201
|
Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADAA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021; 53:961-978. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ahmad Hafiz Murtadha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokshtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
202
|
Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers (Basel) 2021; 13:polym13152464. [PMID: 34372067 PMCID: PMC8348146 DOI: 10.3390/polym13152464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The synthesis of light-responsive nanocarriers (LRNs) with a variety of surface functional groups and/or ligands has been intensively explored for space-temporal controlled cargo release. LRNs have been designed on demand for photodynamic-, photothermal-, chemo-, and radiotherapy, protected delivery of bioactive molecules, such as smart drug delivery systems and for theranostic duties. LRNs trigger the release of cargo by a light stimulus. The idea of modifying LRNs with different moieties and ligands search for site-specific cargo delivery imparting stealth effects and/or eliciting specific cellular interactions to improve the nanosystems’ safety and efficacy. This work reviews photoresponsive polymeric nanocarriers and photo-stimulation mechanisms, surface chemistry to link ligands and characterization of the resultant nanosystems. It summarizes the interesting biomedical applications of functionalized photo-controlled nanocarriers, highlighting the current challenges and opportunities of such high-performance photo-triggered delivery systems.
Collapse
|
203
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
204
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gianna Falcone
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
205
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021; 60:15899-15904. [PMID: 33928724 PMCID: PMC8260448 DOI: 10.1002/anie.202101174] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Indexed: 12/11/2022]
Abstract
We developed a new approach to selectively modify native proteins in their biological environment using electrophilic covalent aptamers. These aptamers are generated through introduction of a proximity-driven electrophile at specific nucleotide sites. Using thrombin as a proof-of-concept, we demonstrate that covalent aptamers can selectively transfer a variety of functional handles and/or irreversibly crosslink to the target protein. This approach offers broad programmability and high target specificity. Furthermore, it addresses issues common to aptamers such as instability towards endogenous nucleases and residence times during target engagement. Covalent aptamers are new tools that enable specific protein modification and sensitive protein detection. Moreover, they provide prolonged, nuclease-resistant enzyme inhibition.
Collapse
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gianna Falcone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
206
|
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in Tuberculosis. Front Cell Infect Microbiol 2021; 11:656421. [PMID: 34277465 PMCID: PMC8280756 DOI: 10.3389/fcimb.2021.656421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) has been plaguing human civilization for centuries, and currently around one-third of the global population is affected with TB. Development of novel intervention tools for early diagnosis and therapeutics against Mycobacterium tuberculosis (M.tb) is the main thrust area in today's scenario. In this direction global efforts were made to use aptamers, the chemical antibodies as tool for TB diagnostics and therapeutics. This review describes the various aptamers introduced for targeting M.tb and highlights the need for development of novel aptamers to selectively target virulent proteins of M.tb for vaccine and anti-TB drugs. The objective of this review is to highlight the diagnostic and therapeutic application of aptamers used for tuberculosis. The discovery of aptamers, SELEX technology, different types of SELEX development processes, DNA and RNA aptamers reported for diseases and pathogenic agents as well have also been described in detail. But the emphasis of this review is on the development of aptamers which can block the function of virulent mycobacterial components for developing newer TB vaccine candidates and/or drug targets. Aptamers designed to target M.tb cell wall proteins, virulent factors, secretory proteins, or combination could orchestrate advanced diagnosis and therapeutic measures for tuberculosis.
Collapse
Affiliation(s)
- Shruti Srivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Philip Raj Abraham
- Unit of OMICS, ICMR-Vector Control Research Centre (VCRC), Puducherry, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
207
|
Matsunaga KI, Kimoto M, Lim VW, Tan HP, Wong YQ, Sun W, Vasoo S, Leo YS, Hirao I. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res 2021; 49:11407-11424. [PMID: 34169309 PMCID: PMC8599795 DOI: 10.1093/nar/gkab515] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic alphabet expansion of DNA by introducing unnatural bases (UBs), as a fifth letter, dramatically augments the affinities of DNA aptamers that bind to target proteins. To determine whether UB-containing DNA (UB-DNA) aptamers obtained by affinity selection could spontaneously achieve high specificity, we have generated a series of UB-DNA aptamers (KD: 27-182 pM) targeting each of four dengue non-structural protein 1 (DEN-NS1) serotypes. The specificity of each aptamer is remarkably high, and the aptamers can recognize the subtle variants of DEN-NS1 with at least 96.9% amino acid sequence identity, beyond the capability of serotype identification (69-80% sequence identities). Our UB-DNA aptamers specifically identified two major variants of dengue serotype 1 with 10-amino acid differences in the DEN-NS1 protein (352 aa) in Singaporeans' clinical samples. These results suggest that the high-affinity UB-DNA aptamers generated by affinity selection also acquire high target specificity. Intriguingly, one of the aptamers contained two different UBs as fifth and sixth letters, which are essential for the tight binding to the target. These two types of unnatural bases with distinct physicochemical properties profoundly expand the potential of DNA aptamers. Detection methods incorporating the UB-DNA aptamers will facilitate precise diagnoses of viral infections and other diseases.
Collapse
Affiliation(s)
- Ken-Ichiro Matsunaga
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Vanessa Weixun Lim
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| | - Hui Pen Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Yu Qian Wong
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - William Sun
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Dr., Experimental Medicine Building, Singapore 636921, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Dr., Experimental Medicine Building, Singapore 636921, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| |
Collapse
|
208
|
Zhao D, Liu M, Li J, Xiao D, Peng S, He Q, Sun Y, Li Q, Lin Y. Angiogenic Aptamer-Modified Tetrahedral Framework Nucleic Acid Promotes Angiogenesis In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29439-29449. [PMID: 34137587 DOI: 10.1021/acsami.1c08565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In a search for a solution to large-area soft and hard tissue defects, whether or not tissue regeneration or tissue-substitutes transplantation is used, the problems with angiogenesis need to be solved urgently. Thus, a new and efficient proangiogenic approach is needed. Nanoengineering systems have been considered one of the most promising approaches. In this study, we modify the tetrahedral framework nucleic acid (tFNA) for the first time with two different angiogenic DNA aptamers to form aptamer-tFNA nanostructures, tFNA-Apt02 and tFNA-AptVEGF, and the effects of them on angiogenesis both in vitro and in vivo are investigated. We develop new nanomaterials for enhancing angiogenesis to solve the problem of tissue engineering vascularization and ischemic diseases. The results of our study confirm that tFNA-Apt02 and tFNA-AptVEGF has a stronger ability to accelerate endothelial cell proliferation and migration, tubule formation, spheroid sprouting, and angiogenesis in vivo. We first demonstrate that the engineered novel tFNA-Apt02 and tFNA-AptVEGF have promoting effects on angiogenesis both in vitro and in vivo and provide a theoretical basis and opportunity for their application in tissues engineering vascularization and ischemic diseases.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Qing He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
209
|
Iturriaga-Goyon E, Buentello-Volante B, Magaña-Guerrero FS, Garfias Y. Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis. Cells 2021; 10:cells10061455. [PMID: 34200613 PMCID: PMC8227682 DOI: 10.3390/cells10061455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.
Collapse
Affiliation(s)
- Emilio Iturriaga-Goyon
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Fátima Sofía Magaña-Guerrero
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Yonathan Garfias
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
210
|
Vi C, Mandarano G, Shigdar S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int J Mol Sci 2021; 22:6163. [PMID: 34200484 PMCID: PMC8201268 DOI: 10.3390/ijms22116163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Collapse
Affiliation(s)
- Chris Vi
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
| | - Giovanni Mandarano
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
211
|
Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
212
|
Wrobel W, Pach E, Ben-Skowronek I. Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. Int J Mol Sci 2021; 22:ijms22115573. [PMID: 34070375 PMCID: PMC8197470 DOI: 10.3390/ijms22115573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Achondroplasia (ACH) is a disease caused by a missense mutation in the FGFR3 (fibroblast growth factor receptor 3) gene, which is the most common cause of short stature in humans. The treatment of ACH is necessary and urgent because untreated achondroplasia has many complications, both orthopedic and neurological, which ultimately lead to disability. This review presents the current and potential pharmacological treatments for achondroplasia, highlighting the advantages and disadvantages of all the drugs that have been demonstrated in human and animal studies in different stages of clinical trials. The article includes the potential impacts of drugs on achondroplasia symptoms other than short stature, including their effects on spinal canal stenosis, the narrowing of the foramen magnum and the proportionality of body structure. Addressing these effects could significantly improve the quality of life of patients, possibly reducing the frequency and necessity of hospitalization and painful surgical procedures, which are currently the only therapeutic options used. The criteria for a good drug for achondroplasia are best met by recombinant human growth hormone at present and will potentially be met by vosoritide in the future, while the rest of the drugs are in the early stages of clinical trials.
Collapse
|
213
|
Perrone D, Marchesi E, Preti L, Navacchia ML. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications. Molecules 2021; 26:3100. [PMID: 34067312 PMCID: PMC8196910 DOI: 10.3390/molecules26113100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
The click azide = alkyne 1,3-dipolar cycloaddition (click chemistry) has become the approach of choice for bioconjugations in medicinal chemistry, providing facile reaction conditions amenable to both small and biological molecules. Many nucleoside analogs are known for their marked impact in cancer therapy and for the treatment of virus diseases and new targeted oligonucleotides have been developed for different purposes. The click chemistry allowing the tolerated union between units with a wide diversity of functional groups represents a robust means of designing new hybrid compounds with an extraordinary diversity of applications. This review provides an overview of the most recent works related to the use of click chemistry methodology in the field of nucleosides, nucleotides and nucleic acids for pharmacological applications.
Collapse
Affiliation(s)
- Daniela Perrone
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Lorenzo Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity National Research Council, 40129 Bologna, Italy
| |
Collapse
|
214
|
Carrión-Marchante R, Frezza V, Salgado-Figueroa A, Pérez-Morgado MI, Martín ME, González VM. DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:473. [PMID: 34067799 PMCID: PMC8156982 DOI: 10.3390/ph14050473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - M. Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain; (R.C.-M.); (V.F.); (A.S.-F.); (M.I.P.-M.)
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain; (R.C.-M.); (V.F.); (A.S.-F.); (M.I.P.-M.)
| |
Collapse
|
215
|
Scott TP, Nel LH. Rabies Prophylactic and Treatment Options: An In Vitro Study of siRNA- and Aptamer-Based Therapeutics. Viruses 2021; 13:881. [PMID: 34064911 PMCID: PMC8150346 DOI: 10.3390/v13050881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 10/26/2022] Open
Abstract
If the goal of eliminating dog-mediated human rabies by 2030 is to be achieved, effective mass dog vaccination needs to be complemented by effective prophylaxis for individuals exposed to rabies. Aptamers and short-interfering RNAs (siRNAs) have been successful in therapeutics, but few studies have investigated their potential as rabies therapeutics. In this study, siRNAs and aptamers-using a novel selection method-were developed and tested against rabies virus (RABV) in a post-infection (p.i.) scenario. Multiple means of delivery were tested for siRNAs, including the use of Lipofectamine and conjugation with the developed aptamers. One siRNA (N53) resulted in an 80.13% reduction in viral RNA, while aptamer UPRET 2.03 demonstrated a 61.3% reduction when used alone at 2 h p.i. At 24 h p.i., chimera UPRET 2.03-N8 (aptamer-siRNA) resulted in a 36.5% inhibition of viral replication. To our knowledge, this is the first study using siRNAs or aptamers that (1) demonstrated significant inhibition of RABV using an aptamer, (2) tested Lipofectamine RNAi-Max as a means for delivery, and (3) produced significant RABV inhibition at 24 h p.i. This study serves as a proof-of-concept to potentially use aptamers and siRNAs as rabies immunoglobulin (RIG) replacements or therapeutic options for RABV and provides strong evidence towards their further investigation.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
216
|
Yi K, Rong Y, Huang L, Tang X, Zhang Q, Wang W, Wu J, Wang F. Aptamer-Exosomes for Tumor Theranostics. ACS Sens 2021; 6:1418-1429. [PMID: 33755415 DOI: 10.1021/acssensors.0c02237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As carriers of biomolecules (proteins, nucleic acids, and lipids) from parent cells, exosomes play a significant role in physiology and pathology. In any diseased state, the morphology of the released exosomes remained similar. The contents of exosomes change depending on the disease or its stage; thus, exosomes are generally considered as a "source of biomarkers". Therefore, they are considered promising biomarkers for the diagnosis and prognosis of tumors. As natural delivery vehicles, exosomes can protect their cargo from immune clearance and deliver them to other cells through membrane fusion. After being genetically edited at the cell or exosome level, exosomes can be used for treatment with aptamers. Aptamers are short stretches of oligonucleotide sequences or short polypeptides that have been selected in vitro or in vivo, and have a wide range of targets and show excellent binding affinity and specificity. Aptamers have been widely used as molecular probes, and the combination of aptamers with exosomes has become a new direction for exosome-related research and therapeutic development. Here, we summarized various applications of exosomes and aptamers in cancer research, and further analyzed their combination as an "aptamer-exosome". Finally, we propose future directions for the aptamer-exosome in the precise diagnosis or personalized treatment of cancer.
Collapse
Affiliation(s)
- Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Jianyuan Wu
- Clinical Trial Center of Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
217
|
Moitra P, Misra SK, Kumar K, Kondaiah P, Tran P, Duan W, Bhattacharya S. Cancer Stem Cell-Targeted Gene Delivery Mediated by Aptamer-Decorated pH-Sensitive Nanoliposomes. ACS Biomater Sci Eng 2021; 7:2508-2519. [PMID: 33871960 DOI: 10.1021/acsbiomaterials.1c00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new pH-responsive cationic co-liposomal formulation was prepared in this study using the twin version of the amphiphile palmitoyl homocysteine, TPHC; natural zwitterionic lipid, DOPE; and cholesterol-based twin cationic lipid, C5C, at specified molar ratios. This co-liposome was further decorated with a newly designed fluorescently tagged, cholesterol-tethered EpCAM-targeting RNA aptamer for targeted gene delivery. This aptamer-guided nanoliposomal formulation, C5C/DOPE/TPHC at 8:24:1 molar ratio, could efficiently transport the genes in response to low pH of cellular endosomes selectively to the EpCAM overexpressing cancer stem cells. This particular observation was extended using siRNA against GFP to validate their transfection capabilities in response to EpCAM expression. Overall, the aptamer-guided nanoliposomal formulation was found to be an excellent transfectant for in vitro siRNA gene delivery.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, School of Medicine, Health Sciences Facility III, University of Maryland Baltimore, 670 W Baltimore Street, Baltimore, Maryland 21201, United States.,Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santosh K Misra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Phuong Tran
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.,School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
218
|
Goguen RP, Gatignol A, Scarborough RJ. Cloning and Detection of Aptamer-Ribozyme Conjugations. Methods Mol Biol 2021; 2167:253-267. [PMID: 32712924 DOI: 10.1007/978-1-0716-0716-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA aptamers can be used to target proteins or nucleic acids for therapeutic purposes and are candidates for RNA-mediated gene therapy. Like other small therapeutic RNAs, they can be expressed in cells from DNA templates that include a cellular promoter upstream of the RNA coding sequence. Secondary structures flanking aptamers can be used to enhance the activity or stability of these molecules. Notably, flanking self-cleaving ribozymes to remove extraneous nucleotides included during transcription as well as flanking hairpins to improve RNA stability have been used to increase the effect of therapeutic aptamers. Here we describe the cloning procedure of aptamers containing different flanking secondary structures and methods to compare their expression levels by a northern blot protocol optimized for the detection of small RNA molecules.
Collapse
Affiliation(s)
- Ryan P Goguen
- Lady Davis Institute for Medical Research, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, QC, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada. .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, QC, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
219
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
220
|
Gao T, Mao Z, Li W, Pei R. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect. J Mater Chem B 2021; 9:746-756. [PMID: 33319876 DOI: 10.1039/d0tb01668c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor immune evasion enables cancer cells to escape destruction by the immune system, which causes poor prognosis and overall survival of some tumor patients. The binding of PD-L1 on tumor cells to PD-1 on T cells suppresses T cell function, and the axis is considered one of the major pathways mediating tumor cells to evade immune surveillance. The PD-L1 ligation of T cells has a profound inhibitory effect on the growth, cytokine secretion, and development of cytotoxicity. Aptamers, known as chemical antibodies, are single-stranded oligonucleotides with high affinity. In this work, we take a cell-SELEX with the engineered PD-L1-expressing cells as a target to obtain the aptamer, designated PL1, which specifically binds to PD-L1 with a Kd value of 95.73 nM, resulting in the inhibition of PD-1/PD-L1. The aptamer PL1 could restore the proliferation and IFN-γ rescue from the T cell inhibited by the PD-1/PD-L1 axis, and inhibit the growth of the CT26 colon carcinoma. The similar tumor inhibition efficacy and binding capacity of the aptamer PL1 as an antibody indicate that the aptamer PL1 can serve as an alternative therapeutic agent for cancer immunotherapy since the use of antibodies is often restricted by high cost, large size and poor tumor penetration.
Collapse
Affiliation(s)
- Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | | | | | | |
Collapse
|
221
|
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol 2021; 9:628137. [PMID: 33816449 PMCID: PMC8012680 DOI: 10.3389/fbioe.2021.628137] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in the generation, purification and cellular delivery of RNA have enabled development of RNA-based therapeutics for a broad array of applications. RNA therapeutics comprise a rapidly expanding category of drugs that will change the standard of care for many diseases and actualize personalized medicine. These drugs are cost effective, relatively simple to manufacture, and can target previously undruggable pathways. It is a disruptive therapeutic technology, as small biotech startups, as well as academic groups, can rapidly develop new and personalized RNA constructs. In this review we discuss general concepts of different classes of RNA-based therapeutics, including antisense oligonucleotides, aptamers, small interfering RNAs, microRNAs, and messenger RNA. Furthermore, we provide an overview of the RNA-based therapies that are currently being evaluated in clinical trials or have already received regulatory approval. The challenges and advantages associated with use of RNA-based drugs are also discussed along with various approaches for RNA delivery. In addition, we introduce a new concept of hospital-based RNA therapeutics and share our experience with establishing such a platform at Houston Methodist Hospital.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Roman Sukhovershin
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Christian Boada
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Roderic I. Pettigrew
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - John P. Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
222
|
Huang J, Chen X, Fu X, Li Z, Huang Y, Liang C. Advances in Aptamer-Based Biomarker Discovery. Front Cell Dev Biol 2021; 9:659760. [PMID: 33796540 PMCID: PMC8007916 DOI: 10.3389/fcell.2021.659760] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery and identification of biomarkers promote the rational and fast development of medical diagnosis and therapeutics. Clinically, the application of ideal biomarkers still is limited due to the suboptimal technology in biomarker discovery. Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid molecules and can selectively bind to varied targets with high affinity and specificity. Compared with antibody, aptamers have desirable advantages, such as flexible design, easy synthesis and convenient modification with different functional groups. Currently, different aptamer-based technologies have been developed to facilitate biomarker discovery, especially CELL-SELEX and SOMAScan technology. CELL-SELEX technology is mainly used to identify cell membrane surface biomarkers of various cells. SOMAScan technology is an unbiased biomarker detection method that can analyze numerous and even thousands of proteins in complex biological samples at the same time. It has now become a large-scale multi-protein biomarker discovery platform. In this review, we introduce the aptamer-based biomarker discovery technologies, and summarize and highlight the discovered emerging biomarkers recently in several diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
223
|
Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021; 11:life11030193. [PMID: 33671039 PMCID: PMC7997341 DOI: 10.3390/life11030193] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coined three decades ago, the term aptamer and directed evolution have now reached their maturity. The concept that nucleic acid could modulate the activity of target protein as ligand emerged from basic science studies of viruses. Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding, which allow for therapeutic and diagnostic applications. Compared to traditional antibodies, aptamers have several advantages, including small size, flexible structure, good biocompatibility, and low immunogenicity. In vitro selection method is used to isolate aptamers that are specific for a desired target from a randomized oligonucleotide library. The first aptamer drug, Macugen, was approved by FDA in 2004, which was accompanied by many studies and clinical investigations on various targets and diseases. Despite much promise, most aptamers have failed to meet the requisite safety and efficacy standards in human clinical trials. Amid these setbacks, the emergence of novel technologies and recent advances in aptamer and systematic evolution of ligands by exponential enrichment (SELEX) design are fueling hope in this field. The unique properties of aptamer are gaining renewed interest in an era of COVID-19. The binding performance of an aptamer and reproducibility are still the key issues in tackling current hurdles in clinical translation. A thorough analysis of the aptamer binding under varying conditions and the conformational dynamics is warranted. Here, the challenges and opportunities of aptamers are reviewed with recent progress.
Collapse
|
224
|
Mayoral-Varo V, Sánchez-Bailón MP, Calcabrini A, García-Hernández M, Frezza V, Martín ME, González VM, Martín-Pérez J. The Relevance of the SH2 Domain for c-Src Functionality in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:462. [PMID: 33530373 PMCID: PMC7865352 DOI: 10.3390/cancers13030462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
The role of Src family kinases (SFKs) in human tumors has been always associated with tyrosine kinase activity and much less attention has been given to the SH2 and SH3 adapter domains. Here, we studied the role of the c-Src-SH2 domain in triple-negative breast cancer (TNBC). To this end, SUM159PT and MDA-MB-231 human cell lines were employed as model systems. These cells conditionally expressed, under tetracycline control (Tet-On system), a c-Src variant with point-inactivating mutation of the SH2 adapter domain (R175L). The expression of this mutant reduced the self-renewal capability of the enriched population of breast cancer stem cells (BCSCs), demonstrating the importance of the SH2 adapter domain of c-Src in the mammary gland carcinogenesis. In addition, the analysis of anchorage-independent growth, proliferation, migration, and invasiveness, all processes associated with tumorigenesis, showed that the SH2 domain of c-Src plays a very relevant role in their regulation. Furthermore, the transfection of two different aptamers directed to SH2-c-Src in both SUM159PT and MDA-MB-231 cells induced inhibition of their proliferation, migration, and invasiveness, strengthening the hypothesis that this domain is highly involved in TNBC tumorigenesis. Therefore, the SH2 domain of c-Src could be a promising therapeutic target and combined treatments with inhibitors of c-Src kinase enzymatic activity may represent a new therapeutic strategy for patients with TNBC, whose prognosis is currently very negative.
Collapse
Affiliation(s)
- Víctor Mayoral-Varo
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
| | - María Pilar Sánchez-Bailón
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Annarica Calcabrini
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marta García-Hernández
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Valerio Frezza
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - María Elena Martín
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Víctor M. González
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Instituto de Investigaciones Sanitarias del Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
225
|
Liu L, Gao H, Guo C, Liu T, Li N, Qian Q. Therapeutic Mechanism of Nucleic Acid Drugs. ChemistrySelect 2021. [DOI: 10.1002/slct.202002901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lianxiao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Haixia Gao
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Chuanxin Guo
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Tao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Ning Li
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Qijun Qian
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| |
Collapse
|
226
|
Lanphere C, Arnott PM, Jones SF, Korlova K, Howorka S. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:1931-1936. [PMID: 38504763 PMCID: PMC10947198 DOI: 10.1002/ange.202011583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Chemistry is ideally placed to replicate biomolecular structures with tuneable building materials. Of particular interest are molecular nanopores, which transport cargo across membranes, as in DNA sequencing. Advanced nanopores control transport in response to triggers, but this cannot be easily replicated with biogenic proteins. Here we use DNA nanotechnology to build a synthetic molecular gate that opens in response to a specific protein. The gate self-assembles from six DNA strands to form a bilayer-spanning pore, and a lid strand comprising a protein-binding DNA aptamer to block the channel entrance. Addition of the trigger protein, thrombin, selectively opens the gate and enables a 330-fold increase inw the transport rate of small-molecule cargo. The molecular gate incorporates in delivery vesicles to controllably release enclosed cytotoxic drugs and kill eukaryotic cells. The generically designed gate may be applied in biomedicine, biosensing or for building synthetic cells.
Collapse
Affiliation(s)
- Conor Lanphere
- Department of ChemistryInstitute of Structural and Molecular BiologyUniversity College LondonLondonWC1H 0AJUK
| | - Patrick M. Arnott
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Sioned Fôn Jones
- Department of ChemistryInstitute of Structural and Molecular BiologyUniversity College LondonLondonWC1H 0AJUK
- Department of ChemistryKing's College LondonLondonSE1 1DBUK
| | - Katarina Korlova
- Department of ChemistryInstitute of Structural and Molecular BiologyUniversity College LondonLondonWC1H 0AJUK
| | - Stefan Howorka
- Department of ChemistryInstitute of Structural and Molecular BiologyUniversity College LondonLondonWC1H 0AJUK
| |
Collapse
|
227
|
Osorno LL, Brandley AN, Maldonado DE, Yiantsos A, Mosley RJ, Byrne ME. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:278. [PMID: 33494400 PMCID: PMC7911285 DOI: 10.3390/nano11020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The novel and unique design of self-assembled micro and nanostructures can be tailored and controlled through the deep understanding of the self-assembly behavior of amphiphilic molecules. The most commonly known amphiphilic molecules are surfactants, phospholipids, and block copolymers. These molecules present a dual attraction in aqueous solutions that lead to the formation of structures like micelles, hydrogels, and liposomes. These structures can respond to external stimuli and can be further modified making them ideal for specific, targeted medical needs and localized drug delivery treatments. Biodegradability, biocompatibility, drug protection, drug bioavailability, and improved patient compliance are among the most important benefits of these self-assembled structures for drug delivery purposes. Furthermore, there are numerous FDA-approved biomaterials with self-assembling properties that can help shorten the approval pathway of efficient platforms, allowing them to reach the therapeutic market faster. This review focuses on providing a thorough description of the current use of self-assembled micelles, hydrogels, and vesicles (polymersomes/liposomes) for the extended and controlled release of therapeutics, with relevant medical applications. FDA-approved polymers, as well as clinically and commercially available nanoplatforms, are described throughout the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
228
|
Liu Y, Yang Y, Zhang Q, Lu D, Li S, Li J, Yang G, Shan Y. Dynamics of delivering aptamer targeted nano-drugs into cells. J Mater Chem B 2021; 9:952-957. [PMID: 33437980 DOI: 10.1039/d0tb02527e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A targeted nano-drug delivery system has provided great potential and benefits to the diagnosis and therapy of cancers. Cell entry is a critical step for taking effect of the targeted nano-drug. In this report, the dynamics of delivering a single aptamer targeted polyamindoamine-camptothecin-AS1411 (PAMAM-CPT-AS1411) nano-drug into cells was investigated using a force tracing technique based on atomic force microscopy. The results show that the specific interaction of AS1411 and nucleolin, which is overexpressed on cancer cells, enhances the efficiency of the PAMAM-CPT-AS1411 cell entry. Moreover, the specific interaction induced receptor-mediated endocytosis prolongs the duration and decreases the speed of a single PAMAM-CPT-AS1411 cell entry, which is helpful to understand the targeted nano-drugs prolonging the therapeutic drug level. However, the required force for PAMAM-CPT-AS1411 cell entry is not changed. This report will provide a novel and potential method for achieving the precise dynamics of targeted nano-drug delivery.
Collapse
Affiliation(s)
- Yulin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Saito S. SELEX-based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. ANAL SCI 2021; 37:17-26. [PMID: 33132238 DOI: 10.2116/analsci.20sar18] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
DNA aptamers, which are short, single-stranded DNA sequences that selectively bind to target substances (proteins, cells, small molecules, metal ions), can be acquired by means of the systematic evolution of ligands by exponential enrichment (SELEX) methodology. In the SELEX procedure, one of the keys for the effective acquisition of high-affinity and functional aptamer sequences is the separation stage to isolate target-bound DNA from unbound DNA in a randomized DNA library. In this review, various remarkable advancements in separation techniques for SELEX-based aptamer selection developed in this decade, are described and discussed, including CE-, microfluidic chip-, solid phase-, and FACS-based SELEX along with other methods.
Collapse
Affiliation(s)
- Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo Sakura, Saitama, 338-8570, Japan.
| |
Collapse
|
230
|
Al-Sudani B, Ragazzon-Smith AH, Aziz A, Alansari R, Ferry N, Krstic-Demonacos M, Ragazzon PA. Circular and linear: a tale of aptamer selection for the activation of SIRT1 to induce death in cancer cells. RSC Adv 2020; 10:45008-45018. [PMID: 35516259 PMCID: PMC9058605 DOI: 10.1039/d0ra07857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
It is a challenge to select the right target to treat conditions without affecting non-diseased cells. Cancer belongs to the top 10 causes of death in the world and it remains difficult to treat. Amongst cancer emerging targets, silent information regulator 1 (SIRT1) - a histone deacetylase - has shown many roles in cancer, ageing and metabolism. Here we report novel SIRT1 ligands that bind and modulate the activity of SIRT1 within cells and enhance its enzymatic activity. We developed a modified aptamer capable of binding to and forming a complex with SIRT1. Our ligands are aptamers, they can be made of DNA or RNA oligonucleotides, their binding domain can recognise a target with very high affinity and specificity. We used the systematic evolution of ligands by exponential enrichment (SELEX) technique to develop circular and linear aptamers selectively binding to SIRT1. Cellular consequences of the interaction were monitored by fluorescence microscopy, cell viability assay, stability and enzymatic assays. Our results indicate that from our pool of aptamers, circular AC3 penetrates cancerous cells and is recruited to modulate the SIRT1 activity. This modulation of SIRT1 resulted in anticancer activity on different cancer cell lines. Furthermore, this modified aptamer showed no toxicity on one non-cancerous cell line and was stable in human plasma. We have demonstrated that aptamers are efficient tools for localisation of internal cell targets, and in this particular case, anticancer activity through modulation of SIRT1.
Collapse
Affiliation(s)
- Basma Al-Sudani
- College of Pharmacy, Branch of Clinical Laboratory Sciences, University of Mustansiriya UK
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford UK
| | | | - Athar Aziz
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford UK
| | - Rania Alansari
- School of Pharmacy and Bioengineering, Keele University Hornbeam Building (2.26) Keele ST5 5BG UK
| | - Natalie Ferry
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford UK
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford UK
| | - Patricia A Ragazzon
- School of Pharmacy and Bioengineering, Keele University Hornbeam Building (2.26) Keele ST5 5BG UK
| |
Collapse
|
231
|
Improved Cancer Targeting by Multimerizing Aptamers on Nanoscaffolds. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:994-1003. [PMID: 33251048 PMCID: PMC7679244 DOI: 10.1016/j.omtn.2020.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
Aptamers are short single-stranded oligonucleotides selected to bind with high affinity and specificity to a target. In contrast to antibodies, aptamers can be produced in large-scale in vitro systems without the need for any biological agents, making them highly attractive as targeting ligands for bioimaging and drug delivery. For in vivo applications it is often desirable to multimerize the aptamers in order to increase their binding strength and overall specificity. Additional functionalities, such as imaging and therapeutic agents, as well as pharmacokinetic modifiers, need to be attached in a stoichiometric fashion. Herein, we present a robust method for assembly of up to three aptamers and a fluorophore in a single well-defined nanostructure. The process is entirely modular and can be applied to any aptamer requiring only a single reactive "click handle." Multimerization of two aptamers, A9g and GL21.T, previously shown to target cancer cells, led to a strong increase in cell uptake. A similar effect was observed for the prostate-specific membrane antigen (PSMA)-targeting A9g aptamer in mice where multivalent aptamer binding led to increased tumor specificity. Altogether, this method provides a platform for multimerization of aptamers with advantages in terms of combinatorial screening capacity and multifunctional design of nanomedicine.
Collapse
|
232
|
Daems E, Dewaele D, Barylyuk K, De Wael K, Sobott F. Aptamer-ligand recognition studied by native ion mobility-mass spectrometry. Talanta 2020; 224:121917. [PMID: 33379118 DOI: 10.1016/j.talanta.2020.121917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.
Collapse
Affiliation(s)
- Elise Daems
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Debbie Dewaele
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Konstantin Barylyuk
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
233
|
Sun W, Luo L, Fang D, Tang T, Ni W, Dai B, Sun H, Jiang L. A Novel DNA Aptamer Targeting S100P Induces Antitumor Effects in Colorectal Cancer Cells. Nucleic Acid Ther 2020; 30:402-413. [PMID: 32991252 DOI: 10.1089/nat.2020.0863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with poor prognosis and survival. As a Ca2+ binding protein, S100P plays a role in calcium-dependent signal transduction pathways that involve in diverse biological processes. Our previous studies have shown that S100P is overexpressed in CRC tissues and regulates cell growth, invasion, and metastasis in CRC. Therefore, S100P is expected to be an effective target for CRC therapy. Aptamers are short single-stranded oligonucleotides that could serve as specific and high-affinity probes to a wide range of target molecules for therapeutic purposes. In this study, we generated a novel DNA aptamer against S100P (AptS100P-1) by way of the SELEX process and high-throughput sequencing. The binding assay showed that AptS100P-1 had a high affinity for S100P protein. Further experiments indicated that AptS100P-1 is relatively stable in a cell culture system and could be used in flow cytometry analysis, dot blot assay, and fluorescence microscopy analysis to detect S100P. Moreover, AptS100P-1 was capable of binding to cells and had an inhibitory effect on CRC cell growth in vitro and in vivo. Also, AptS100P-1 inhibited the migration and epithelial-mesenchymal transition of CRC cells expressing S100P. These results indicate a novel DNA aptamer targeting S100P, which might be a potential therapeutic strategy for targeting S100P against S100P-expressing CRC.
Collapse
Affiliation(s)
- Wenjing Sun
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifang Luo
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daoquan Fang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianbin Tang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wuhua Ni
- Reproductive Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bichun Dai
- Aptamer-Theranostics R&D Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongguang Sun
- Aptamer-Theranostics R&D Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
234
|
Cao J, Su J, An M, Yang Y, Zhang Y, Zuo J, Zhang N, Zhao Y. Novel DEK-Targeting Aptamer Delivered by a Hydrogel Microneedle Attenuates Collagen-Induced Arthritis. Mol Pharm 2020; 18:305-316. [PMID: 33253580 DOI: 10.1021/acs.molpharmaceut.0c00954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DEK protein is critical to the formation of neutrophil extracellular traps (NETs) in rheumatoid arthritis (RA). Blocking DEK using the aptamer DTA via articular injection has been shown to have robust anti-inflammatory efficacy in a previous study. However, DTA is prone to nuclease degradation and renal clearance in vivo. RA is a systemic disease that involves multiple joints, and local injection is impractical in clinical settings. In this study, DTA was modified with methoxy groups on all deoxyribose sugar units and inverted deoxythymidine on the 3' end (DTA4) to enhance its stability against nuclease. DTA4 is stable for 72 h in 90% mouse serum and maintains a high binding affinity to DEK. DTA4 effectively inhibits the formation of NETs and the migration of HUVECs in vitro. DTA4 was then modified with cholesterol on its 5' end to form DTA6. DTA6 dramatically reduces DEK expression in inflammatory RAW264.7 cells. A hydrogel microneedle (hMN) was then fabricated for the transdermal delivery of DTA6. The hMN maintains morphological integrity after absorbing the aptamer solution, effectively pierces the skin, and rapidly releases DTA6 into the dermis. The DTA6-loaded hMN significantly attenuates inflammation and protects joints from cartilage/bone erosion in collagen-induced arthritis (CIA) mice.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Mengchen An
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Yang Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Yi Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Jing Zuo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, P. R. China.,Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan Province, Zhengzhou 450001, Henan, P. R. China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, P. R. China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, P. R. China.,Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan Province, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
235
|
Ratanabunyong S, Aeksiri N, Yanaka S, Yagi-Utsumi M, Kato K, Choowongkomon K, Hannongbua S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. Chembiochem 2020; 22:915-923. [PMID: 33095511 DOI: 10.1002/cbic.202000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.
Collapse
Affiliation(s)
- Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Niran Aeksiri
- Department of Agricultural Sciences, Naresuan University, Phitsanlolok, 65000, Thailand
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, 10900, Chatuchak, Bangkok, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
236
|
Lanphere C, Arnott PM, Jones SF, Korlova K, Howorka S. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs. Angew Chem Int Ed Engl 2020; 60:1903-1908. [PMID: 33231913 PMCID: PMC7894144 DOI: 10.1002/anie.202011583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 11/23/2022]
Abstract
Chemistry is ideally placed to replicate biomolecular structures with tuneable building materials. Of particular interest are molecular nanopores, which transport cargo across membranes, as in DNA sequencing. Advanced nanopores control transport in response to triggers, but this cannot be easily replicated with biogenic proteins. Here we use DNA nanotechnology to build a synthetic molecular gate that opens in response to a specific protein. The gate self‐assembles from six DNA strands to form a bilayer‐spanning pore, and a lid strand comprising a protein‐binding DNA aptamer to block the channel entrance. Addition of the trigger protein, thrombin, selectively opens the gate and enables a 330‐fold increase inw the transport rate of small‐molecule cargo. The molecular gate incorporates in delivery vesicles to controllably release enclosed cytotoxic drugs and kill eukaryotic cells. The generically designed gate may be applied in biomedicine, biosensing or for building synthetic cells.
Collapse
Affiliation(s)
- Conor Lanphere
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Patrick M Arnott
- Department of Biochemical Engineering, University College London, London, WC1E 7JE, UK
| | - Sioned Fôn Jones
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK.,Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Katarina Korlova
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
237
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
238
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
239
|
Li X, Li Z, Yu H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem Commun (Camb) 2020; 56:14653-14656. [PMID: 33155587 DOI: 10.1039/d0cc06032a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Threose nucleic acid (TNA) aptamers were selected in vitro to bind PD-L1 protein and inhibit its interaction with PD-1. These biologically stable TNA aptamers bound target proteins with nanomolar affinities, and effectively blocked PD-1/PD-L1 interaction in vitro. After injection into a colon cancer xenograft mouse model, the TNA aptamer N5 was specifically accumulated at the tumour site, and significantly inhibited tumour growth in vivo.
Collapse
Affiliation(s)
- Xintong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.
| | | | | |
Collapse
|
240
|
Sakai K, Someya T, Harada K, Yagi H, Matsui T, Matsumoto M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2020; 105:2631-2638. [PMID: 33131252 PMCID: PMC7604614 DOI: 10.3324/haematol.2019.235549] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.
Collapse
Affiliation(s)
- Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| | | | | | - Hideo Yagi
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| | - Taei Matsui
- Clinical Laboratory Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| |
Collapse
|
241
|
Xu X, Li L, Li X, Tao D, Zhang P, Gong J. Aptamer-protamine-siRNA nanoparticles in targeted therapy of ErbB3 positive breast cancer cells. Int J Pharm 2020; 590:119963. [DOI: 10.1016/j.ijpharm.2020.119963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
|
242
|
An Aptamer for Broad Cancer Targeting and Therapy. Cancers (Basel) 2020; 12:cancers12113217. [PMID: 33142831 PMCID: PMC7694147 DOI: 10.3390/cancers12113217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Recent efforts to improve chemotherapy’s antitumor effects have increasingly focused on targeted therapies, where the drug is modified with an agent able to specifically deliver it to the tumor while limiting its accumulation in normal tissue. Aptamers, comprised of short pieces of RNA or DNA, are ideal for this type of drug targeting due in part to their ease of chemical synthesis. The E3 aptamer was previously conjugated to highly toxic chemotherapeutics and shown to target and treat prostate tumors. Here, we show that E3 is not limited to prostate cancer targeting but appears to broadly target cancer cells. E3 highly toxic drug conjugates also efficiently kill a broad range of cancer types, and E3 targets tumors that closely model patient tumors. Thus, the E3 aptamer appears to be a general agent for specific delivery of chemotherapy to tumors and should improve antitumor treatment while reducing unwanted toxicities in other tissues. Abstract Recent advances in chemotherapy treatments are increasingly targeted therapies, with the drug conjugated to an antibody able to deliver it directly to the tumor. As high-affinity chemical ligands that are much smaller in size, aptamers are ideal for this type of drug targeting. Aptamer-highly toxic drug conjugates (ApTDCs) based on the E3 aptamer, selected on prostate cancer cells, target and inhibit prostate tumor growth in vivo. Here, we observe that E3 also broadly targets numerous other cancer types, apparently representing a universal aptamer for cancer targeting. Accordingly, ApTDCs formed by conjugation of E3 to the drugs monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF) efficiently target and kill a range of different cancer cells. Notably, this targeting extends to both patient-derived explant (PDX) cancer cell lines and tumors, with the E3 MMAE and MMAF conjugates inhibiting PDX cell growth in vitro and with the E3 aptamer targeting PDX colorectal tumors in vivo.
Collapse
|
243
|
Morya V, Walia S, Mandal BB, Ghoroi C, Bhatia D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomater Sci Eng 2020; 6:6021-6035. [DOI: 10.1021/acsbiomaterials.0c01125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
244
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
245
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
246
|
Liu M, Zhang B, Li Z, Wang Z, Li S, Liu H, Deng Y, He N. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo. NANOSCALE 2020; 12:19689-19701. [PMID: 32966497 DOI: 10.1039/d0nr03324c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise discrimination of breast cancer remains a challenge in clinical medicine, which depends on the development of novel specific molecular probes. However, the current technologies and antibodies cannot achieve precise discrimination of breast cancer subtypes very well. To address this problem, a novel truncated DNA aptamer MF3Ec was developed in this work. Aptamer MF3Ec exhibited high specificity and binding affinity against MCF-7 breast cancer cells with a Kd value of 18.95 ± 2.9 nM which is four times lower than that of the original aptamer, and could work at 4 °C, 25 °C and 37 °C with no obvious differences. Besides, aptamer MF3Ec displayed better stability in serum samples with a long existence time of about 12 h. Moreover, fluorescence imaging experiments indicated that aptamer MF3Ec was able to distinguish MCF-7 breast cancer cells from SK-BR-3, MDA-MB-231 and MCF-10A breast cancer cell subtypes, and differentiate the tumor-bearing mice and xenografted tissue sections of MCF-7 breast cancer cells from those of MDA-MB-231 and SK-BR-3 breast cancer cells in vivo and in vitro, respectively. Finally, clinical experiments indicated that aptamer MF3Ec could distinguish Luminal A breast cancer subtype from Luminal B (HER2+), HER2-enriched, and triple-negative breast cancer subtypes, para-carcinoma tissues and normal breast tissues. Collectively, all these results suggest that aptamer MF3Ec is a promising probe for precise discrimination and targeted therapy of Luminal A breast cancer molecular subtype.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
248
|
Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers (Basel) 2020; 12:cancers12102889. [PMID: 33050158 PMCID: PMC7600320 DOI: 10.3390/cancers12102889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
A relatively new paradigm in cancer therapeutics is the use of cancer cell-specific aptamers, both as therapeutic agents and for targeted delivery of anticancer drugs. After the first therapeutic aptamer was described nearly 25 years ago, and the subsequent first aptamer drug approved, many efforts have been made to translate preclinical research into clinical oncology settings. Studies of aptamer-based technology have unveiled the vast potential of aptamers in therapeutic and diagnostic applications. Among pediatric solid cancers, brain tumors are the leading cause of death. Although a few aptamer-related translational studies have been performed in adult glioblastoma, the use of aptamers in pediatric neuro-oncology remains unexplored. This review will discuss the biology of aptamers, including mechanisms of targeting cell surface proteins, various modifications of aptamer structure to enhance therapeutic efficacy, the current state and challenges of aptamer use in neuro-oncology, and the potential therapeutic role of aptamers in pediatric brain tumors.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| |
Collapse
|
249
|
Komala DR, Hardianto A, Gaffar S, Hartati YW. An Epithelial Sodium Channel (ENaC)-Specific Aptamer Determined through Structure-Based Virtual Screening for the Development of Hypertension Early Detection System. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Epithelial sodium channel (ENaC) is a transmembrane protein involved in maintaining sodium levels in blood plasma. It is also a potential biomarker for the early detection of hypertension since the amount of ENaC is related to the familial history of hypertension. ENaC can be detected by an aptamer, a single-stranded DNA (ssDNA) or RNA which offers advantages over an antibody. This study aimed to obtain an ssDNA aptamer specific to ENaC through virtual screening. Methods: Forty-one aptamers were retrieved from the Protein Data Bank (PDB) and the RNA was converted to ssDNA aptamers. The X-ray crystallographic structure of ENaC protein was remodelled using Modeller 9.20 to resolve missing residues. Molecular docking of aptamers against ENaC was performed using Patchdock and Firedock, then the selected aptamer was subjected to molecular docking against other ion channel proteins to assess its selectivity to ENaC. A molecular dynamics (MD) simulation was also conducted using Amber16 to acquire an in-depth understanding of the interaction within the aptamer-ENaC complex. Results: The virtual screening suggested that the ssDNA of iSpinach aptamer (PDB: 5OB3) displayed the strongest binding to ENaC (-49.46 kcal/mol) and was selective for ENaC over the other ion protein channels. An MMGBSA calculation on the complex of aptamer-ENaC revealed binding energy of -42,12 kcal/mol. Conclusion: The iSpinach-based aptamer is a potential probe for detecting ENaC or iDE and may be useful for the development of hypertension early detection systems.
Collapse
Affiliation(s)
- Dina Ratna Komala
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
250
|
Torabi R, Ranjbar R, Halaji M, Heiat M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systematic review. Mol Cell Probes 2020; 53:101636. [PMID: 32634550 PMCID: PMC7334654 DOI: 10.1016/j.mcp.2020.101636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The recently known coronavirus, SARS-CoV-2, has turn into the greatest global health challenge, affecting a large number of societies. The lack of specific treatment and gold-standard diagnostic system has made the situation more complicated. Efforts have led to production of several diagnostic kits that are associated with limitations such as inadequate sensitivity and accuracy. Aptamers as multipotent biological probes could be promising candidates to design sensitive and specific biosensors. Although few studies have introduced specific aptamer types of coronavirus, they may help us select the best approach to obtain specific aptamers for this virus. On the other hand, some of already-introduced aptamers have shown the inhibitory effects on coronavirus that could be applied as therapeutics. The present study has provided a systematic overview on use of aptamer-based biosensors and drugs to diagnose and treat coronavirus.
Collapse
Affiliation(s)
- Raheleh Torabi
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, Tehran University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Halaji
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|