201
|
Tithof J, Boster KA, Bork PA, Nedergaard M, Thomas JH, Kelley DH. A network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience 2022; 25:104258. [PMID: 35521514 PMCID: PMC9062681 DOI: 10.1016/j.isci.2022.104258] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments. We model the CSF pathway as a network of hydraulic resistances Predictions are bracketed by analyzing parametric scenarios for unknown parameters Low-resistance PVSs and high-resistance parenchyma produce realistic flows Astrocyte endfoot gap size is among the important parameters to be measured
Collapse
Affiliation(s)
- Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis 55455, MN, USA
- Corresponding author
| | - Kimberly A.S. Boster
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Peter A.R. Bork
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester 14642, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| |
Collapse
|
202
|
Murcko R, Marchi N, Bailey D, Janigro D. Diagnostic biomarker kinetics: how brain-derived biomarkers distribute through the human body, and how this affects their diagnostic significance: the case of S100B. Fluids Barriers CNS 2022; 19:32. [PMID: 35546671 PMCID: PMC9092835 DOI: 10.1186/s12987-022-00329-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Blood biomarkers of neurological diseases are often employed to rule out or confirm the presence of significant intracranial or cerebrovascular pathology or for the differential diagnosis of conditions with similar presentations (e.g., hemorrhagic vs. embolic stroke). More widespread utilization of biomarkers related to brain health is hampered by our incomplete understanding of the kinetic properties, release patterns, and excretion of molecules derived from the brain. This is, in particular, true for S100B, an astrocyte-derived protein released across the blood–brain barrier (BBB). We developed an open-source pharmacokinetic computer model that allows investigations of biomarker’s movement across the body, the sources of biomarker’s release, and its elimination. This model was derived from a general in silico model of drug pharmacokinetics adapted for protein biomarkers. We improved the model’s predictive value by adding realistic blood flow values, organ levels of S100B, lymphatic and glymphatic circulation, and glomerular filtration for excretion in urine. Three key variables control biomarker levels in blood or saliva: blood–brain barrier permeability, the S100B partition into peripheral organs, and the cellular levels of S100B in astrocytes. A small contribution to steady-state levels of glymphatic drainage was also observed; this mechanism also contributed to the uptake of organs of circulating S100B. This open-source model can also mimic the kinetic behavior of other markers, such as GFAP or NF-L. Our results show that S100B, after uptake by various organs from the systemic circulation, can be released back into systemic fluids at levels that do not significantly affect the clinical significance of venous blood or salivary levels after an episode of BBB disruption.
Collapse
Affiliation(s)
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM), University of Montpellier, Montpellier, France
| | - Damian Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Newport, UK
| | - Damir Janigro
- FloTBI Inc., Cleveland, OH, USA. .,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
203
|
Roy B, Nunez A, Aysola RS, Kang DW, Vacas S, Kumar R. Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults. Front Neurosci 2022; 16:884234. [PMID: 35600625 PMCID: PMC9120580 DOI: 10.3389/fnins.2022.884234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is accompanied by sleep fragmentation and altered sleep architecture, which can potentially hinder the glymphatic system, increasing risks for Alzheimer's disease (AD), but the status is unclear in OSA. Our aim was to investigate the glymphatic system in OSA subjects and examine the relationships between OSA disease severity, sleep symptoms, and glymphatic system indices in OSA using diffusion tensor imaging (DTI). Methods We acquired DTI data from 59 OSA and 62 controls using a 3.0-Tesla MRI and examined OSA disease severity and sleep symptoms with the Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS). Diffusivity maps in the x-axis (Dxx), y-axis (Dyy), and z-axis (Dzz), as well as in x-y axis (Dxy), y-z axis (Dyz), and x-z axis (Dxz) were calculated, diffusion values for the projection and association fibers extracted, and the DTI analyses along the perivascular space (DTI-ALPS index) were performed. The glymphatic system indices were compared between groups and correlated with disease severity and sleep symptoms in OSA subjects. Results Dzz values, derived from projection fiber areas, Dyy and Dzz values from association fiber areas, as well as ALPS and Dyzmean values were significantly reduced in OSA over controls. Significant correlations emerged between disease severity, sleep symptoms, and Dxy, Dxx, and Dzz values in OSA subjects. Conclusion OSA patients show abnormal glymphatic system function that may contribute to increased risks for AD. The findings suggest that the APLS method can be used to assess the glymphatic system in OSA patients.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alba Nunez
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ravi S. Aysola
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel W. Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
204
|
Pulous FE, Cruz-Hernández JC, Yang C, Kaya Ζ, Paccalet A, Wojtkiewicz G, Capen D, Brown D, Wu JW, Schloss MJ, Vinegoni C, Richter D, Yamazoe M, Hulsmans M, Momin N, Grune J, Rohde D, McAlpine CS, Panizzi P, Weissleder R, Kim DE, Swirski FK, Lin CP, Moskowitz MA, Nahrendorf M. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat Neurosci 2022; 25:567-576. [PMID: 35501382 PMCID: PMC9081225 DOI: 10.1038/s41593-022-01060-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 01/25/2023]
Abstract
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood-brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues facilitate intersystem communication. Cerebrospinal fluid (CSF), which interfaces with the glymphatic system and thereby drains the brain's interstitial and perivascular spaces, facilitates outward signaling beyond the blood-brain barrier. In the present study, we report that CSF can exit into the skull bone marrow. Fluorescent tracers injected into the cisterna magna of mice migrate along perivascular spaces of dural blood vessels and then travel through hundreds of sub-millimeter skull channels into the calvarial marrow. During meningitis, bacteria hijack this route to invade the skull's hematopoietic niches and initiate cranial hematopoiesis ahead of remote tibial sites. As skull channels also directly provide leukocytes to meninges, the privileged sampling of brain-derived danger signals in CSF by regional marrow may have broad implications for inflammatory neurological disorders.
Collapse
Affiliation(s)
- Fadi E Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jean C Cruz-Hernández
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongbo Yang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ζeynep Kaya
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre Paccalet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Capen
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Juwell W Wu
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dmitry Richter
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Noor Momin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, South Korea
| | - Filip K Swirski
- Cardiovascular Research Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles P Lin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael A Moskowitz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
205
|
Bonney PA, Briggs RG, Wu K, Choi W, Khahera A, Ojogho B, Shao X, Zhao Z, Borzage M, Wang DJJ, Liu C, Lee DJ. Pathophysiological Mechanisms Underlying Idiopathic Normal Pressure Hydrocephalus: A Review of Recent Insights. Front Aging Neurosci 2022; 14:866313. [PMID: 35572128 PMCID: PMC9096647 DOI: 10.3389/fnagi.2022.866313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The pathophysiologic mechanisms underpinning idiopathic normal pressure hydrocephalus (iNPH), a clinically diagnosed dementia-causing disorder, continue to be explored. An increasing body of evidence implicates multiple systems in the pathogenesis of this condition, though a unifying causative etiology remains elusive. Increased knowledge of the aberrations involved has shed light on the iNPH phenotype and has helped to guide prognostication for treatment with cerebrospinal fluid diversion. In this review, we highlight the central role of the cerebrovasculature in pathogenesis, from hydrocephalus formation to cerebral blood flow derangements, blood-brain barrier breakdown, and glymphatic pathway dysfunction. We offer potential avenues for increasing our understanding of how this disease occurs.
Collapse
Affiliation(s)
- Phillip A. Bonney
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Phillip A. Bonney
| | - Robert G. Briggs
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wooseong Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anadjeet Khahera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Ojogho
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Department of Physiology & Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew Borzage
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
206
|
Abstract
Despite advances in acute management and prevention of cerebrovascular disease, stroke and vascular cognitive impairment together remain the world's leading cause of death and neurological disability. Hypertension and its consequences are associated with over 50% of ischemic and 70% of hemorrhagic strokes but despite good control of blood pressure (BP), there remains a 10% risk of recurrent cerebrovascular events, and there is no proven strategy to prevent vascular cognitive impairment. Hypertension evolves over the lifespan, from predominant sympathetically driven hypertension with elevated mean BP in early and mid-life to a late-life phenotype of increasing systolic and falling diastolic pressures, associated with increased arterial stiffness and aortic pulsatility. This pattern may partially explain both the increasing incidence of stroke in younger adults as well as late-onset, chronic cerebrovascular injury associated with concurrent systolic hypertension and historic mid-life diastolic hypertension. With increasing arterial stiffness and autonomic dysfunction, BP variability increases, independently predicting the risk of ischemic and intracerebral hemorrhage, and is potentially modifiable beyond control of mean BP. However, the interaction between hypertension and control of cerebral blood flow remains poorly understood. Cerebral small vessel disease is associated with increased pulsatility in large cerebral vessels and reduced reactivity to carbon dioxide, both of which are being targeted in early phase clinical trials. Cerebral arterial pulsatility is mainly dependent upon increased transmission of aortic pulsatility via stiff vessels to the brain, while cerebrovascular reactivity reflects endothelial dysfunction. In contrast, although cerebral autoregulation is critical to adapt cerebral tone to BP fluctuations to maintain cerebral blood flow, its role as a modifiable risk factor for cerebrovascular disease is uncertain. New insights into hypertension-associated cerebrovascular pathophysiology may provide key targets to prevent chronic cerebrovascular disease, acute events, and vascular cognitive impairment.
Collapse
Affiliation(s)
- Alastair J S Webb
- Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| |
Collapse
|
207
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
208
|
Lee SJ. Alzheimer’s Disease is a Result of Loss of Full Brain Buoyancy. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
209
|
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2022; 42:543-558. [PMID: 34806932 PMCID: PMC9051143 DOI: 10.1177/0271678x211045748] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Knowledge about the dynamic metabolism and function of cerebrospinal fluid (CSF) physiology has rapidly progressed in recent decades. It has traditionally been suggested that CSF is produced by the choroid plexus and drains to the arachnoid villi. However, recent findings have revealed that the brain parenchyma produces a large portion of CSF and drains through the perivascular glymphatic system and meningeal lymphatic vessels into the blood. The primary function of CSF is not limited to maintaining physiological CNS homeostasis but also participates in clearing waste products resulting from neurodegenerative diseases and acute brain injury. Aneurysmal subarachnoid hemorrhage (SAH), a disastrous subtype of acute brain injury, is associated with high mortality and morbidity. Post-SAH complications contribute to the poor outcomes associated with SAH. Recently, abnormal CSF flow was suggested to play an essential role in the post-SAH pathophysiological changes, such as increased intracerebral pressure, brain edema formation, hydrocephalus, and delayed blood clearance. An in-depth understanding of CSF dynamics in post-SAH events would shed light on potential development of SAH treatment options. This review summarizes and updates the latest physiological characteristics of CSF dynamics and discusses potential pathophysiological changes and therapeutic targets after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hui Shi
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
210
|
Semiquantitative 3T Brain Magnetic Resonance Imaging for Dynamic Visualization of the Glymphatic-Lymphatic Fluid Transport System in Humans. Invest Radiol 2022; 57:544-551. [DOI: 10.1097/rli.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
211
|
Marino MA, Petrova S, Sweiss R, Duong J, Miulli DE. A Review of Glymphatics and the Impact of Osteopathic Manipulative Treatment in Alzheimer's Disease, Concussions, and Beyond. Cureus 2022; 14:e23620. [PMID: 35505702 PMCID: PMC9056591 DOI: 10.7759/cureus.23620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/27/2022] [Indexed: 11/08/2022] Open
Abstract
Glymph is a fluid that circulates in the brain interstitium and, under pathological conditions, unusually accumulates and enhances the buildup of other noxious molecules. The study of this process of circulation, accumulation, and clearance is called glymphatics. We review the physiology of glymphatics and then dive into recent innovative research surrounding this neurological field of study and how it has applied to mainstream pathological processes, including Alzheimer's disease and spectrums of traumatic brain injury that range from a concussion to chronic traumatic encephalopathy (CTE). Furthermore, we explore the implications of glymphatics and a new and developing frontier of healthcare in space travel; with the advent of a Space Force and the introduction of space travel to consumer markets, this is an exciting time to develop novel techniques in enhancing its safety and optimizing human physiology for best outcomes. Therefore, we also propose that osteopathic manipulative treatment (OMT) plays an intuitive role in the treatment of abnormal glymphatics, as adjunctive therapy in Alzheimer's and CTE, and as a future staple before, during, and after space travel for the benefit of both enhancing healthcare in chronic conditions and advancing the capabilities of the human race in its shining new endeavor.
Collapse
|
212
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
213
|
Li L, Ding G, Zhang L, Davoodi-Bojd E, Chopp M, Li Q, Zhang ZG, Jiang Q. Aging-Related Alterations of Glymphatic Transport in Rat: In vivo Magnetic Resonance Imaging and Kinetic Study. Front Aging Neurosci 2022; 14:841798. [PMID: 35360203 PMCID: PMC8960847 DOI: 10.3389/fnagi.2022.841798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Impaired glymphatic waste clearance function during brain aging leads to the accumulation of metabolic waste and neurotoxic proteins (e.g., amyloid-β, tau) which contribute to neurological disorders. However, how the age-related glymphatic dysfunction exerts its effects on different cerebral regions and affects brain waste clearance remain unclear. Methods We investigated alterations of glymphatic transport in the aged rat brain using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and advanced kinetic modeling. Healthy young (3-4 months) and aged (18-20 months) male rats (n = 12/group) underwent the identical MRI protocol, including T2-weighted imaging and 3D T1-weighted imaging with intracisternal administration of contrast agent (Gd-DTPA). Model-derived parameters of infusion rate and clearance rate, characterizing the kinetics of cerebrospinal fluid (CSF) tracer transport via the glymphatic system, were evaluated in multiple representative brain regions. Changes in the CSF-filled cerebral ventricles were measured using contrast-induced time signal curves (TSCs) in conjunction with structural imaging. Results Compared to the young brain, an overall impairment of glymphatic transport function was detected in the aged brain, evidenced by the decrease in both infusion and clearance rates throughout the brain. Enlarged ventricles in parallel with reduced efficiency in CSF transport through the ventricular regions were present in the aged brain. While the age-related glymphatic dysfunction was widespread, our kinetic quantification demonstrated that its impact differed considerably among cerebral regions with the most severe effect found in olfactory bulb, indicating the heterogeneous and regional preferential alterations of glymphatic function. Conclusion The robust suppression of glymphatic activity in the olfactory bulb, which serves as one of major efflux routes for brain waste clearance, may underlie, in part, age-related neurodegenerative diseases associated with neurotoxic substance accumulation. Our data provide new insight into the cerebral regional vulnerability to brain functional change with aging.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
214
|
Hou C, Liu Q, Zhang H, Wang W, Wang B, Cui X, Li J, Ren W, Yang X. Nimodipine Attenuates Early Brain Injury by Protecting the Glymphatic System After Subarachnoid Hemorrhage in Mice. Neurochem Res 2022; 47:701-712. [PMID: 34792752 DOI: 10.1007/s11064-021-03478-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
The glymphatic system (GS) plays an important role in subarachnoid hemorrhage (SAH). Nimodipine treatment provides SAH patients with short-term neurological benefits. However, no trials have been conducted to quantify the relationship between nimodipine and GS. We hypothesized that nimodipine could attenuate early brain injury (EBI) after SAH by affecting the function of the GS. In this study, we assessed the effects of nimodipine, a dihydropyridine calcium channel antagonist, on mice 3 days after SAH. The functions of GS were assessed by immunofluorescence and western blot. The effects of nimodipine were assessed behaviorally. Concurrently, correlation analysis was performed for the functions of GS, immunofluorescence and behavioral function. Our results indicated that nimodipine improved GS function and attenuated neurological deficits and brain edema in mice with SAH. Activation of the cAMP/PKA pathway was involved in this process. GS function was closely associated with perivascular AQP4 polarization, cortical GFAP/AQP4 expression, brain edema and neurobehavioral function. In conclusion, this study shows for the first time that nimodipine plays a neuroprotective role in the period of EBI after SAH in mice through the GS.
Collapse
Affiliation(s)
- Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Xiaopeng Cui
- Department of Neurosurgery, Tianjin Fifth Central Hospital, 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, People's Republic of China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Wen Ren
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
215
|
Huang J, Lai JHC, Han X, Chen Z, Xiao P, Liu Y, Chen L, Xu J, Chan KWY. Sensitivity schemes for dynamic glucose-enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T. NMR IN BIOMEDICINE 2022; 35:e4640. [PMID: 34750891 DOI: 10.1002/nbm.4640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
We investigated three dynamic glucose-enhanced (DGE) MRI methods for sensitively monitoring glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF) at clinical field strength (3 T). By comparing three sequences, namely, Carr-Purcell-Meiboom-Gill (CPMG), on-resonance variable delay multipulse (onVDMP), and on-resonance spin-lock (onSL), a high-sensitivity DGE MRI scheme with truncated multilinear singular value decomposition (MLSVD) denoising was proposed. The CPMG method showed the highest sensitivity in detecting the parenchymal DGE signal among the three methods, while both onVDMP and onSL were more robust for CSF DGE imaging. Here, onVDMP was applied for CSF imaging, as it displayed the best stability of the DGE results in this study. The truncated MLSVD denoising method was incorporated to further improve the sensitivity. The proposed DGE MRI scheme was examined in mouse brain with 50%/25%/12.5% w/w D-glucose injections. The results showed that this combination could detect DGE signal changes from the brain parenchyma and CSF with as low as a 12.5% w/w D-glucose injection. The proposed DGE MRI schemes could sensitively detect the glucose signal change from brain parenchyma and CSF after D-glucose injection at a clinically relevant concentration, demonstrating high potential for clinical translation.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Lin Chen
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
216
|
Blood Biomarkers in Brain Injury Medicine. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 2022:10.1007/s40141-022-00343-w. [PMID: 35433117 PMCID: PMC9009302 DOI: 10.1007/s40141-022-00343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of Review This review seeks to explore blood-based biomarkers with the potential for clinical implementation. Recent Findings Emerging non-proteomic biomarkers hold promise for more accurate diagnostic and prognostic capabilities, especially in the subacute to chronic phase of TBI recovery. Further, there is a growing understanding of the overlap between TBI-related and Dementia-related blood biomarkers. Summary Given the significant heterogeneity inherent in the clinical diagnosis of Traumatic Brain Injury (TBI), there has been an exponential increase in TBI-related biomarker research over the past two decades. While TBI-related biomarker assessments include both cerebrospinal fluid analysis and advanced neuroimaging modalities, blood-based biomarkers hold the most promise to be non-invasive biomarkers widely available to Brain Injury Medicine clinicians in diverse practice settings. In this article, we review the most relevant blood biomarkers for the field of Brain Injury Medicine, including both proteomic and non-proteomic blood biomarkers, biomarkers of cerebral microvascular injury, and biomarkers that overlap between TBI and Dementia.
Collapse
|
217
|
Kelly DM, Rothwell PM. Disentangling the Relationship Between Chronic Kidney Disease and Cognitive Disorders. Front Neurol 2022; 13:830064. [PMID: 35280286 PMCID: PMC8914950 DOI: 10.3389/fneur.2022.830064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a rapidly rising global health burden that affects nearly 40% of older adults. Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia, and thus represent a vulnerable population. It is currently unknown to what extent this risk may be attributable to a clustering of traditional risk factors such as hypertension and diabetes mellitus leading to a high prevalence of both symptomatic and subclinical ischaemic cerebrovascular lesions, or whether other potential mechanisms, including direct neuronal injury by uraemic toxins or dialysis-specific factors could also be involved. These knowledge gaps may lead to suboptimal prevention and treatment strategies being implemented in this group. In this review, we explore the mechanisms of susceptibility and risk in the relationship between CKD and cognitive disorders.
Collapse
Affiliation(s)
- Dearbhla M. Kelly
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter M. Rothwell
- Wolfson Center for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
218
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
219
|
Li J, Pei M, Bo B, Zhao X, Cang J, Fang F, Liang Z. Whole-brain mapping of mouse CSF flow via HEAP-METRIC phase-contrast MRI. Magn Reson Med 2022; 87:2851-2861. [PMID: 35107833 PMCID: PMC9305925 DOI: 10.1002/mrm.29179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Purpose CSF plays important roles in clearing brain waste and homeostasis. However, mapping whole‐brain CSF flow in the rodents is difficult, primarily due to its assumed very low velocity. Therefore, we aimed to develop a novel phase‐contrast MRI method to map whole‐brain CSF flow in the mouse brain. Methods A novel generalized Hadamard encoding–based multi‐band scheme (dubbed HEAP‐METRIC, Hadamard Encoding APproach of Multi‐band Excitation for short TR Imaging aCcelerating) using complex Hadamard matrix was developed and incorporated into conventional phase contrast (PC)‐MRI to significantly increase SNR. Results Slow flow phantom imaging validated HEAP‐METRIC PC‐MRI’s ability to achieve fast and accurate mapping of slow flow velocities (~102 µm/s). With the SNR gain afforded by HEAP‐METRIC scheme, high‐resolution (0.08 × 0.08 mm in‐plane resolution and 36 0.4 mm slices) PC‐MRI was completed in 21 min for whole‐brain CSF flow mapping in the mouse. Using this novel method, we provide the first report of whole‐brain CSF flow in the awake mouse brain with an average flow velocity of ~200 µm/s. Furthermore, HEAP‐METRIC PC‐MRI revealed CSF flow was reduced by isoflurane anesthesia, accompanied by reduction of glymphatic function as measured by dynamic contrast‐enhanced MRI. Conclusion We developed and validated a generalized HEAP‐METRIC PC‐MRI for mapping low velocity flow. With this method, we have achieved the first whole‐brain mapping of awake mouse CSF flow and have further revealed that anesthesia reduces CSF flow velocity.
Collapse
Affiliation(s)
- Juchen Li
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Mengchao Pei
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Binshi Bo
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xinxin Zhao
- Department of Radiology, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing Cang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fang Fang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, People's Republic of China
| |
Collapse
|
220
|
Metayer T, Orset C, Ali C, Furon J, Szabla N, Emery E, Vivien D, Gaberel T. Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage. Acta Neurochir (Wien) 2022; 164:499-505. [PMID: 35094147 DOI: 10.1007/s00701-021-05088-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) can lead to acute hydrocephalus (AH). AH pathophysiology is classically attributed to an obstruction of the arachnoid granulations by blood. Recent findings in rodents suggest that after intraventricular hemorrhage, AH is related to cerebrospinal fluid (CSF) hypersecretion by the choroid plexus (CP), as it can be reduced by intracerebroventricular (ICV) injection of bumetanide. OBJECTIVE Here, we investigated if and how CSF hypersecretion and/or CSF outflow disorders contribute to post-SAH hydrocephalus. METHODS Ninety-four Wistar rats were used. SAH was induced by the endovascular perforation technique. The presence of AH was confirmed by magnetic resonance imaging (MRI), and rats with AH were randomly assigned to 4 groups: control group, superior sagittal sinus (SSS) thrombosis to block CSF reabsorption, ICV injection of saline, and ICV injection of bumetanide to decrease CSF secretion. Clinical outcome was evaluated with a neuroscore. A second MRI was performed 24 h later to evaluate the ventricular volume. RESULTS Fifty percent of rats that survived SAH induction had AH. Their ventricular volume correlated well to the functional outcome after 24 h (r = 0.803). In rats with AH, 24 h later, ventricular volume remained equally increased in the absence of any further procedure. Similarly, ICV injection of saline or SSS thrombosis had no impact on the ventricular volume. However, ICV injection of bumetanide reduced AH by 35.9% (p = 0.002). CONCLUSION In rodents, post-SAH hydrocephalus is may be due to hypersecretion of CSF by the CP, as it is limited by ICV injection of bumetanide. However, we cannot exclude other mechanisms involved in post-SAH acute hydrocephalus.
Collapse
Affiliation(s)
- Thomas Metayer
- Department of Neurosurgery, University Hospital of Caen, 14000, Caen, France.
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France.
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
| | - Jonathane Furon
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
| | - Nicolas Szabla
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
| | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen, 14000, Caen, France
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
- Medical School, University of Caen Normandy, 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
- Medical School, University of Caen Normandy, 14000, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, 14000, Caen, France
| | - Thomas Gaberel
- Department of Neurosurgery, University Hospital of Caen, 14000, Caen, France
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, 14000, Caen, France
- Medical School, University of Caen Normandy, 14000, Caen, France
| |
Collapse
|
221
|
Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G. Clearance Systems in the Brain, From Structure to Function. Front Cell Neurosci 2022; 15:729706. [PMID: 35173581 PMCID: PMC8841422 DOI: 10.3389/fncel.2021.729706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
As the most metabolically active organ in the body, there is a recognized need for pathways that remove waste proteins and neurotoxins from the brain. Previous research has indicated potential associations between the clearance system in the brain and the pathological conditions of the central nervous system (CNS), due to its importance, which has attracted considerable attention recently. In the last decade, studies of the clearance system have been restricted to the glymphatic system. However, removal of toxic and catabolic waste by-products cannot be completed independently by the glymphatic system, while no known research or article has focused on a comprehensive overview of the structure and function of the clearance system. This thesis addresses a neglected aspect of linkage between the structural composition and main components as well as the role of neural cells throughout the clearance system, which found evidence that the components of CNS including the glymphatic system and the meningeal lymphatic system interact with a neural cell, such as astrocytes and microglia, to carry out vital clearance functions. As a result of this evidence that can contribute to a better understanding of the clearance system, suggestions were identified for further clinical intervention development of severe conditions caused by the accumulation of metabolic waste products and neurotoxins in the brain, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yunzhi Guo
- Xiangya Medical College of Central South University, Changsha, China
| | - Chengyue Zhang
- Xiangya Medical College of Central South University, Changsha, China
| | - Yang Zeng
- Xiangya Medical College of Central South University, Changsha, China
| | - Yongqi Luo
- Xiangya Medical College of Central South University, Changsha, China
| | - Gaiqing Wang
- Shanxi Medical University, Taiyuan, China
- Department of Neurology, Affiliated Sanya Central Hospital of Hainan Medical University, Sanya, China
- *Correspondence: Gaiqing Wang, ,
| |
Collapse
|
222
|
Liu H, Yang S, He W, Liu X, Sun S, Wang S, Wang Y, Zhou X, Tang T, Xia J, Liu Y, Huang Q. Associations Among Diffusion Tensor Image Along the Perivascular Space (DTI-ALPS), Enlarged Perivascular Space (ePVS), and Cognitive Functions in Asymptomatic Patients With Carotid Plaque. Front Neurol 2022; 12:789918. [PMID: 35082748 PMCID: PMC8785797 DOI: 10.3389/fneur.2021.789918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Aim: Carotid atherosclerosis (CAS) is a common pathogenesis of cerebrovascular disease closely related to stroke and silent cerebrovascular disease (SCD), while the insufficient brain perfusion mechanism cannot quite explain the mechanism. The purpose of this study was to utilize diffusion tensor image analysis along the perivascular space (DTI-ALPS) to evaluate the glymphatic system activity and correlated DTI-ALPS with enlarged perivascular spaces (ePVS), carotid intima-media thickening (CIMT), mini-mental state examination (MMSE), and serological indicator in individuals with carotid plaque. Methods: Routine MRI and diffusion tensor images scan of the brain, carotid ultrasound, and blood examination were conducted on 74 individuals (52 carotid plaque subjects, 22 non-carotid plaque subjects), whose demographic and clinical characteristics were also recorded. DTI-ALPS index between patients with carotid plaque and normal controls were acquired and the correlations with other variables were analyzed. Results: The values of ALPS-index in the carotid plaque group was significantly lower compared to normal controls (2.12 ± 0.39, 1.95 ± 0.28, respectively, p = 0.034). The ALPS-index was negatively correlated with the basal ganglia (BG)-ePVS score (r = -0.242, p = 0.038) while there was no significant difference in the centrum semiovale (CSO)-ePVS score. Further analysis showed that there are more high-grade ePVS in the BG compared to the carotid plaque group than in the non-carotid plaque group (84.6% vs. 40.9%, p = 0.001). Conclusions: ALPS-index reflects the glymphatic system of the brain, which is associated with early high-risk cerebrovascular diseases. There may be damage in the function of the glymphatic system which induces the expansion of the perivascular space (PVS) in the BG in individuals with carotid plaque.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei He
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojuan Liu
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China
| | - Shanyi Sun
- Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China
| | - Song Wang
- Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Integrated Traditional and Western, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliang Zhou
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Integrated Traditional and Western, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunhai Liu
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Hunan Clinical Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Stroke Center, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
223
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
224
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
225
|
Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022; 13:203. [PMID: 35017525 PMCID: PMC8752739 DOI: 10.1038/s41467-021-27887-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meningeal lymphatic vessels have been described in animal studies, but limited comparable data is available in human studies. Here we show dural lymphatic structures along the dural venous sinuses in dorsal regions and along cranial nerves in the ventral regions in the human brain. 3D T2-Fluid Attenuated Inversion Recovery magnetic resonance imaging relies on internal signals of protein rich lymphatic fluid rather than contrast media and is used in the present study to visualize the major human dural lymphatic structures. Moreover we detect direct connections between lymphatic fluid channels along the cranial nerves and vascular structures and the cervical lymph nodes. We also identify age-related cervical lymph node atrophy and thickening of lymphatics channels in both dorsal and ventral regions, findings which reflect the reduced lymphatic output of the aged brain.
Collapse
Affiliation(s)
- Mehmet Sait Albayram
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| | - Garrett Smith
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Fatih Tufan
- Geriatrician (PP), Silivrikapi Mh. Hisaralti Cd, Istanbul, 34093, Turkey
| | - Ibrahim Sacit Tuna
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | | | - Michael Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Division of Cardiology, Department of Medicine, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, 29425, USA
| | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
226
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
227
|
Schreder HE, Liu J, Kelley DH, Thomas JH, Boster KAS. A hydraulic resistance model for interstitial fluid flow in the brain. J R Soc Interface 2022; 19:20210812. [PMID: 35078335 PMCID: PMC8790357 DOI: 10.1098/rsif.2021.0812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 01/28/2023] Open
Abstract
Metabolic wastes may be cleared from the brain by the flow of interstitial fluid (ISF) through extracellular spaces in the parenchyma, as proposed in the glymphatic model. Owing to the difficulty of obtaining experimental measurements, fluid-dynamic models are employed to better understand parenchymal flow. Here we use an analytical solution for Darcy flow in a porous medium with line sources (representing penetrating arterioles) and line sinks (representing ascending venules) to model the flow and calculate the hydraulic resistance as a function of parenchymal permeability and ISF viscosity for various arrangements of the vessels. We calculate how the resistance varies with experimentally determined arrangements of arterioles and venules in mouse and primate brains. Based on experimental measurements of the relative numbers of arterioles and venules and their spacing, we propose idealized configurations for mouse and primate brains, consisting of regularly repeating patterns of arterioles and venules with even spacing. We explore how the number of vessels, vessel density, arteriole-to-venule ratio, and arteriole and venule distribution affect the hydraulic resistance. Quantifying how the geometry affects the resistance of brain parenchyma could help future modelling efforts characterize and predict brain waste clearance, with relevance to diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Helena E. Schreder
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jia Liu
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
228
|
Ota Y, Srinivasan A, Capizzano AA, Bapuraj JR, Kim J, Kurokawa R, Baba A, Moritani T. Central Nervous System Systemic Lupus Erythematosus: Pathophysiologic, Clinical, and Imaging Features. Radiographics 2022; 42:212-232. [PMID: 34990324 DOI: 10.1148/rg.210045] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multiple immunologic abnormalities and has the potential to involve the central nervous system (CNS). The prevalence of SLE seems to be growing, possibly because of earlier diagnosis and improved survival; however, the associated mortality is still high. The mortality is associated with disease-related risk factors such as lupus disease activity, young age, and organ damage or with antiphospholipid syndrome (APS). Neuropsychiatric SLE (NPSLE), which is caused by SLE-related CNS involvement, comprises a broad range of neurologic and psychiatric manifestations with varying severity, which can make this disease indistinguishable from other conditions that are unrelated to SLE. No unifying pathophysiology has been found in the etiology of NPSLE, suggesting that this condition has multiple contributors such as various immune effectors and the brain-intrinsic neuroimmune interfaces that are breached by the immune effectors. The postulated neuroimmune interfaces include the blood-brain barrier, blood-cerebrospinal fluid barrier, meningeal barrier, and glymphatic system. On the basis of the immunologic, pathologic, and imaging features of NPSLE, the underlying pathophysiology can be classified as vasculitis and vasculopathy, APS, demyelinating syndrome, or autoimmune antibody-mediated encephalitis. Each pathophysiology has different imaging characteristics, although the imaging and pathophysiologic features may overlap. Moreover, there are complications due to the immunocompromised status caused by SLE per se or by SLE treatment. Radiologists and clinicians should become familiar with the underlying mechanisms, radiologic findings, and complications of NPSLE, as this information may aid in the diagnosis and treatment of NPSLE. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Yoshiaki Ota
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Aristides A Capizzano
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Jayapalli R Bapuraj
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - John Kim
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| |
Collapse
|
229
|
Litvinenko IV, Lobzin VY. On a New Paradigm of the Development of Neurodegenerative Diseases by the Example of Alzheimer’s Disease and Parkinson’s Disease. ADVANCES IN GERONTOLOGY 2022; 12. [PMCID: PMC9774074 DOI: 10.1134/s2079057022040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of neuronal inflammation developing during the formation of amyloid plaques and Lewy bodies is investigated. The influence of various exogenous and endogenous factors on the development of neuroinflammation is established, but the role of various infectious agents in the development of this process is much less studied. Today, the existence of a universal trigger mechanism of the neurodegenerative process is obvious: a specific pathogen of a bacterial or viral nature (including long-term persistent in nervous tissue in a latent state), reactivating, penetrates into certain cerebral structures, where it is influenced by either Aβ or resident macrophages of the central nervous system, which, in turn, are activated and induce the release of proinflammatory cytokines, leading to the development of neuronal inflammation, autophagy and neurodegeneration. The reactivation of latent infection, such as herpes, in APOE4 carriers significantly increases the risk of development of Alzheimer’s disease. Class-II genes of the HLA locus (HLA II) may be related to the progression of neurodegenerative diseases. An increase in iron levels in the glia is induced by inflammation, which leads to neurodegeneration. Disruption of the homeostasis of redox-active metals, iron and copper, is an integral part of the pathogenesis of Alzheimer’s disease and Parkinson’s disease. The developing neuroinflammation leads to intensification of the processes of peroxidation, oxidation of metals and the development of ferroptosis.
Collapse
Affiliation(s)
| | - V. Yu. Lobzin
- Kirov Military Medical Academy, 194044 St. Petersburg, Russia ,Mechnikov North-Western State Medical University, 191015 St. Petersburg, Russia ,Children’s Research and Clinical Center of Infectious Diseases, 197022 St. Petersburg, Russia
| |
Collapse
|
230
|
Kovacs MA, Cowan MN, Babcock IW, Sibley LA, Still K, Batista SJ, Labuzan SA, Sethi I, Harris TH. Meningeal lymphatic drainage promotes T cell responses against Toxoplasma gondii but is dispensable for parasite control in the brain. eLife 2022; 11:80775. [PMID: 36541708 PMCID: PMC9812409 DOI: 10.7554/elife.80775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of meningeal lymphatic vessels that drain the CNS has prompted new insights into how immune responses develop in the brain. In this study, we examined how T cell responses against CNS-derived antigen develop in the context of infection. We found that meningeal lymphatic drainage promotes CD4+ and CD8+ T cell responses against the neurotropic parasite Toxoplasma gondii in mice, and we observed changes in the dendritic cell compartment of the dural meninges that may support this process. Indeed, we found that mice chronically, but not acutely, infected with T. gondii exhibited a significant expansion and activation of type 1 and type 2 conventional dendritic cells (cDC) in the dural meninges. cDC1s and cDC2s were both capable of sampling cerebrospinal fluid (CSF)-derived protein and were found to harbor processed CSF-derived protein in the draining deep cervical lymph nodes. Disrupting meningeal lymphatic drainage via ligation surgery led to a reduction in CD103+ cDC1 and cDC2 number in the deep cervical lymph nodes and caused an impairment in cDC1 and cDC2 maturation. Concomitantly, lymphatic vessel ligation impaired CD4+ and CD8+ T cell activation, proliferation, and IFN-γ production at this site. Surprisingly, however, parasite-specific T cell responses in the brain remained intact following ligation, which may be due to concurrent activation of T cells at non-CNS-draining sites during chronic infection. Collectively, our work reveals that CNS lymphatic drainage supports the development of peripheral T cell responses against T. gondii but remains dispensable for immune protection of the brain.
Collapse
Affiliation(s)
- Michael A Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Maureen N Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Isaac W Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Lydia A Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Samantha J Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Sydney A Labuzan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
231
|
Chen S, Nazeri A, Baek H, Ye D, Yang Y, Yuan J, Rubin JB, Chen H. A review of bioeffects induced by focused ultrasound combined with microbubbles on the neurovascular unit. J Cereb Blood Flow Metab 2022; 42:3-26. [PMID: 34551608 PMCID: PMC8721781 DOI: 10.1177/0271678x211046129] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/29/2023]
Abstract
Focused ultrasound combined with circulating microbubbles (FUS+MB) can transiently enhance blood-brain barrier (BBB) permeability at targeted brain locations. Its great promise in improving drug delivery to the brain is reflected by a rapidly growing number of clinical trials using FUS+MB to treat various brain diseases. As the clinical applications of FUS+MB continue to expand, it is critical to have a better understanding of the molecular and cellular effects induced by FUS+MB to enhance the efficacy of current treatment and enable the discovery of new therapeutic strategies. Existing studies primarily focus on FUS+MB-induced effects on brain endothelial cells, the major cellular component of BBB. However, bioeffects induced by FUS+MB expand beyond the BBB to cells surrounding blood vessels, including astrocytes, microglia, and neurons. Together these cell types comprise the neurovascular unit (NVU). In this review, we examine cell-type-specific bioeffects of FUS+MB on different NVU components, including enhanced permeability in endothelial cells, activation of astrocytes and microglia, as well as increased intraneuron protein metabolism and neuronal activity. Finally, we discuss knowledge gaps that must be addressed to further advance clinical applications of FUS+MB.
Collapse
Affiliation(s)
- Si Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongchae Baek
- Imaging Institute and Neurological Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
232
|
Endogenous Levels of Gamma Amino-Butyric Acid Are Correlated to Glutamic-Acid Decarboxylase Antibody Levels in Type 1 Diabetes. Biomedicines 2021; 10:biomedicines10010091. [PMID: 35052771 PMCID: PMC8773285 DOI: 10.3390/biomedicines10010091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system (CNS) and outside of the CNS, found in the highest concentrations in immune cells and pancreatic beta-cells. GABA is gaining increasing interest in diabetes research due to its immune-modulatory and beta-cell stimulatory effects and is a highly interesting drug candidate for the treatment of type 1 diabetes (T1D). GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD), one of the targets for autoantibodies linked to T1D. Using mass spectrometry, we have quantified the endogenous circulating levels of GABA in patients with new-onset and long-standing T1D and found that the levels are unaltered when compared to healthy controls, i.e., T1D patients do not have a deficit of systemic GABA levels. In T1D, GABA levels were negatively correlated with IL-1 beta, IL-12, and IL-15 15 and positively correlated to levels of IL-36 beta and IL-37. Interestingly, GABA levels were also correlated to the levels of GAD-autoantibodies. The unaltered levels of GABA in T1D patients suggest that the GABA secretion from beta-cells only has a minor impact on the circulating systemic levels. However, the local levels of GABA could be altered within pancreatic islets in the presence of GAD-autoantibodies.
Collapse
|
233
|
Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS. Sleep Med 2021; 89:176-181. [PMID: 35030357 DOI: 10.1016/j.sleep.2021.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to evaluate the glymphatic system function in patients with obstructive sleep apnea (OSA) compared to healthy controls using diffusion tensor imaging (DTI) with the perivascular space (DTI-ALPS) method. Our hypothesis is that patients with OSA may have glymphatic system dysfunction, which is correlated with OSA severity. METHODS We enrolled 24 patients with OSA and 24 healthy controls. All participants underwent DTI magnetic resonance imaging (MRI) using the same 3T MRI scanner, and we calculated the DTI-ALPS index from the DTI. We evaluated the differences in the DTI-ALPS index between patients with OSA and healthy controls. In addition, we conducted a correlation analysis between the DTI-ALPS index and clinical characteristics. RESULTS The DTI-ALPS index was significantly different between the groups. The DTI-ALPS in patients with OSA was significantly lower than in healthy controls (1.30450 vs. 1.61600, p = 0.0006). Furthermore, the DTI-ALPS index was significantly negatively correlated with the apnea-hypopnea index in sleep stage N (r = -0.427, p = 0.042) and oxygen desaturation index during sleep N (r = -0.497, p = 0.036). CONCLUSION We successfully demonstrated glymphatic system dysfunction in patients with OSA. In addition, glymphatic system dysfunction is well correlated with OSA severity, especially during sleep stage N. Thus, these findings can explain the effects of OSA on increased risk of developing dementia and highlight the importance of OSA treatment.
Collapse
|
234
|
Chi L, Cheng X, Lin L, Yang T, Sun J, Feng Y, Liang F, Pei Z, Teng W. Porphyromonas gingivalis-Induced Cognitive Impairment Is Associated With Gut Dysbiosis, Neuroinflammation, and Glymphatic Dysfunction. Front Cell Infect Microbiol 2021; 11:755925. [PMID: 34926316 PMCID: PMC8672439 DOI: 10.3389/fcimb.2021.755925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Periodontal pathogen and gut microbiota are closely associated with the pathogenesis of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), the keystone periodontal pathogen, can induce cognitive impairment. The gut has a connection and communication with the brain, which is an important aspect of the gut-brain axis (GBA). In the present study, we investigate whether Pg induces cognitive impairment through disturbing the GBA. Methods In this study, Pg was orally administered to mice, three times a week for 1 month. The effects of Pg administration on the gut and brain were evaluated through behaviors, gut microbiota, immune cells, glymphatic pathway clearance, and neuroinflammation. Results Pg induced cognitive impairment and dysbiosis of gut microbiota. The α-diversity parameters did not show significant change after Pg administration. The β-diversity demonstrated that the gut microbiota compositions were different between the Pg-administered and control groups. At the species level, the Pg group displayed a lower abundance of Parabacteroides gordonii and Ruminococcus callidus than the control group, but a higher abundance of Mucispirillum schaedleri. The proportions of lymphocytes in the periphery and myeloid cells infiltrating the brain were increased in Pg-treated animals. In addition, the solute clearance efficiency of the glymphatic system decreased. Neurons in the hippocampus and cortex regions were reduced in mice treated with Pg. Microglia, astrocytes, and apoptotic cells were increased. Furthermore, amyloid plaque appeared in the hippocampus and cortex regions in Pg-treated mice. Conclusions These findings indicate that Pg may play an important role in gut dysbiosis, neuroinflammation, and glymphatic system impairment, which may in turn lead to cognitive impairment.
Collapse
Affiliation(s)
- Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Sun
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
235
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
236
|
Gold BT, Shao X, Sudduth TL, Jicha GA, Wilcock DM, Seago ER, Wang DJ. Water exchange rate across the blood-brain barrier is associated with CSF amyloid-β 42 in healthy older adults. Alzheimers Dement 2021; 17:2020-2029. [PMID: 33949773 PMCID: PMC8717840 DOI: 10.1002/alz.12357] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION We tested if water exchange across the blood-brain barrier (BBB), estimated with a noninvasive magnetic resonance imaging (MRI) technique, is associated with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) and neuropsychological function. METHODS Forty cognitively normal older adults (67-86 years old) were scanned with diffusion-prepared, arterial spin labeling (DP-ASL), which estimates water exchange rate across the BBB (kw ). Participants also underwent CSF draw and neuropsychological testing. Multiple linear regression models were run with kw as a predictor of CSF concentrations and neuropsychological scores. RESULTS In multiple brain regions, BBB kw was positively associated with CSF amyloid beta (Aβ)42 concentration levels. BBB kw was only moderately associated with neuropsychological performance. DISCUSSION Our results suggest that low water exchange rate across the BBB is associated with low CSF Aβ42 concentration. These findings suggest that kw may be a promising noninvasive indicator of BBB Aβ clearance functions, a possibility which should be further tested in future research.
Collapse
Affiliation(s)
- Brian T. Gold
- Department of NeuroscienceSanders‐Brown Center on AgingLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Magnetic Resonance Imaging and Spectroscopy CenterCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT)Mark & Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gregory A. Jicha
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Department of NeurologySanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Department of PhysiologySanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Elayna R. Seago
- Department of NeuroscienceSanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Danny J.J. Wang
- Laboratory of FMRI Technology (LOFT)Mark & Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
237
|
Magonio F. REM phase: An ingenious mechanism to enhance clearance of metabolic waste from the retina. Exp Eye Res 2021; 214:108860. [PMID: 34843744 DOI: 10.1016/j.exer.2021.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022]
Abstract
The Rapid Eye Movement (REM) phase of sleep, also known as "active sleep" because of physiological similarities to waking state, is characterized by intense cerebral electrical activity, propensity to dream vividly and suppression of skeletal muscle activity (atonia) except for the extraocular muscles which give rise to the so-called REM. In 1998 David Maurice, an ophthalmologist, proposed that REM sleep was associated with an eye function: it would be required to stir the anterior chamber and bath it with aqueous humor to prevent corneal anoxia during sleep. However, potential metabolic problems could arise in the outer retinal layers which lack a direct blood supply. New research lends support to the hypothesis that a para-vascular transport system, the so-called "glymphatic", is present in the eye analogous to the one recently discovered in the brain. It is a functional waste clearance pathway which promotes elimination of interstitial solutes from the brain along para-vascular channels. Glymphatic function increases during sleep and just as a "brain pump" moves fluids in the central nervous system, a "vitreous pump" moves them into the eyeballs during REM phase. A number of similarities between Alzheimer's disease and several retinal degenerations have been described, particularly with respect to either age-related macular degeneration and chronic open-angle glaucoma. Impairment of this mechanism in some disease states and in the normal aging process could have serious consequences for visual function. In this manuscript I propose a new hypothesis regarding the role of REM phase on physio-pathology of the human eye: it would be an ingenious mechanism to enhanced clearance of metabolic waste from the retina.
Collapse
Affiliation(s)
- Fabrizio Magonio
- Igea Private Hospital, Department of Ophthalmology, Via Marcona, 69, 20129, Milano, Italy.
| |
Collapse
|
238
|
Chylinski DO, Van Egroo M, Narbutas J, Grignard M, Koshmanova E, Berthomier C, Berthomier P, Brandewinder M, Salmon E, Bahri MA, Bastin C, Collette F, Phillips C, Maquet P, Muto V, Vandewalle G. Heterogeneity in the links between sleep arousals, amyloid-beta and cognition. JCI Insight 2021; 6:152858. [PMID: 34784296 PMCID: PMC8783672 DOI: 10.1172/jci.insight.152858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tight relationships between sleep quality, cognition, and amyloid-β (Aβ) accumulation, a hallmark of Alzheimer’s disease (AD) neuropathology, have been shown. Sleep arousals become more prevalent with aging and are considered to reflect poorer sleep quality. However, heterogeneity in arousals has been suggested while their associations with Aβ and cognition are not established. METHODS We recorded undisturbed night-time sleep with EEG in 101 healthy individuals aged 50–70 years, devoid of cognitive and sleep disorders. We classified spontaneous arousals according to their association with muscular tone increase (M+/M–) and sleep stage transition (T+/T–). We assessed cortical Aβ burden over earliest affected regions via PET imaging and assessed cognition via neuropsychological testing. RESULTS Arousal types differed in their oscillatory composition in θ (4–8 Hz) and β (16–30 Hz) EEG bands. Furthermore, T+M– arousals, interrupting sleep continuity, were positively linked to Aβ burden (P = 0.0053, R²β* = 0.08). By contrast, more prevalent T–M+ arousals, upholding sleep continuity, were associated with lower Aβ burden (P = 0.0003, R²β* = 0.13), and better cognition, particularly over the attentional domain (P < 0.05, R²β* ≥ 0.04). CONCLUSION Contrasting with what is commonly accepted, we provide empirical evidence that arousals are diverse and differently associated with early AD-related neuropathology and cognition. This suggests that sleep arousals, and their coalescence with other brain oscillations during sleep, may actively contribute to the beneficial functions of sleep and constitute markers of favorable brain and cognitive health trajectories. TRIAL REGISTRATION EudraCT 2016-001436-35. FUNDING FRS-FNRS Belgium (FRSM 3.4516.11), Actions de Recherche Concertées Fédération Wallonie-Bruxelles (SLEEPDEM 17/27-09), ULiège, and European Regional Development Fund (Radiomed Project).
Collapse
Affiliation(s)
- Daphne O Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Martin Grignard
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | | | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
239
|
Della Vecchia A, Arone A, Piccinni A, Mucci F, Marazziti D. GABA System in Depression: Impact on Pathophysiology and Psychopharmacology. Curr Med Chem 2021; 29:5710-5730. [PMID: 34781862 DOI: 10.2174/0929867328666211115124149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of major depressive disorder (MDD), one of the major causes of worldwide disability, is still largely unclear, despite the increasing data reporting evidence of multiple alterations of different systems. Recently, there was a renewed interest in the signalling of gamma aminobutyric acid (GABA) - the main inhibitory neurotransmitter. OBJECTIVE The aim of this study was to review and comment on the available literature about the involvement of GABA in MDD, as well as on novel GABAergic compounds possibly useful as antidepressants. METHODS We carried out a narrative review through Pubmed, Google Scholar and Scopus, by using specific keywords. RESULTS The results, derived from various research tools, strongly support the presence of a deficiency of the GABA system in MDD, which appears to be restored by common antidepressant treatments. More recent publications would indicate the complex interactions between GABA and all the other processes involved in MDD, such as monoamine neurotransmission, hypothalamus-pituitary adrenal axis functioning, neurotrophism, and immune response. Taken together, all these findings seem to further support the complexity of the pathophysiology of MDD, possibly reflecting the heterogeneity of the clinical pictures. CONCLUSION Although further data are necessary to support the specificity of GABA deficiency in MDD, the available findings would suggest that novel GABAergic compounds might constitute innovative therapeutic strategies in MDD.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Armando Piccinni
- Saint Camillus International University of Health and Medical Sciences, Rome. Italy
| | - Federico Mucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena. Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
240
|
Stępień T, Heitzman J, Wierzba-Bobrowicz T, Gosek P, Krajewski P, Chrzczonowicz-Stępień A, Berent J, Jurek T, Bolechała F. Neuropathological Changes in the Brains of Suicide Killers. Biomolecules 2021; 11:1674. [PMID: 34827673 PMCID: PMC8615963 DOI: 10.3390/biom11111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Homicide combined with subsequent suicide of the perpetrator is a particular form of interpersonal violence and, at the same time, a manifestation of extreme aggression directed against oneself. Despite the relatively well-described individual acts of homicide and suicide, both in terms of psychopathology and law, acts of homicide and subsequent suicide committed by the same person are not well-studied phenomena. The importance of emotional factors, including the influence of mental state deviations (psychopathology), on this phenomenon, is discussed in the literature, but still there is relatively little data with which to attempt neuropathological assessments of the brains of suicide killers. This paper is dedicated to the issue based on the neuropathological studies performed. METHODS We analyzed a group of murder-suicides using histochemical and immunohistochemical methods. RESULTS The results of our research indicate the presence of neurodegenerative changes including multiple deposits of ß-amyloid in the form of senile/amyloid plaques and perivascular diffuse plaques. CONCLUSIONS Neurodegenerative changes found in the analyzed brains of suicide killers may provide an interesting starting point for a number of analyses. The presence of neurodegenerative changes at such a young age in some murderers may suggest preclinical lesions that affect cognitive functions and are associated with depressed moods.
Collapse
Affiliation(s)
- Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Janusz Heitzman
- Department of Forensic Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (J.H.); (P.G.)
| | | | - Paweł Gosek
- Department of Forensic Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (J.H.); (P.G.)
| | - Paweł Krajewski
- Forensic Medicine Department, Medical University of Warsaw, 02-007 Warsaw, Poland;
| | | | - Jarosław Berent
- Department of Forensic Medicine, Medical University of Lodz, 91-304 Lodz, Poland;
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, 50-372 Wroclaw, Poland;
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Collegium Medicum, 31-531 Cracow, Poland;
| |
Collapse
|
241
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
242
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
243
|
Virtuoso A, Colangelo AM, Maggio N, Fennig U, Weinberg N, Papa M, De Luca C. The Spatiotemporal Coupling: Regional Energy Failure and Aberrant Proteins in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:11304. [PMID: 34768733 PMCID: PMC8583302 DOI: 10.3390/ijms222111304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Maggio
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Uri Fennig
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Nitai Weinberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| |
Collapse
|
244
|
Zheng R, Huang YM, Zhou Q. Xueshuantong Improves Functions of Lymphatic Ducts and Modulates Inflammatory Responses in Alzheimer's Disease Mice. Front Pharmacol 2021; 12:605814. [PMID: 34650426 PMCID: PMC8505705 DOI: 10.3389/fphar.2021.605814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Recent studies have revealed significant contributions of lymphatic vessels (LVs) to vital functions of the brain, especially related to clearance of waste from the brain and immune responses in the brain. These studies collectively indicate that enhancing the functions of LVs may improve brain functions during brain aging and in Alzheimer’s disease (AD) where LV functions are impaired. However, it is currently unknown whether this enhancement can be achieved using small molecules. We have previously shown that a widely used Chinese herbal medicine Xueshuantong (XST) significantly improves functions and reduces pathology in AD transgenic mice associated with elevated cerebral blood flow (CBF). Here, we show that XST partially rescues deficits in lymphatic structures, improves clearance of amyloid-β (Aβ) from the brain, and reduces the inflammatory responses in the serum and brains of transgenic AD mice. In addition, we showed that this improvement in the lymphatic system occurs independently of elevated CBF, suggesting independent modulation and limited interaction between blood circulation and lymphatic systems. Moreover, XST treatment leads to a significant increase in GLT-1 level and a significantly lower level of MMP-9 and restores AQP4 polarity in APP/PS1 mice. These results provide the basis for further exploration of XST to enhance or restore LV functions, which may be beneficial to treat neurodegenerative diseases or promote healthy aging.
Collapse
Affiliation(s)
- Rui Zheng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yang-Mei Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
245
|
Matsuzono K, Suzuki M, Miura K, Ozawa T, Mashiko T, Koide R, Tanaka R, Fujimoto S. Internal Jugular Vein Velocity and Spontaneous Echo Contrast Correlate with Alzheimer's Disease and Cognitive Function. J Alzheimers Dis 2021; 84:787-796. [PMID: 34602471 DOI: 10.3233/jad-210490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many issues persist in the today's Alzheimer's disease (AD) screening and the breakthrough method is desired. OBJECTIVE We aim to validate the association between venous reflux and AD, and to develop a new method for AD screening. METHODS We examined spontaneous echo contrast, area, diameter, retrograde velocity, and anterograde velocity of the bilateral cervical internal jugular vein (IJV) using carotid ultrasonography. RESULTS A total of 112 patients participated in this study, with 26 diagnosed as AD. The proportion of both or either IJV spontaneous echo contrast (+) occupied 25 of total 26 AD patients, which showed 96.2%of sensitivity and 98.5%negative predictive value. The IJV velocities also showed significant correlation with AD diagnosis, although the IJV area or diameter did not. CONCLUSION Our results indicate that the validation of the spontaneous echo contrast or velocities of the IJV are convenient AD diagnosis screening methods and that the venous reflux disturbance correlates with AD development.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masayuki Suzuki
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kumiko Miura
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadashi Ozawa
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
246
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
247
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
248
|
Doron O, Zadka Y, Barnea O, Rosenthal G. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema. Fluids Barriers CNS 2021; 18:42. [PMID: 34530863 PMCID: PMC8447530 DOI: 10.1186/s12987-021-00274-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Previous models of intracranial pressure (ICP) dynamics have not included flow of cerebral interstitial fluid (ISF) and changes in resistance to its flow when brain swelling occurs. We sought to develop a mathematical model that incorporates resistance to the bulk flow of cerebral ISF to better simulate the physiological changes that occur in pathologies in which brain swelling predominates and to assess the model’s ability to depict changes in cerebral physiology associated with cerebral edema. Methods We developed a lumped parameter model which includes a representation of cerebral ISF flow within brain tissue and its interactions with CSF flow and cerebral blood flow (CBF). The model is based on an electrical analog circuit with four intracranial compartments: the (1) subarachnoid space, (2) brain, (3) ventricles, (4) cerebral vasculature and the extracranial spinal thecal sac. We determined changes in pressure and volume within cerebral compartments at steady-state and simulated physiological perturbations including rapid injection of fluid into the intracranial space, hyperventilation, and hypoventilation. We simulated changes in resistance to flow or absorption of CSF and cerebral ISF to model hydrocephalus, cerebral edema, and to simulate disruption of the blood–brain barrier (BBB). Results The model accurately replicates well-accepted features of intracranial physiology including the exponential-like pressure–volume curve with rapid fluid injection, increased ICP pulse pressure with rising ICP, hydrocephalus resulting from increased resistance to CSF outflow, and changes associated with hyperventilation and hypoventilation. Importantly, modeling cerebral edema with increased resistance to cerebral ISF flow mimics key features of brain swelling including elevated ICP, increased brain volume, markedly reduced ventricular volume, and a contracted subarachnoid space. Similarly, a decreased resistance to flow of fluid across the BBB leads to an exponential-like rise in ICP and ventricular collapse. Conclusions The model accurately depicts the complex interactions that occur between pressure, volume, and resistances to flow in the different intracranial compartments under specific pathophysiological conditions. In modelling resistance to bulk flow of cerebral ISF, it may serve as a platform for improved modelling of cerebral edema and blood–brain barrier disruption that occur following brain injury.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Kiryat Hadassah, 91120, Jerusalem, Israel.,Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yuliya Zadka
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Barnea
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Guy Rosenthal
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Kiryat Hadassah, 91120, Jerusalem, Israel.
| |
Collapse
|
249
|
Colamaria A, Blagia M, Sacco M, Carbone F. Diffuse vertebral metastases from glioblastoma with vertebroepidural diffusion: A case report and review of the literature. Surg Neurol Int 2021; 12:437. [PMID: 34513200 PMCID: PMC8422500 DOI: 10.25259/sni_538_2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The occurrence of extraneural metastasis in patients diagnosed with glioblastoma (GBM) is rare with an estimated incidence ranging from 0.4% to 2.0%. Short clinical history is believed to be a possible explanation of the paucity of such cases. Furthermore, to date, only few papers describe cases of vertebral metastases from GBM without evidence of synchronous visceral involvement. Case Description: The authors report on the case of a 46-year-old woman presenting with a history of surgically treated GBM who developed multiple metastases located in the posterior laminae and vertebral bodies with a single dural metastasis at D6-D8 level 5 years after the initial diagnosis. Total-body computed tomography did not show signs of either intracranial recurrence or visceral involvement. Postoperative pathological examination confirmed the diagnosis of the World Health Organization-2016 Grade IV GBM metastases. Conclusion: From a clinical point of view, the awareness of the possibility of spinal and vertebral metastasis from intracranial GBM is crucial. The present case demonstrates that distant dissemination from the primary tumor is possible despite the absence of intracranial recurrence.
Collapse
Affiliation(s)
| | - Maria Blagia
- Department of Neurosurgery, University of Bari, Bari, Puglia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, University of Foggia, Foggia, Italy
| | | |
Collapse
|
250
|
Lee HJ, Lee DA, Shin KJ, Park KM. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy. J Neurol 2021; 269:2133-2139. [PMID: 34510256 DOI: 10.1007/s00415-021-10799-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The glymphatic system is a glial cell-dependent waste clearance pathway in the brain that is essential for the maintenance of brain homeostasis. In this study, we evaluated glymphatic system function in patients with juvenile myoclonic epilepsy (JME) compared with healthy controls. METHODS Patients with JME and healthy controls were retrospectively enrolled in this study. All the participants underwent brain diffusion tensor imaging (DTI). The "DTI-analysis along the perivascular space (ALPS)"-index was calculated to evaluate the glymphatic system function of the participants. The ALPS-indices of the patients with JME were compared with those of the healthy controls. In addition, the correlations between ALPS-index and the clinical characteristics of the patients with JME were analyzed to validate changes in glymphatic system function. RESULTS A total of 39 patients with JME and 38 healthy controls were enrolled in this study. The mean ALPS- index of the patients with JME was significantly lower than that of the healthy controls (1.541 vs. 1.653, p = 0.041). ALPS-index was negatively correlated with age in patients with JME (r = -0.375, p = 0.018). However, ALPS-index was not correlated with age at onset, duration of epilepsy, or anti-seizure medication load in patients with JME. CONCLUSION This study is the first in which the ALPS method was used to demonstrate that patients with JME have significant glymphatic system dysfunction. The results also show that glymphatic system index is negatively correlated with age in patients with JME, a finding which demonstrates that the glymphatic system function of patients with JME gradually declines with age. The ALPS-index might be a potential biomarker for monitoring glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|