
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Wan-Qun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ming Cai
- Department of Pharmacy, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| |
Collapse
|
206
|
Gao Y, Gong Y, Liu Y, Xue Y, Zheng K, Guo Y, Hao L, Peng Q, Shi X. Integrated analysis of transcriptomics and metabolomics in human hepatocellular carcinoma HepG2215 cells after YAP1 knockdown. Acta Histochem 2023; 125:151987. [PMID: 36473310 DOI: 10.1016/j.acthis.2022.151987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Yes-associated protein 1 (YAP1) plays a critical role in hepatocellular carcinoma (HCC). Inhibition of YAP1 expression suppresses HCC progression, but the underlying mechanism is still unclear. In this study, we studied the effects and molecular mechanisms of YAP1 knockdown on the growth and metabolism in human HCC HepG2215 cells. Inhibition of YAP1 expression inhibits the proliferation and metastasis in HepG2215 cells, and differentially expressed genes (DEGs) and metabolites were identified in shYAP1-HepG2215 cells. Further, 805 DEGs, mainly associated with metabolism and particularly lipid metabolism, were identified by transcriptome sequencing analyses in shYAP1-HepG2215 cells. YAP1 knockdown increased albumin (ALB) levels by Protein-protein interaction (PPI) network analyses in HepG2215 cells. Metabolomic profiling identified 37 metabolites with significant differences in the shYAP1 group, and amino acid metabolism generally decreased in the shYAP1 group. Comprehensive analysis of transcriptomics and metabolomics revealed that the ATP-binding cassette (ABC) transporters play a central role after YAP1 knockdown in HepG2215 cells. Therefore, YAP1 knockdown inhibited HCC growth, which affected the metabolism of lipids and amino acids by regulating the expression of ALB and ABC transporters in HepG2215 cells.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
207
|
Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci 2022; 24:ijms24010537. [PMID: 36613980 PMCID: PMC9820585 DOI: 10.3390/ijms24010537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary liver cancer is a heterogeneous disease. Liver cancer metabolism includes both the reprogramming of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment and fluctuations in regular tissue metabolism. Currently, metabolomics and metabolite profiling in liver cirrhosis, liver cancer, and hepatocellular carcinoma (HCC) have been in the spotlight in terms of cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecules, chemicals, and metabolites. Metabolomics technologies can provide critical information about the liver cancer state. Here, we review how liver cirrhosis, liver cancer, and HCC therapies interact with metabolism at the cellular and systemic levels. An overview of liver metabolomics is provided, with a focus on currently available technologies and how they have been used in clinical and translational research. We also list scalable methods, including chemometrics, followed by pathway processing in liver cancer. We conclude that important drivers of metabolomics science and scientific technologies are novel therapeutic tools and liver cancer biomarker analysis.
Collapse
|
208
|
Islam MZ, Tran M, Xu T, Tierney BT, Patel C, Kostic AD. Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. MICROBIOME 2022; 10:218. [PMID: 36482486 PMCID: PMC9733034 DOI: 10.1186/s40168-022-01373-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND The gut microbiome promotes specific immune responses, and in turn, the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditions. METHODOLOGY We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold change, and the standard error was calculated from the p-values, sample size, and fold change. RESULTS We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 studies) and decreased in six cancer studies (-0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species. CONCLUSIONS The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Melissa Tran
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Chirag Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aleksandar David Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
209
|
Shannon AH, Ruff SM, Pawlik TM. Expert Insights on Current Treatments for Hepatocellular Carcinoma: Clinical and Molecular Approaches and Bottlenecks to Progress. J Hepatocell Carcinoma 2022; 9:1247-1261. [PMID: 36514693 PMCID: PMC9741819 DOI: 10.2147/jhc.s383922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver tumor that typically occurs in the setting of chronic liver disease/cirrhosis. Treatment modalities for HCC have evolved and given the variety of treatment options, a multi-disciplinary approach requiring input from surgical, medical, and radiation oncology, hepatology, and interventional radiology is necessary. Multiple advances have been made over the last decade regarding treatment of HCC, especially advanced disease. Resection and transplantation remain as cornerstone curative-intent treatment options. For patients who are not candidates for curative-intent therapy, exciting progress has been made in molecular and cellular approaches to systemic therapy for HCC including immunotherapies and tyrosine kinase inhibitors. Although the prognosis for advanced HCC remains poor, the armamentarium of therapies has increased, and valuable years of life can be gained with these therapies. While the main therapeutic modality for early-stage disease remains resection, multimodal immunotherapy has emerged as first-line treatment for advanced disease. We herein review different clinical and molecular treatment modalities related to the treatment of HCC, as well as provide insights into future directions for HCC treatment. We highlight how research and progress are needed to move into a new era of molecular and cellular treatments.
Collapse
Affiliation(s)
- Alexander H Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Correspondence: Timothy M Pawlik, Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, Professor of Surgery, Oncology, Health Services Management and Policy, The Ohio State University, Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH, USA, Tel +1 614 293 8701, Fax +1 614 293 4063, Email
| |
Collapse
|
210
|
Zhang Y, Zhou Y, Cui W, Wang Z, Wang X, Wu F, Wang P, Wang T, Yu W, Wang L, Shang J, Zhao Z. Characterization and diagnostic value of the gut microbial composition in patients with minimal change disease. Front Physiol 2022; 13:1070569. [PMID: 36561217 PMCID: PMC9763583 DOI: 10.3389/fphys.2022.1070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Minimal change disease (MCD) is one of the most common causes of primary nephrotic syndrome with high morbidity. This study aimed to explore the typical alterations of gut microbiota in MCD and establish a non-invasive classifier using key gut microbiome. We also aimed to evaluate the therapeutic efficiency of gut microbiota intervention in MCD through animal experiments. Methods: A total of 222 stool samples were collected from MCD patients and healthy controls at the First Affiliated Hospital of Zhengzhou University and Shandong Provincial Hospital for 16S rRNA sequencing. Optimum operational taxonomic units (OTUs) were obtained for constructing a diagnostic model. MCD rat models were established using doxorubicin hydrochloride for exploring the therapeutic efficiency of gut microbial intervention through fecal microbiota transplantation (FMT). Results: The α-diversity of gut microbiota decreased in MCD patients when compared with healthy controls. The relative abundance of bacterial species also changed significantly. We constructed a diagnostic model based on eight optimal OTUs and it achieved efficiency of 97.81% in discovery cohort. The high efficiency of diagnostic model was also validated in the patients with different disease states and cross-regional cohorts. The treatment partially recovered the gut microbial dysbiosis in patients with MCD. In animal experiments, likewise, the gut microbiota changed sharply in MCD rats. However, gut microbial interventions did not reduce urinary protein or pathological kidney damage. Conclusion: Gut Microbiota shifts sharply in both patients and rats with MCD. Typical microbial changes can be used as biomarkers for MCD diagnosis. The gut microbiota compositions in patients with MCD tended to normalize after treatment. However, the intervention of gut microbiota seems to have no therapeutic effect on MCD.
Collapse
Affiliation(s)
- Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yukun Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| |
Collapse
|
211
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
212
|
Perelló-Reus CM, Rubio-Tomás T, Cisneros-Barroso E, Ibargüen-González L, Segura-Sampedro JJ, Morales-Soriano R, Barceló C. Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Front Oncol 2022; 12:995357. [PMID: 36531066 PMCID: PMC9751445 DOI: 10.3389/fonc.2022.995357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers due to late diagnosis. Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable. The reasons for this dismal situation are mainly the absence of effective early diagnostic biomarkers and therapy resistance. PDAC cancer stem cells (PDAC-SC), which are regarded as essential for tumor initiation, relapse and drug resistance, are highly dependent on their niche i.e. microanatomical structures of the tumor microenvironment. There is an altered microbiome in PDAC patients embedded within the highly desmoplastic tumor microenvironment, which is known to determine therapeutic responses and affecting survival in PDAC patients. We consider that understanding the communication network that exists between the microbiome and the PDAC-SC niche by co-culture of patient-derived organoids (PDOs) with TME microbiota would recapitulate the complexity of PDAC paving the way towards a precision oncology treatment-response prediction.
Collapse
Affiliation(s)
- Catalina M. Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| | | | | | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| | - Juan José Segura-Sampedro
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Rafael Morales-Soriano
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| |
Collapse
|
213
|
Das BK. Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. APMIS 2022; 130:719-740. [PMID: 36321381 DOI: 10.1111/apm.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. It is usually the result of pre-existing liver damage caused by hepatitis B and/or C virus infection, alcohol consumption, nonalcoholic steatohepatitis (NASH), aflatoxin exposure, liver cirrhosis, obesity, and diabetes. A growing body of evidence suggests that gut microbes have a role in cancer genesis. More research into the microbiome gut-liver axis has recently contributed to understanding how the gut microbiome facilitates liver disease or even HCC progression. This review focuses on the preclinical results of gut-related hepatocarcinogenesis and probiotics, prebiotics, and antibiotics as therapeutic interventions to maintain gut microbial flora and minimize HCC-associated symptoms. Understanding the mechanistic link between the gut microbiota, host, and cancer progression could aid us in elucidating the cancer-related pathways and drive us toward preventing HCC-associated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science (Assam Science and Technology University), Guwahati, Assam, India
| |
Collapse
|
214
|
FAN Y, ZHAO H, ZHANG Y, Yani Z, DU J, LING C. Effectiveness of Jiedu granule on gut microbiota in patients with advanced hepatocellular carcinoma: a randomized controlled trial. J TRADIT CHIN MED 2022; 42:988-996. [PMID: 36378058 PMCID: PMC9924752 DOI: 10.19852/j.cnki.jtcm.20220902.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To observe whether Jiedu granule (, JDG) modulates the composition of the gut microbiota during advanced hepatocellular carcinoma (HCC). METHODS A randomized controlled trial was conducted. Sixty-two advanced HCC participants were randomly allocated to receive JDG or placebo. The median overall survival (OS) times of patients and the variation of relative abundance of bacteria over time were used as main outcome measures. RESULTS Patients who received JDG demonstrated significantly longer median OS times compared with the placebo group. Pyrosequencing of the V3 regions of 16S rRNA genes revealed a dose dependent deviation of gut microbiota in response to JDG treatment. Redundancy analysis identified and Peptostre-ptococcaceae which related to the onset of liver cancer disappeared after 1-month and 2-month JDG treatment, while in control group, no significant changes of these two bacteria were found. The variation tendency of relative abundance of (essential in immunoblocking therapy of tumor) in JDG group was not obvious while in control group, it was decreased significantly with time. The relative abundance of (correlated with the occurrence of liver cancer) was increased in JDG group and was decreased in control group over time. CONCLUSION Changes in the gut microbiota may be associated with the efficiency of JDG on survival period of advanced HCC patients. Trial registration:Chinese Clinical TRIAL Registry ChiCTR-OOC-16008002.
Collapse
Affiliation(s)
- Yifu FAN
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Hetong ZHAO
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Yani ZHANG
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Zifei Yani
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Juan DU
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Changquan LING
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
215
|
Kong R, Zhang H, Jia Y, Man Q, Liu S. Integrated analysis revealing the role of TET3-mediated MUC13 promoter hypomethylation in hepatocellular carcinogenesis. Epigenomics 2022; 14:1579-1591. [PMID: 36916275 DOI: 10.2217/epi-2022-0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Aim: To explore the function and underlying mechanism of MUC13 in hepatocellular carcinoma (HCC) oncogenesis. Materials & Methods: Online databases and software were used to perform analyses of expression, methylation and enrichment pathway. Experiments were performed to confirm the results using HCC cells in vitro. Results: MUC13 was upregulated in HCC and liver cancer stem cells (CSCs) and had a positive influence on CSC generation. Further analyses revealed that MUC13 with promoter hypomethylated was regulated by DNA demethylase TET3, which was overexpressed in HCC and liver CSCs. Conclusion: These results strongly suggested that high TET3 expression in liver CSCs may mediate MUC13 upregulation via promoter hypomethylation and thereby contribute to hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Ruijiao Kong
- School of Life Sciences & Technology, Tongji University, Siping Road 1239, Shanghai, 200092, China
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Sanmen Road 1279, Shanghai, 200434, China
| | - Hui Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Sanmen Road 1279, Shanghai, 200434, China
| | - Yin Jia
- Department of Laboratory & Diagnosis, Changhai Hospital, Navy Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Qiuhong Man
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Sanmen Road 1279, Shanghai, 200434, China
| | - Shanrong Liu
- School of Life Sciences & Technology, Tongji University, Siping Road 1239, Shanghai, 200092, China
- Department of Laboratory & Diagnosis, Changhai Hospital, Navy Medical University, Changhai Road 168, Shanghai, 200433, China
| |
Collapse
|
216
|
Hao Y, Zeng Z, Peng X, Ai P, Han Q, Ren B, Li M, Wang H, Zhou X, Zhou X, Ma Y, Cheng L. The human oral - nasopharynx microbiome as a risk screening tool for nasopharyngeal carcinoma. Front Cell Infect Microbiol 2022; 12:1013920. [PMID: 36530430 PMCID: PMC9748088 DOI: 10.3389/fcimb.2022.1013920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with a poor prognosis. There is an urgent need to develop a simple and convenient screening tool for early detection and risk screening of NPC. 139 microbial samples were collected from 40 healthy people and 39 patients with nasopharyngeal biopsy. A total of 40 and 39 oral, eight and 27 nasal cavity, nine and 16 nasopharyngeal microbial samples were collected from the two sets of individuals. A risk screening tool for NPC was established by 16S rDNA sequencing and random forest. Patients with nasopharyngeal biopsy had significantly lower nasal cavity and nasopharynx microbial diversities than healthy people. The beta diversity of the oral microbiome was significantly different between the two groups. The NPC screening tools based on nasopharyngeal and oral microbiomes have 88% and 77.2% accuracies, respectively. The nasopharyngeal biopsy patients had significantly higher Granulicatella abundance in their oral cavity and lower Pseudomonas and Acinetobacter in the nasopharynx than healthy people. This study established microbiome-based non-invasive, simple, no radiation, and low-cost NPC screening tools. Individuals at a high risk of NPC should be advised to seek further examination, which might improve the early detection of NPC and save public health costs.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhi Zeng
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ping Ai
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China,*Correspondence: Lei Cheng, ; Yue Ma,
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Lei Cheng, ; Yue Ma,
| |
Collapse
|
217
|
Li S, Li Q, Lu W. Intratumoral microbiome and gastrointestinal cancers. Front Oncol 2022; 12:1047015. [PMID: 36523986 PMCID: PMC9745085 DOI: 10.3389/fonc.2022.1047015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 12/21/2024] Open
Abstract
Emerging studies have revealed the role of microbiota in regulating tumorigenesis, development, and response to antitumor treatment. However, most studies have focused on gut microbiota, and little is known about the intratumoral microbiome. To date, the latest research has indicated that the intratumoral microbiome is a key component of the tumor microenvironment (TME), and can promote a heterogeneous immune microenvironment, reprogram tumor metabolism to affect tumor invasion and metastasis. In this review, we will summarize existing studies on the intratumoral microbiome of gastrointestinal cancers and reveal their crosstalk. This will provide a better understanding of this emerging field and help to explore new therapeutic approaches for cancer patients by targeting the intratumoral microbiome.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Qian Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| |
Collapse
|
218
|
Li P, Luo H, Ji B, Nielsen J. Machine learning for data integration in human gut microbiome. Microb Cell Fact 2022; 21:241. [PMID: 36419034 PMCID: PMC9685977 DOI: 10.1186/s12934-022-01973-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.
Collapse
Affiliation(s)
- Peishun Li
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hao Luo
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Boyang Ji
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden ,grid.510909.4BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark
| | - Jens Nielsen
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden ,grid.510909.4BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark
| |
Collapse
|
219
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [PMID: 36483296 PMCID: PMC9723259 DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 03/01/2025] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Deng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yating Chen
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dimin Ning
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yinmei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ruoyu Wang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuelin Meng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuefei Tian
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
220
|
The Microbial Ecology of Liver Abscesses in Cattle. Vet Clin North Am Food Anim Pract 2022; 38:367-381. [DOI: 10.1016/j.cvfa.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
221
|
Ruff SM, Shannon AH, Beane JD, Pawlik TM. Highlighting novel targets in immunotherapy for liver cancer. Expert Rev Gastroenterol Hepatol 2022; 16:1029-1041. [PMID: 36404729 DOI: 10.1080/17474124.2022.2150841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alterations to the hepatic immune microenvironment can play a key role in the development and progression of cancer. This is especially true in the liver due to its evolutionarily conserved immunotolerant state. The presence of chronic inflammation can facilitate the development and progression of hepatocellular carcinoma (HCC) by disrupting the hepatic immune microenvironment. Recently, the addition of the immunotherapy atezolizumab (PD-L1 inhibitor) with bevacizumab (VEGF inhibitor) became the recommended first-line systemic treatment for advanced HCC. AREAS COVERED Given recent updates to the guidelines and emerging data on immunotherapy, we herein provide an overview of currently available and novel immunotherapy approaches for the treatment of HCC, including immune checkpoint inhibitors, adoptive cell therapy, and vaccine development. This review performed an extensive literature search to investigate benchwork, clinical research, and clinical trials that evaluate current immunotherapy and establish new targets. Literature was focused on the most up-to-date research and included ongoing clinical trials to better evaluate the obstacles and future direction of the field. EXPERT OPINION Given the heterogeneity of HCC tumors, improvement in outcomes will likely come from targeting multiple immune mechanisms. Continued research and clinical trials of combination immunotherapies are necessary to move the field forward.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alexander H Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joal D Beane
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
222
|
Wang X, Rao B, Wang H, Liu C, Ren Z, Yu Z. Serum metabolome alterations in patients with early nonalcoholic fatty liver disease. Biosci Rep 2022; 42:BSR20220319. [PMID: 36124945 PMCID: PMC9583763 DOI: 10.1042/bsr20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although metabolomic analysis for patients with nonalcoholic fatty liver disease (NAFLD) was a promising approach to identify novel biomarkers as targets for the diagnosis of NAFLD, the serum metabolomics profile of early-stage NAFLD patients from central China remain unknown. OBJECTIVE The aim of the present study was to explore the metabolic characteristics of patients with early-stage NAFLD based on the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, to identify differential metabolites and perform functional analysis, and especially, to establish a novel early NAFLD clinical diagnostic tool. RESULTS Compared with healthy controls, serum metabolite species increased significantly in early stage NAFLD patients. Expression of 88 metabolites including 1-naphthylmethanol, rosavin, and theophylline were up-regulated in early NAFLD, while 68 metabolites including 2-hydroxyphenylacetic acid and lysophosphatidylcholine (24:1(15Z)) were down-regulated. The early NAFLD classifier achieved a strong diagnostic efficiency in the discovery phases (80.99%) and was successfully verified in the validation phases (75.23%). CONCLUSIONS These results advance our understanding about the composition and biological functions of serum metabolites of early NAFLD. In addition, serum metabolic markers can serve as an efficient diagnostic tool for the early-stage NAFLD.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Benchen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
223
|
Zhou F, Lu Y, Sun T, Sun L, Wang B, Lu J, Li Z, Zhu B, Huang S, Ding Z. Antitumor effects of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg via regulation of intestinal flora and enhancing immunomodulatory effects in vivo. Front Immunol 2022; 13:1009530. [PMID: 36389762 PMCID: PMC9650377 DOI: 10.3389/fimmu.2022.1009530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 08/11/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a traditional Chinese herbal medicine with high medicinal value, and antitumor, antioxidant and anti-inflammatory biological activities. However, while several studies have focused on flavonoids in Tetrastigma hemsleyanum tubers, there are few studies on the enhanced immune effect of Tetrastigma hemsleyanum polysaccharides (THP). In this study, we evaluated the antitumor effect of THP in a lung tumor model and explored the mechanism of antitumor activity through intestinal flora. In addition, a cyclophosphamide (CTX)-induced immunosuppression model was used to declare the immunomodulatory effect of THP in the immunosuppressive state induced by antitumor drugs. The results showed that THP increased the content of ileum secreted immunoglobulin A (SIgA) and cecum short-chain fatty acids (SCFAs) and improved microbial community diversity, regulating the relative abundance of dominant microbiota flora from the phylum level to the genus level, and recovering the intestinal microflora disorder caused by tumors. Additionally, THP can increase the organ indices and improve immune organ atrophy. THP can upregulate routine blood counts and stimulate the production of the serum cytokines. THP also promoted the macrophage phagocytic index, NK-cell activation, and complement and immunoglobulin (IgG, IgA, IgM) levels. The detection of Splenic lymphocyte proliferation and T lymphocyte subsets also sideways reflects that THP can restore CTX-induced immune inhibition in mice. In conclusion, this study suggests that THP can effectively achieve the enhanced antitumor effects, regulate gut microbiota and improve the immunosuppression induced by antitumor drugs. Therefore, THP can enhance the immune capacity and provide novel immunomodulatory and antineoplastic adjuvant agents.
Collapse
Affiliation(s)
- Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Lu
- First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bixu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Lu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhimin Li
- Information Technology Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi an, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
224
|
Huang JH, Wang J, Chai XQ, Li ZC, Jiang YH, Li J, Liu X, Fan J, Cai JB, Liu F. The Intratumoral Bacterial Metataxonomic Signature of Hepatocellular Carcinoma. Microbiol Spectr 2022; 10:e0098322. [PMID: 36173308 PMCID: PMC9602924 DOI: 10.1128/spectrum.00983-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/11/2022] [Indexed: 12/30/2022] Open
Abstract
Microbiota is implicated in hepatocellular carcinoma (HCC). The spectrum of intratumoral microbiota associated with HCC progression remains elusive. Fluorescence in situ hybridization revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. Viable anaerobic or aerobic bacteria were recovered in HCC tissues by fresh tissue culture. We performed a comprehensive DNA sequencing of bacterial 16S rRNA genes in 156 samples from 28 normal liver, 64 peritumoral, and 64 HCC tissues, and the DNA sequencing yielded 4.2 million high-quality reads. Both alpha and beta diversity in peritumor and HCC microbiota were increased compared to normal controls. The most predominant phyla in HCC were Patescibacteria, Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota. phyla of Proteobacteria, Firmicutes, and Actinobacteriota, and classes of Bacilli and Actinobacteria, were consistently enriched in peritumor and HCC tissues, while Gammaproteobacteria was especially abundant in HCC tissues compared to normal controls. Streptococcaceae and Lactococcus were the marker taxa of HCC cirrhosis. The Staphylococcus branch and Caulobacter branch were selectively enriched in HBV-negative HCCs. The abundance of Proteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteriota, and Saccharimonadia were associated with the clinicopathological features of HCC patients. The inferred functions of different taxa were changed between the microbiota of normal liver and peritumor/HCC. Random forest machine learning achieved great discriminative performance in HCC prediction (area under the curve [AUC] = 1.00 in the training cohort, AUC = 0.950 for top five class signature, and AUC = 0.943 for the top 50 operational taxonomy units [OTUs] in the validation cohort). Our analysis highlights the complexity and diversity of the liver and HCC microbiota and established a specific intratumoral microbial signature for the potential prediction of HCC. IMPORTANCE Gut microbiome is an important regulator of hepatic inflammation, detoxification, and immunity, and contributes to the carcinogenesis of liver cancer. Intratumoral bacteria are supposed to be closer to the tumor cells, forming a microenvironment that may be relevant to the pathological process of hepatocellular carcinoma (HCC). However, the presence of viable intratumoral bacteria remains unclear. It is worth exploring whether the metataxonomic characteristics of intratumoral bacteria can be used as a potential marker for HCC prediction. Here, we present the first evidence of the existence of viable intratumoral bacteria in HCC using the tissue culture method. We revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. We analyzed the diversity, structure, and abundance of normal liver and HCC microbiota. We built a machine learning model for HCC prediction using intratumoral bacterial features. We show that specific taxa represent potential targets for both therapeutic and diagnostic interventions.
Collapse
Affiliation(s)
- Jian-Hang Huang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zhong-Chen Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jun Li
- Department of General Surgery, Shanghai TongRen Hospital, Shanghai, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
225
|
Changes in antibiotic residues and the gut microbiota during ciprofloxacin administration throughout Silkie chicken development. Poult Sci 2022; 102:102267. [PMID: 36442306 PMCID: PMC9709234 DOI: 10.1016/j.psj.2022.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.
Collapse
|
226
|
Zhang Y, Yang X, Hu Y, Huang X. Integrated Bioinformatic Investigation of EXOSCs in Hepatocellular Carcinoma Followed by the Preliminary Validation of EXOSC5 in Cell Proliferation. Int J Mol Sci 2022; 23:ijms232012161. [PMID: 36293016 PMCID: PMC9603681 DOI: 10.3390/ijms232012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022] Open
Abstract
The Exosome complex (EXOSC) is a multiprotein complex that was originally discovered as the machinery of RNA degradation. Interestingly, recent studies have reported that EXOSC family members (EXOSCs) are associated with various human diseases, including cancers. It will be interesting to investigate whether EXOSCs are related to the processes of hepatocellular carcinoma (HCC). In this study, multiple public databases and experimental validation were utilized to systemically investigate the role of EXOSCs, especially EXOSC5, in HCC. It is worth considering that the mRNA and protein levels of many EXOSCs were elevated in HCC, although there were some differences in the results from different database analyses. The over-expression of EXOSCs could predict HCC to some extent, as evidenced by the positive correlation between the elevated EXOSCs and alpha fetoprotein (AFP) levels, as well as with a high accuracy, as shown by the receiver operating characteristic curve analysis. Additionally, higher mRNA expressions of specific EXOSCs were significantly related to clinical cancer stage, shorter overall survival and disease-free survival in HCC patients. A moderate mutation rate of EXOSCs was also observed in HCC. Furthermore, a gene functional enrichment analysis indicated that EXOSCs were mainly involved in the metabolism of RNA. Moreover, we revealed that the expression of EXOSCs is remarkably related to immune cell infiltration. Finally, EXOSC5 was upregulated in HCC tissues and cell lines, promoting cell growth and proliferation via activated signal transducer and activator of transcription 3 (STAT3). The bioinformatic analyses, following verification in situ and in vitro, provided a direction for further functions and underlying mechanism of EXOSCs in HCC.
Collapse
Affiliation(s)
| | | | | | - Xin Huang
- Correspondence: ; Tel./Fax: +86-731-88912463
| |
Collapse
|
227
|
He Y, Liang T, Chen Z, Mo S, Liao Y, Gao Q, Huang K, Peng T, Zhou W, Han C. Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7261786. [PMID: 36238647 PMCID: PMC9553367 DOI: 10.1155/2022/7261786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Background Early stage hepatocellular carcinoma (HCC) has a high recurrence rate after surgery and lacks reliable predictive tools. We explored the potential of combining enhanced CT with gut microbiome to develop a predictive model for recurrence after early HCC surgery. Methods A total of 112 patients with early HCC who underwent hepatectomy from September 2018 to December 2020 were included in this study, and the machine learning method was divided into a training group (N = 71) and a test group (N = 41) with the observed endpoint of recurrence-free survival (RFS). Features were extracted from the arterial and portal phases of enhanced computed tomography (CT) images and gut microbiome, and features with minimum absolute contraction and selection operator regression were created, and the extracted features were scored to create a preoperative prediction model by using the multivariate Cox regression analysis with risk stratification analysis. Results In the study cohort, the model constructed by combining radiological and gut flora features provided good predictive performance (C index, 0.811 (0.650-0.972)). The combined radiology and gut flora-based model constructed risk strata with high, intermediate, or low risk of recurrence and different characteristics of recurrent tumor imaging and gut flora. Recurrence of early stage hepatocellular carcinoma may be associated with oxidative stress in the intestinal flora. Conclusions This study successfully constructs a risk model integrating enhanced CT and gut microbiome characteristics that can be used for the risk of postoperative recurrence in patients with early HCC. In addition, intestinal flora associated with HCC recurrence may be involved in oxidative stress.
Collapse
Affiliation(s)
- Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijie Zhou
- Deputy Chief Technician of Laboratory, Baise People's Hospital, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
228
|
Kobayashi T, Iwaki M, Nakajima A, Nogami A, Yoneda M. Current Research on the Pathogenesis of NAFLD/NASH and the Gut-Liver Axis: Gut Microbiota, Dysbiosis, and Leaky-Gut Syndrome. Int J Mol Sci 2022; 23:ijms231911689. [PMID: 36232990 PMCID: PMC9570241 DOI: 10.3390/ijms231911689] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Global lifestyle changes have led to an increased incidence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), requiring further in-depth research to understand the mechanisms and develop new therapeutic strategies. In particular, high-fat and high-fructose diets have been shown to increase intestinal permeability, which can expose the liver to endotoxins. Indeed, accumulating evidence points to a link between these liver diseases and the intestinal axis, including dysbiosis of the gut microbiome and leaky-gut syndrome. Here, we review the mechanisms contributing to these links between the liver and small intestine in the pathogenesis of NAFLD/NASH, focusing on the roles of intestinal microbiota and their metabolites to influence enzymes essential for proper liver metabolism and function. Advances in next-generation sequencing technology have facilitated analyses of the metagenome, providing new insights into the roles of the intestinal microbiota and their functions in physiological and pathological mechanisms. This review summarizes recent research linking the gut microbiome to liver diseases, offering new research directions to elucidate the detailed mechanisms and novel targets for treatment and prevention.
Collapse
|
229
|
Wu L, Li W, Chen G, Yang Z, Lv X, Zheng L, Sun J, Ai L, Sun B, Ni L. Ameliorative effects of monascin from red mold rice on alcoholic liver injury and intestinal microbiota dysbiosis in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
230
|
Shang J, Zhang Y, Guo R, Liu W, Zhang J, Yan G, Wu F, Cui W, Wang P, Zheng X, Wang T, Dong Y, Zhao J, Wang L, Xiao J, Zhao Z. Gut Microbiome Analysis Can Be Used as a Noninvasive Diagnostic Tool and Plays an Essential Role in the Onset of Membranous Nephropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201581. [PMID: 35975460 PMCID: PMC9534961 DOI: 10.1002/advs.202201581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Indexed: 05/15/2023]
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome. The aim is to establish a non-invasive diagnostic model of MN using differential gut microbiome analysis, and to explore the relationship between the gut microbiome and MN pathogenesis in vivo. 825 fecal samples from MN patients and healthy participants are collected from multiple medical centers across China. Key operational taxonomic units (OTUs) obtained through 16S rRNA sequencing are used to establish a diagnostic model. A rat model of MN is developed to explore the relationship between the gut microbiome and the pathogenesis of MN. The diversity and richness of the gut microbiome are significantly lower in patients with MN than in healthy individuals. The diagnostic model based on seven OTUs achieves an excellent efficiency of 98.36% in the training group and also achieves high efficiency in cross-regional cohorts. In MN rat model, gut microbiome elimination prevents model establishment, but fecal microbiome transplantation restores the phenotype of protein urine. Gut microbiome analysis can be used as a non-invasive tool for MN diagnosis. The onset of MN depends on the presence of naturally colonized microbiome. Early intervention in the gut microbiome may help reduce urinary protein level in MN.
Collapse
Affiliation(s)
- Jin Shang
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
- Laboratory Animal Platform of Academy of Medical SciencesZhengzhou UniversityZhengzhouHenan450000P. R. China
- Laboratory of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Yiding Zhang
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Ruixue Guo
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Wenli Liu
- Department of Clinical LaboratoryPeking Union Medical College HospitalPeking Union Medical College & China Academy of Medical ScienceBeijing100730China
| | - Jun Zhang
- Department of Nephrologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong510630China
| | - Ge Yan
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Feng Wu
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Wen Cui
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Peipei Wang
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Xuejun Zheng
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Ting Wang
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Yijun Dong
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Jing Zhao
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Jing Xiao
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
- Laboratory of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Zhanzheng Zhao
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Zhengzhou UniversityZhengzhouHenan450000P. R. China
- Laboratory Animal Platform of Academy of Medical SciencesZhengzhou UniversityZhengzhouHenan450000P. R. China
- Laboratory of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| |
Collapse
|
231
|
Monascuspiloin from Monascus-Fermented Red Mold Rice Alleviates Alcoholic Liver Injury and Modulates Intestinal Microbiota. Foods 2022; 11:foods11193048. [PMID: 36230124 PMCID: PMC9564352 DOI: 10.3390/foods11193048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Monascus-fermented red mold rice (RMR) has excellent physiological efficacy on lipid metabolism and liver function. This study investigated the ameliorative effects of monascuspiloin (MP) from RMR on alcoholic liver injury in mice, and further clarified its mechanism of action. Results showed that MP intervention obviously ameliorated lipid metabolism and liver function in mice with over-drinking. In addition, dietary MP intervention reduced liver MDA levels and increased liver CAT, SOD, and GSH levels, thus alleviating liver oxidative stress induced by excessive drinking. 16S rRNA amplicon sequencing showed that MP intervention was beneficial to ameliorate intestinal microbiota dysbiosis by elevating the proportion of norank_f_Lachnospiraceae, Lachnoclostridium, Alistipes, Roseburia, Vagococcus, etc., but decreasing the proportion of Staphylococcus, norank_f_Desulfovibrionaceae, Lachnospiraceae_UCG-001, Helicobacter, norank_f_Muribaculaceae, unclassified_f_Ruminococcaceae, etc. Additionally, correlation network analysis indicated that the key intestinal bacterial taxa intervened by MP were closely related to some biochemical parameters of lipid metabolism, liver function, and oxidative stress. Moreover, liver metabolomics analysis revealed that dietary MP supplementation significantly regulated the levels of 75 metabolites in the liver, which were involved in the synthesis and degradation of ketone bodies, taurine, and hypotaurine metabolism, and other metabolic pathways. Furthermore, dietary MP intervention regulated gene transcription and protein expression associated with hepatic lipid metabolism and oxidative stress. In short, these findings suggest that MP mitigates alcohol-induced liver injury by regulating the intestinal microbiome and liver metabolic pathway, and thus can serve as a functional component to prevent liver disease.
Collapse
|
232
|
Hong SY, Yang YY, Xu JZ, Xia QD, Wang SG, Xun Y. The renal pelvis urobiome in the unilateral kidney stone patients revealed by 2bRAD-M. J Transl Med 2022; 20:431. [PMID: 36153619 PMCID: PMC9509602 DOI: 10.1186/s12967-022-03639-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background The pathogenesis of kidney stone disease (KSD) is not fully understood, and potential contributing factors remain to be explored. Several studies have revealed that the urinary microbiome (urobiome) of stone formers was distinct from that of healthy individuals using 16S rRNA gene sequencing, most of which only provided microbial identification at the genus level. 2bRAD sequencing for Microbiome (2bRAD-M) is a novel sequencing technique that enables accurate characterization of the low-biomass microbiome at the species resolution. We aimed to apply 2bRAD-M to profile the renal pelvis urobiome of unilateral kidney stone patients and compared the urobiome with and without stone(s). Method A total of 30 patients with unilateral stones were recruited, and their renal pelvis urine from both sides was collected. A ureteroscope was inserted into the renal pelvis with stone(s) and a ureteral catheter was placed into the ureteroscope to collect renal pelvis urine. This procedure was repeated again with new devices to collect the urine of the other side. 2bRAD-M was performed to characterize the renal pelvis urobiome of unilateral stone formers to explore whether microbial differences existed between the stone side and the non-stone side. Results The microbial community composition of the stone side was similar to that of the non-stone side. Paired comparison showed that Corynebacterium was increased and Prevotella and Lactobacillus were decreased in the stone side. Four species (Prevotella bivia, Lactobacillus iners, Corynebacterium aurimucosum, and Pseudomonas sp_286) were overrepresented in the non-stone side. 24 differential taxa were also identified between two groups by linear discriminant analysis effect size (LEfSe). Extensive and close connections among genera and species were observed in the correlation analysis. Moreover, a random forest classifier was constructed using specific enriched species, which can distinguish the stone side from the non-stone side with an accuracy of 71.2%. Conclusion This first 2bRAD-M microbiome survey gave an important hint towards the potential role of urinary dysbiosis in KSD and provided a better understanding of mechanism of stone formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03639-6.
Collapse
|
233
|
Li YN, Kang NL, Jiang JJ, Zhu YY, Liu YR, Zeng DW, Wang F. Gut microbiota of hepatitis B virus-infected patients in the immune-tolerant and immune-active phases and their implications in metabolite changes. World J Gastroenterol 2022; 28:5188-5202. [PMID: 36188719 PMCID: PMC9516678 DOI: 10.3748/wjg.v28.i35.5188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The microbes and metabolomics of microbiota dysbiosis in the gut in the different phases of hepatitis B virus (HBV) infection are not fully understood. AIM To investigate the specific gut microbiota and metabolites of the immune-tolerant (IT) and immune-active (IA) phases of chronic hepatitis B (CHB). METHODS Clinical fecal samples from healthy individuals and patients in the IT and IA phases of HBV infection were collected. Next, non-target metabolomics, bioinformatics, and 16S rDNA sequencing analyses were performed. RESULTS A total of 293 different metabolites in 14 phyla, 22 classes, 29 orders, 51 families, and 190 genera were identified. The four phyla of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant, accounting for 99.72%, 99.79%, and 99.55% in the healthy controls, IT-phase patients, and IA-phase patients, respectively. We further identified 16 genera with different richness in the IT phase and IA phase of HBV infection. Of the 134 named metabolites, 57 were upregulated and 77 were downregulated. A total of 101 different metabolic functions were predicted in this study, with 6 metabolic pathways having the highest enrichments, namely carbohydrate metabolism (14.85%), amino acid metabolism (12.87%), lipid metabolism (11.88%), metabolism of cofactors and vitamins (11.88%), xenobiotic biodegradation (9.9%), and metabolism of terpenoids and polyketides (7.92%). CONCLUSION These findings provide observational evidence of compositional alterations of the gut microbiome and some related metabolites in patients with IT-phase or IA-phase HBV infection. Further studies should investigate whether microbiota modulation can facilitate the progression of CHB and the cause-effect relationship between the gut microbiota and CHB.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Na-Ling Kang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Jia-Ji Jiang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yue-Yong Zhu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yu-Rui Liu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Da-Wu Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Fei Wang
- Department of Pharmacy, Fujian Geriatric Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
234
|
Li Z, Zhang Y, Hong W, Wang B, Chen Y, Yang P, Zhou J, Fan J, Zeng Z, Du S. Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma Via STING signaling. Gut Microbes 2022; 14:2119055. [PMID: 36093568 PMCID: PMC9467592 DOI: 10.1080/19490976.2022.2119055] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of the gut-liver axis have enhanced our understanding of the pathophysiology of various liver diseases and the mechanisms underlying the regulation of the effectiveness of therapies. Radiotherapy (RT) is an important therapeutic option for patients with unresectable hepatocellular carcinoma (HCC). However, the role of the microbiome in regulating the response to RT remains unclear. The present study characterizes the gut microbiome of patients responsive or non-responsive to RT and investigates the molecular mechanisms underlying the differences in patient response. We collected fecal samples for 16S rRNA sequencing from a prospective longitudinal trial of 24 HCC patients receiving RT. We used fecal microbiota transplantation (FMT), flow cytometry, and transcriptome sequencing to explore the effects of dysbiosis on RT. We also examined the role of stimulator of interferon genes (STING) in RT-associated antitumor immune responses mediated by gut microbiota in STING- (Tmem173-/-) and cGAS-knockout (Mb21d1-/-) mouse models. We propose that primary resistance to RT could be attributed to the disruption of the gut microbiome. Mechanistically, gut microbiome dysbiosis impairs antitumor immune responses by suppressing antigen presentation and inhibiting effector T cell functions through the cGAS-STING-IFN-I pathway. Cyclic-di-AMP - an emerging second messenger of bacteria - may act as a STING agonist and is thus a potential target for the prediction and modulation of responses to RT in HCC patients. Our study highlights the therapeutic potential of modulating the gut microbiome in HCC patients receiving RT and provides a new strategy for the radiosensitization of liver cancer.
Collapse
Affiliation(s)
- Zongjuan Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China,CONTACT Shisuo Du Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai200032, China; Zhaochong Zeng
| |
Collapse
|
235
|
Zhou Z, Lv H, Lv J, Shi Y, Huang H, Chen L, Shi D. Alterations of gut microbiota in cirrhotic patients with spontaneous bacterial peritonitis: A distinctive diagnostic feature. Front Cell Infect Microbiol 2022; 12:999418. [PMID: 36147601 PMCID: PMC9485664 DOI: 10.3389/fcimb.2022.999418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSpontaneous bacterial peritonitis (SBP) is a severe infection in cirrhotic patients that requires early diagnosis to improve the long-term outcome. Alterations in the gut microbiota have been shown to correlate with the development and progression of liver cirrhosis. However, the relationship between SBP and gut microbiota remains unknown.MethodsIn this study, we applied 16S rRNA pyrosequencing of feces to ascertain possible links between the gut microbiota and SBP. We recruited 30 SBP patients, 30 decompensated cirrhotic patients without SBP (NSBP) and 30 healthy controls. Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt. ResultsThe composition of the gut microbiota in the SBP patients differed remarkably from that in the NSBP patients and healthy individuals. The microbial richness was significantly decreased, while the diversity was increased in the SBP patients. Thirty-four bacterial taxa containing 15 species, mainly pathogens such as Klebsiella pneumoniae, Serratia marcescens and Prevotella oris, were dominant in the SBP group, while 42 bacterial taxa containing 16 species, especially beneficial species such as Faecalibacterium prausnitzii, Methanobrevibacter smithii and Lactobacillus reuteri, were enriched in the NSBP group. Notably, we found that 18 gene functions of gut microbiota were different between SBP patients and NSBP patients, which were associated with energy metabolism and functional substance metabolism. Five optimal microbial markers were determined using a random forest model, and the combination of Lactobacillus reuteri, Rothia mucilaginosa, Serratia marcescens, Ruminococcus callidus and Neisseria mucosa achieved an area under the curve (AUC) value of 0.8383 to distinguish SBP from decompensated cirrhosis.ConclusionsWe described the obvious dysbiosis of gut microbiota in SBP patients and demonstrated the potential of microbial markers as noninvasive diagnostic tools for SBP at an early stage.
Collapse
Affiliation(s)
- Zumo Zhou
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hui Lv
- Health Promotion Center, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Shandong Laboratory, Jinan Microecological Biomedicine, Jinan, China
| | - Yongming Shi
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Heqing Huang
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Lin Chen
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Shandong Laboratory, Jinan Microecological Biomedicine, Jinan, China
- *Correspondence: Ding Shi,
| |
Collapse
|
236
|
Abstract
As the fourth most common gynecological cancer, cervical cancer has resulted in more than 300,000 deaths worldwide in 2020. The expression of the human papillomavirus (HPV) oncogenes E6 and E7 is significantly involved in the initiation and progression of cervical neoplasia. Additionally, the composition of the vaginal microbiome was also closely associated with the ability of HPV to induce cervical cancer. However, the relationship between the expression of HPV E6/E7 oncogene and the composition of the vaginal microbiome has not been clearly explored. In our present study, to investigate the relationship between the HPV E6/E7 oncogene and vaginal microbiome, cervical swabs from 115 patients were collected, and their vaginal microbiomes were analyzed by using metagenomics sequencing. Along with the progression of cervical lesions, the diversity of cervical flora increased gradually, and the abundance of Lactobacillus decreased. Compared with the HPV group, the prevalence of HPV E6/E7 and oncogene expression level were significantly upregulated in cervical intraepithelial neoplasia (CIN) and cervical cancer (CC) groups. Additionally, a positive correlation between the expression of the HPV oncogene and the genera Sneathia, Salmonella, Leptotrichia, Pseudomonas, and Roseovarius in the HPV group was observed. In the CIN group, the enrichment of the genera Sneathia and Megasphaera was weakly linked with HPV oncogene overexpression. In the CC group, a strong association between the overabundance of the genera Peptostreptococcus and Enterococcus and the high expression of HPV oncogene was also found. The increased diversity of the vaginal microbiota and the decreased Lactobacillus abundance were significantly associated with the severity of cervical disease, and the expression of the HPV oncogene could also be regulated by certain pathogens in different stages of cervical lesions. IMPORTANCE The main findings of this study were that we clarified the associations of the different bacterial species with the expression of human papillomavirus (HPV) oncogenes at different stages of cervical cancer. Along with the severity of cervical lesions, the abundance of the genus and species of Lactobacillus obviously declined, while the aerobic and anaerobic bacteria, as well as the prevalence and expression of HPV E6/E7 oncogene, were increased dramatically.
Collapse
|
237
|
Bartolini I, Nannini G, Risaliti M, Matarazzo F, Moraldi L, Ringressi MN, Taddei A, Amedei A. Impact of microbiota-immunity axis in pancreatic cancer management. World J Gastroenterol 2022; 28:4527-4539. [PMID: 36157926 PMCID: PMC9476869 DOI: 10.3748/wjg.v28.i32.4527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
The microbiota impact on human diseases is well-known, and a growing body of literature is providing evidence about the complex interplay between microbiota-immune system-human physiology/pathology, including cancers. Together with the defined risk factors (e.g., smoke habits, diet, diabetes, and obesity), the oral, gut, biliary, and intrapancreatic microbiota contribute to pancreatic cancer development through different pathways including the interaction with the immune system. Unfortunately, a great majority of the pancreatic cancer patients received a diagnosis in advanced stages not amenable to be radically treated and potentially cured. Given the poor pancreatic cancer prognosis, complete knowledge of these complicated relationships could help researchers better understand the disease pathogenesis and thus provide early potential non-invasive biomarkers, new therapeutic targets, and tools for risk stratification that might result in greater therapeutic possibilities and eventually in a better and longer patient survival.
Collapse
Affiliation(s)
- Ilenia Bartolini
- Department of Experimental and Clinical Medicine, HPB Surgery Unit, Azienda Ospedaliero-Universitaria Careggi, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera-Universitaria Careggi, Florence 50134, Italy
| | - Matteo Risaliti
- Department of Experimental and Clinical Medicine, HPB Surgery Unit, Azienda Ospedaliero-Universitaria Careggi, Florence 50134, Italy
| | - Francesco Matarazzo
- Department of Experimental and Clinical Medicine, HPB Surgery Unit, Azienda Ospedaliero-Universitaria Careggi, Florence 50134, Italy
| | - Luca Moraldi
- Division of Oncologic Surgery, Department of Oncology, Careggi University Hospital, Firenze 50134, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, HPB Surgery Unit, Azienda Ospedaliero-Universitaria Careggi, Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, HPB Surgery Unit, Azienda Ospedaliero-Universitaria Careggi, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera-Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|
238
|
Avalos-Fernandez M, Alin T, Métayer C, Thiébaut R, Enaud R, Delhaes L. The respiratory microbiota alpha-diversity in chronic lung diseases: first systematic review and meta-analysis. Respir Res 2022; 23:214. [PMID: 35999634 PMCID: PMC9396807 DOI: 10.1186/s12931-022-02132-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background While there seems to be a consensus that a decrease in gut microbiome diversity is related to a decline in health status, the associations between respiratory microbiome diversity and chronic lung disease remain a matter of debate. We provide a systematic review and meta-analysis of studies examining lung microbiota alpha-diversity in patients with asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or bronchiectasis (NCFB), in which a control group based on disease status or healthy subjects is provided for comparison. Results We reviewed 351 articles on title and abstract, of which 27 met our inclusion criteria for systematic review. Data from 24 of these studies were used in the meta-analysis. We observed a trend that CF patients have a less diverse respiratory microbiota than healthy individuals. However, substantial heterogeneity was present and detailed using random-effects models, which limits the comparison between studies. Conclusions Knowledge on respiratory microbiota is under construction, and for the moment, it seems that alpha-diversity measurements are not enough documented to fully understand the link between microbiota and health, excepted in CF context which represents the most studied chronic respiratory disease with consistent published data to link alpha-diversity and lung function. Whether differences in respiratory microbiota profiles have an impact on chronic respiratory disease symptoms and/or evolution deserves further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02132-4.
Collapse
Affiliation(s)
- Marta Avalos-Fernandez
- University of Bordeaux, Bordeaux Population Health Research Center, UMR U1219, INSERM, F-33000, Bordeaux, France. .,SISTM team Inria BSO, F-33405, Talence, France.
| | - Thibaud Alin
- University of Bordeaux, Bordeaux Population Health Research Center, UMR U1219, INSERM, F-33000, Bordeaux, France.,SISTM team Inria BSO, F-33405, Talence, France
| | - Clémence Métayer
- University of Bordeaux, Bordeaux Population Health Research Center, UMR U1219, INSERM, F-33000, Bordeaux, France.,SISTM team Inria BSO, F-33405, Talence, France
| | - Rodolphe Thiébaut
- University of Bordeaux, Bordeaux Population Health Research Center, UMR U1219, INSERM, F-33000, Bordeaux, France.,SISTM team Inria BSO, F-33405, Talence, France.,Pole of Public Health, University Hospital of Bordeaux, F-33000, Bordeaux, France
| | - Raphaël Enaud
- Cystic fibrosis centre (CRCM), Paediatrics Department, University Hospital of Bordeaux, F-33000, Bordeaux, France.,Parasitology-Mycology Department, University Hospital of Bordeaux, F-33000, Bordeaux, France
| | - Laurence Delhaes
- Cystic fibrosis centre (CRCM), Paediatrics Department, University Hospital of Bordeaux, F-33000, Bordeaux, France.,Parasitology-Mycology Department, University Hospital of Bordeaux, F-33000, Bordeaux, France.,University of Bordeaux, Bordeaux Cardio-Thoracic Research Center, U1045, INSERM, F-33000, Bordeaux, France
| |
Collapse
|
239
|
Guan H, Zhang X, Kuang M, Yu J. The gut-liver axis in immune remodeling of hepatic cirrhosis. Front Immunol 2022; 13:946628. [PMID: 37408838 PMCID: PMC10319400 DOI: 10.3389/fimmu.2022.946628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 07/07/2023] Open
Abstract
In healthy settings, the gut-liver axis allows host-microbiota communications and mediates immune homeostasis through bidirectional regulation. Meanwhile, in diseases, gut dysbiosis, combined with an impaired intestinal barrier, introduces pathogens and their toxic metabolites into the system, causing massive immune alternations in the liver and other extrahepatic organs. Accumulating evidence suggests that these immune changes are associated with the progression of many liver diseases, especially hepatic cirrhosis. Pathogen-associated molecular patterns that originated from gut microbes directly stimulate hepatocytes and liver immune cells through different pattern recognition receptors, a process further facilitated by damage-associated molecular patterns released from injured hepatocytes. Hepatic stellate cells, along with other immune cells, contribute to this proinflammatory and profibrogenic transformation. Moreover, cirrhosis-associated immune dysfunction, an imbalanced immune status characterized by systemic inflammation and immune deficiency, is linked to gut dysbiosis. Though the systemic inflammation hypothesis starts to link gut dysbiosis to decompensated cirrhosis from a clinical perspective, a clearer demonstration is still needed for the role of the gut-liver-immune axis in cirrhosis progression. This review discusses the different immune states of the gut-liver axis in both healthy and cirrhotic settings and, more importantly, summarizes the current evidence about how microbiota-derived immune remodeling contributes to the progression of hepatic cirrhosis via the gut-liver axis.
Collapse
Affiliation(s)
- Huayu Guan
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhang
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
240
|
Lin B, Ma Y, Wu S. Multi-Omics and Artificial Intelligence-Guided Data Integration in Chronic Liver Disease: Prospects and Challenges for Precision Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:415-421. [PMID: 35925812 DOI: 10.1089/omi.2022.0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic liver disease (CLD) is a significant planetary health burden. CLD includes a broad range of liver pathologies from different causes, for example, hepatitis B virus infection, fatty liver disease, hepatocellular carcinoma, and nonalcoholic fatty liver disease or the metabolic associated fatty liver disease. Biomarker and diagnostic discovery, and new molecular targets for precision treatments are timely and sorely needed in CLD. In this context, multi-omics data integration is increasingly being facilitated by artificial intelligence (AI) and attendant digital transformation of systems science. While the digital transformation of multi-omics integrative analyses is still in its infancy, there are noteworthy prospects, hope, and challenges for diagnostic and therapeutic innovation in CLD. This expert review aims at the emerging knowledge frontiers as well as gaps in multi-omics data integration at bulk tissue levels, and those including single cell-level data, gut microbiome data, and finally, those incorporating tissue-specific information. We refer to AI and related digital transformation of the CLD research and development field whenever possible. This review of the emerging frontiers at the intersection of systems science and digital transformation informs future roadmaps to bridge digital technology discovery and clinical omics applications to benefit planetary health and patients with CLD.
Collapse
Affiliation(s)
- Biaoyang Lin
- Zhejiang California International Nanosystems Institute (ZCNI) Proprium Research Center, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yingying Ma
- Zhejiang California International Nanosystems Institute (ZCNI) Proprium Research Center, Zhejiang University, Hangzhou, China
- Hangzhou Proprium Biotech Co. Ltd., Hangzhou, China
| | - ShengJun Wu
- Department of Clinical Laboratories, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
241
|
Relationship between Intestinal Microflora and Hepatocellular Cancer Based on Gut-Liver Axis Theory. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6533628. [PMID: 35965618 PMCID: PMC9359835 DOI: 10.1155/2022/6533628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 12/26/2022]
Abstract
The intestinal microflora is a bacterial group that lives in the human digestive tract and has a long-term interdependence with the host. Due to the close anatomical and functional relationship between the liver and the intestine, the intestinal flora affects liver metabolism via the intestinal-hepatic circulation, thereby playing an extremely important role in the pathological process of liver inflammation, chronic fibrosis, and liver cancer. In recent years, the rapid development of technologies in high-throughput sequencing and genomics has opened up possibilities for a broader and deeper understanding of the crosstalk between the intestinal flora and the occurrence and development of liver cancer. This review aims to summarize the mechanisms by which the gut microbiota changes the body's metabolism, through the gut-liver axis, thereby affecting the occurrence and development of primary liver cancer. In addition, the potential regulation of intestinal microflora in the treatment of liver cancer is discussed.
Collapse
|
242
|
Spanu D, Pretta A, Lai E, Persano M, Donisi C, Mariani S, Dubois M, Migliari M, Saba G, Ziranu P, Pusceddu V, Puzzoni M, Astara G, Scartozzi M. Hepatocellular carcinoma and microbiota: Implications for clinical management and treatment. World J Hepatol 2022; 14:1319-1332. [PMID: 36158925 PMCID: PMC9376771 DOI: 10.4254/wjh.v14.i7.1319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota plays an essential role in host homeostasis. It is involved in several physiological processes such as nutrients digestion and absorption, maintenance of intestinal epithelial barrier integrity and immune system self-tolerance. Especially the gut microbiota is assumed to play a crucial role in many gastrointestinal, pancreatic and liver disorders. Its role in hepatic carcinogenesis is also gaining increasing interest, especially regarding the development of therapeutic strategies. Different studies are highlighting a link between some bacterial strains and liver disease, including hepatocellular carcinoma (HCC). Indeed, HCC represents an interesting field of research in this perspective, due to the gut-liver axis, to the implication of microbiota in the immune system and to the increasing number of immunotherapy agents investigated in this tumour. Thus, the assessment of the role of microbiota in influencing clinical outcome for patients treated with these drugs is becoming of increasing importance. Our review aims to give an overview on the relationship between microbiota and HCC development/progression and treatment. We focus on potential implications on the available treatment strategies and those under study in the various stages of disease. We highlight the pathogenic mechanisms and investigate the underlying molecular pathways involved. Moreover, we investigate the potential prognostic and/or predictive role of microbiota for target therapies, immune checkpoint inhibitors and loco-regional treatment. Finally, given the limitation of current treatments, we analyze the gut microbiota-mediated therapies and its potential options for HCC treatment focusing on fecal microbiota transplantation.
Collapse
Affiliation(s)
- Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
243
|
Liakina V, Strainiene S, Stundiene I, Maksimaityte V, Kazenaite E. Gut microbiota contribution to hepatocellular carcinoma manifestation in non-alcoholic steatohepatitis. World J Hepatol 2022; 14:1277-1290. [PMID: 36158907 PMCID: PMC9376773 DOI: 10.4254/wjh.v14.i7.1277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the gut microbiota has been recognized as an obvious active player in addition to liver steatosis/steatohepatitis in the pathophysiological mechanisms of the development of hepatocellular carcinoma (HCC), even in the absence of cirrhosis. Evidence from clinical and experimental studies shows the association of specific changes in the gut microbiome and the direct contribution to maintaining liver inflammation and/or cancerogenesis in nonalcoholic fatty liver disease-induced HCC. The composition of the gut microbiota differs significantly in obese and lean individuals, especially in the abundance of pro-inflammatory lipopolysaccharide-producing phyla, and, after establishing steatohepatitis, it undergoes minor changes during the progression of the disease toward advanced fibrosis. Experimental studies proved that the microbiota of obese subjects can induce steatohepatitis in normally fed mice. On the contrary, the transplantation of healthy microbiota to obese mice relieves steatosis. However, further studies are needed to confirm these findings and the mechanisms involved. In this review, we have evaluated well-documented clinical and experimental research on the role of the gut microbiota in the manifestation and promotion of HCC in nonalcoholic steatohepatitis (NASH). Furthermore, a literature review of microbiota alterations and consequences of dysbiosis for the promotion of NASH-induced HCC was performed, and the advantages and limitations of the microbiota as an early marker of the diagnosis of HCC were discussed.
Collapse
Affiliation(s)
- Valentina Liakina
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Vilnius 10223, Lithuania.
| | - Sandra Strainiene
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Therapeutic and Radiological Department, Antakalnis Polyclinic, Vilnius 10207, Lithuania
| | - Ieva Stundiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Vaidota Maksimaityte
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Edita Kazenaite
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
244
|
Khalyfa AA, Punatar S, Yarbrough A. Hepatocellular Carcinoma: Understanding the Inflammatory Implications of the Microbiome. Int J Mol Sci 2022; 23:ijms23158164. [PMID: 35897739 PMCID: PMC9332105 DOI: 10.3390/ijms23158164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. It is well known that repeated inflammatory insults in the liver can cause hepatic cellular injury that lead to cirrhosis and, ultimately, hepatocellular carcinoma. Furthermore, the microbiome has been implicated in multiple inflammatory conditions which predispose patients to malignancy. With this in mind, we explore the inflammatory implications of the microbiome on pathways that lead to HCC. We also focus on how an understanding of these underlying inflammatory principles lead to a more wholistic understanding of this deadly disease, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Ahamed A. Khalyfa
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
- Correspondence:
| | - Shil Punatar
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| |
Collapse
|
245
|
Ni Z, Wang S, Li Y, Zhou L, Zhai D, Xia D, Yu C. Mapping trends and hotspot regarding gut microbiota and host immune response: A bibliometric analysis of global research (2011–2021). Front Microbiol 2022; 13:932197. [PMID: 35958122 PMCID: PMC9361022 DOI: 10.3389/fmicb.2022.932197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gut microbiota is a complex ecosystem that is vital for the development and function of the immune system, is closely associated with host immunity, and affects human health and disease. Therefore, the current progress and trends in this field must be explored. Purpose No bibliometric analysis has been conducted on gut microbiota and host immune response. This study aimed to analyze the current progress and developing trends in this field through bibliometric and visual analysis. Methods Global publications on gut microbiota and host immune response from January 2011 to December 2021 were extracted from the Web of Science (WOS) collection database. GraphPad Prism, VOSviewer software, and CiteSpace were employed to perform a bibliometric and visual study. Results The number of publications has rapidly increased in the last decade but has declined in the most recent year. The Cooperation network shows that the United States, Harvard Medical School, and Frontiers in Immunology were the most active country, institute, and journal in this field, respectively. Co-occurrence analysis divided all keywords into four clusters: people, animals, cells, and diseases. The latest keyword within all clusters was “COVID,” and the most frequently occurring keyword was “SCFA.” Conclusion Gut microbiota and host immune response remain a research hotspot, and their relation to cancer, CNS disorders, and autoimmune disease has been explored. However, additional studies on gut microbiota must be performed, particularly its association with bacterial strain screening and personalized therapy.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sheng Wang
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dongxia Zhai
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Chaoqin Yu
| |
Collapse
|
246
|
Cai Q, Duan J, Ding L. Prognostic model of immune-related genes for patients with hepatocellular carcinoma. Front Surg 2022; 9:819491. [PMID: 35937592 PMCID: PMC9349350 DOI: 10.3389/fsurg.2022.819491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune-related genes (IRGs) are closely connected to the occurrence and development of tumors. Their influence on the prognosis of patients with HCC, however, remains unclear. Methods From the TCGA database, we integrated 365 liver cancer tissues and 50 normal tissues to identify differential immune genes related to prognosis. Multivariate COX analysis was used to establish a new prognostic index on account of IRGs, whereby risk score = (Expression level of HSPA4*0.022) + (Expression level of PSMD14*0.042) + (Expression level of RBP2*0.019) + (Expression level of MAPT*0.197) + (Expression level of TRAF3*0.146) + (Expression level of NDRG1*(0.006) + (Expression level of NRAS*0.027) + (Expression level of IL17D*0.075). Results The risk score was clearly correlated with an unfavorable survival rate and with clinical characteristics. By integrating the immune-related risk score model with clinical features, a nomogram was constructed to predict the survival rate of HCC patients (1-, 3- and 5-year AUC of 0.721, 0.747 and 0.781, respectively). Conclusion We have established a valuable prognostic risk score for HCC patients that may be a better predictor of survival than the present method. With the risk score's strong predictive value for immune cells and functions, it may provide clinical guidance for the diagnosis and prognosis of different immunophenotypes, and provide multiple therapeutic targets for the treatment of HCC patients based on subtype-specific immune molecules.
Collapse
Affiliation(s)
- Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Correspondence: Qun Cai
| | - Jinnan Duan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Liang Ding
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
247
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
248
|
Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, Morelli MC. Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14143421. [PMID: 35884482 PMCID: PMC9322180 DOI: 10.3390/cancers14143421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The family of inherited intrahepatic cholestasis includes autosomal recessive cholestatic rare diseases of childhood involved in bile acids secretion or bile transport defects. Specific genetic pathways potentially cause many otherwise unexplained cholestasis or hepatobiliary tumours in a healthy liver. Lately, next-generation sequencing and whole-exome sequencing have improved the diagnostic procedures of familial intrahepatic cholestasis (FIC), as well as the discovery of several genes responsible for FIC. Moreover, mutations in these genes, even in the heterozygous status, may be responsible for cryptogenic cholestasis in both young and adults. Mutations in FIC genes can influence serum and hepatic levels of bile acids. Experimental studies on the NR1H4 gene have shown that high bile acids concentrations cause excessive production of inflammatory cytokines, resistance to apoptosis, and increased cell regeneration, all risk conditions for developing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). NR1H4 gene encodes farnesoid X-activated receptor having a pivotal role in bile salts synthesis. Moreover, HCC and CCA can emerge in patients with several FIC genes such as ABCB11, ABCB4 and TJP2. Herein, we reviewed the available data on FIC-related hepatobiliary cancers, reporting on genetics to the pathophysiology, the risk factors and the clinical presentation.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
- Correspondence:
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| |
Collapse
|
249
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
250
|
Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q, Zhai W, Zheng J. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol 2022; 13:913718. [PMID: 35865926 PMCID: PMC9295744 DOI: 10.3389/fmicb.2022.913718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Different gut microbiota is implicated in different diseases, including cancer. However, gut microbiota differences between individuals with clear cell renal cell carcinoma (ccRCC) and healthy individuals are unclear. Here, we analyzed gut microbiota composition in 51 ccRCC patients and 40 healthy controls using 16S rRNA sequencing analysis. We observed that Blautia, Streptococcus, [Ruminococcus]_torques_group, Romboutsia, and [Eubacterium]_hallii_group were dominant and positively associated with ccRCC. We isolated and cultured Streptococcus lutetiensis to characterize specific gut microbiota that promotes ccRCC and found that it promoted in vitro ccRCC proliferation, migration, and invasion via the TGF-signaling pathway. Interactions identified between the gut microbiota and ccRCC suggest the gut microbiota could serve as a potential non-invasive tool for predicting ccRCC risk and also function as a cancer therapy target.
Collapse
Affiliation(s)
- Yang Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ma
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunze Dong
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qian Liu,
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wei Zhai,
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Junhua Zheng,
| |
Collapse
|