201
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
202
|
Tse LH, Wong YH. Modeling the Heterodimer Interfaces of Melatonin Receptors. Front Cell Neurosci 2021; 15:725296. [PMID: 34690701 PMCID: PMC8529217 DOI: 10.3389/fncel.2021.725296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Melatonin receptors are Class A G protein-coupled receptors (GPCRs) that regulate a plethora of physiological activities in response to the rhythmic secretion of melatonin from the pineal gland. Melatonin is a key regulator in the control of circadian rhythm and has multiple functional roles in retinal physiology, memory, immunomodulation and tumorigenesis. The two subtypes of human melatonin receptors, termed MT1 and MT2, utilize overlapping signaling pathways although biased signaling properties have been reported in some cellular systems. With the emerging concept of GPCR dimerization, melatonin receptor heterodimers have been proposed to participate in system-biased signaling. Here, we used computational approaches to map the dimerization interfaces of known heterodimers of melatonin receptors, including MT1/MT2, MT1/GPR50, MT2/GPR50, and MT2/5-HT2C. By homology modeling and membrane protein docking analyses, we have identified putative preferred interface interactions within the different pairs of melatonin receptor dimers and provided plausible structural explanations for some of the unique pharmacological features of specific heterodimers previously reported. A thorough understanding of the molecular basis of melatonin receptor heterodimers may enable the development of new therapeutic approaches against aliments involving these heterodimeric receptors.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China.,State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, SAR China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
203
|
Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants (Basel) 2021; 10:antiox10111658. [PMID: 34829529 PMCID: PMC8614843 DOI: 10.3390/antiox10111658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- Institute of Health Sciences, University of O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua 2820000, Chile
| | - Pamela V. Arias
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Simón A. Aguilar
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Esteban G. Figueroa
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Roberto V. Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Aníbal J. Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
| | - Emilio A. Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
- Correspondence: ; Tel.: +56-2-2977-0543
| |
Collapse
|
204
|
Beros A, Farquhar C, Nagels HE, Showell MG, Fernando A, Jordan V. Pharmacological interventions for jet lag. Hippokratia 2021. [DOI: 10.1002/14651858.cd014611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Angela Beros
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Cindy Farquhar
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Helen E Nagels
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Marian G Showell
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | | | - Vanessa Jordan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| |
Collapse
|
205
|
The effect of a complex of melatonin, aluminum oxide and polymethylsiloxane on the cellular composition of the mice spleen kept in round-the-clock lighting conditions. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is known that the circadian rhythm of melatonin production depends on the intensity of illumination. Violation of the light regime leads to suppression of melatonin synthesis and the development of desynchronosis, which increases the risk of developing a number of pathologies. In this regard, it is relevant to search for opportunities to restore disturbed circadian rhythms and, especially, to correct immune dysfunctions that occur in these situations.The aim of this study was to examine the effect of a complex of melatonin, aluminum oxide and polymethylsiloxane on the lymphocytes of the spleen of mice kept under round-the-clock lighting.Materials and methods. Mice of the C57Bl/6J line were kept under round-the-clock lighting for 14 days, against which they were intragastrically injected with distilled water, aluminum oxide with polydimethylsiloxane, melatonin and a complex of melatonin, aluminum oxide and polymethylsiloxane (a new drug developed by the Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS; Patent of Russian Federation No. 2577580, 2016), represented by a complex of porous material (aluminum oxide with polydimethylsiloxane) and melatonin, immobilized in the pores, from which it is gradually released in a liquid medium. Intact animals kept under the light regime of ST 12/12 and under round-the-clock lighting served as a control. Immunophenotyping of spleen B- and T-lymphocytes was performed on a flow cytofluorimeter with monoclonal antibodies APC CD3 and FITC CD19. For studying the distribution of cells by stages of the cell cycle in splenocytes, the amount of intracellular DNA was measured by the level of inclusion of propidium iodide.Results. Flow cytometry of the distribution of B- and T-lymphocytes of the spleen in male mice of the C57Bl/6J line kept under round-the-clock lighting conditions (KO 24/0 h) revealed a decrease in the percentage of B-lymphocytes and an increase in the number of T-lymphocytes, compared with animals kept under standard lighting conditions (the light/dark photoperiod – 14/10 hours). The ratio of CD19+/CD3+ lymphocytes of the spleen in mice under the conditions of KO significantly decreases (1.5 times) compared to intact animals (p ≤ 0.001). The administration of pure and modified melatonin (Complex M) to animals kept under round-the-clock lighting conditions has an equally pronounced normalizing effect on the cellular composition of B- (CD19) and T- (CD3) lymphocytes of the spleen, bringing the values of the studied parameters to the control values of the intact animals (p ≤ 0.001) Round-the-clock lighting affects the proliferative potential of splenocytes, reducing the number of cells in the G2/M phase, compared with animals treated with melatonin (p ≤ 0.050). The introduction of melatonin leads to an increase in the percentage of cells in the G2/M phase relative to the placebo group (p ≤ 0.050). In the group of mice treated with Complex M, the greatest increase in cells at the S + G2/M phases and the highest percentage of cells at the G2/M phase were revealed compared to the placebo control group (p ≤ 0.050).Conclusion. The complex of melatonin, aluminum oxide and polymethylsiloxane has additional immunotropic properties in relation to the modifier molecule, which, apparently, are due to the joint immunostimulating effect of melatonin and the lymphostimulating effect of the sorbent. Melatonin in the composition of the complex shows its properties more stably.
Collapse
|
206
|
Ferlenghi F, Mari M, Gobbi G, Elisi GM, Mor M, Rivara S, Vacondio F, Bartolucci S, Bedini A, Fanini F, Spadoni G. N-(Anilinoethyl)amide Melatonergic Ligands with Improved Water Solubility and Metabolic Stability. ChemMedChem 2021; 16:3071-3082. [PMID: 34213063 PMCID: PMC8518537 DOI: 10.1002/cmdc.202100405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 01/25/2023]
Abstract
The MT2 -selective melatonin receptor ligand UCM765 (N-(2-((3-methoxyphenyl)(phenyl)amino)ethyl)acetamide), showed interesting sleep inducing, analgesic and anxiolytic properties in rodents, but suffers from low water solubility and modest metabolic stability. To overcome these limitations, different strategies were investigated, including modification of metabolically liable sites, introduction of hydrophilic substituents and design of more basic derivatives. Thermodynamic solubility, microsomal stability and lipophilicity of new compounds were experimentally evaluated, together with their MT1 and MT2 binding affinities. Introduction of a m-hydroxymethyl substituent on the phenyl ring of UCM765 and replacement of the replacement of the N,N-diphenyl-amino scaffold with a N-methyl-N-phenyl-amino one led to highly soluble compounds with good microsomal stability and receptor binding affinity. Docking studies into the receptor crystal structure provided a rationale for their binding affinity. Pharmacokinetic characterization in rats highlighted higher plasma concentrations for the N-methyl-N-phenyl-amino derivative, consistent with its improved microsomal stability and makes this compound worthy of consideration for further pharmacological investigation.
Collapse
MESH Headings
- Acetamides/chemistry
- Acetamides/metabolism
- Acetamides/pharmacokinetics
- Aniline Compounds/chemistry
- Aniline Compounds/metabolism
- Aniline Compounds/pharmacokinetics
- Animals
- Humans
- Ligands
- Male
- Microsomes, Liver/chemistry
- Microsomes, Liver/metabolism
- Molecular Structure
- Rats
- Rats, Sprague-Dawley
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/metabolism
- Solubility
- Thermodynamics
- Water/chemistry
Collapse
Affiliation(s)
- Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di ParmaParco Area delle Scienze 27/A43124ParmaItaly
| | - Michele Mari
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino Carlo BoPiazza Rinascimento 661029UrbinoItaly
| | - Gabriella Gobbi
- Department of PsychiatryMcGill UniversityMontrealQCH3A1A1Canada
- McGill University Health CenterMontrealQCH31A1Canada
| | - Gian Marco Elisi
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di ParmaParco Area delle Scienze 27/A43124ParmaItaly
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di ParmaParco Area delle Scienze 27/A43124ParmaItaly
- Microbiome Research HubUniversity of Parma43124ParmaItaly
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di ParmaParco Area delle Scienze 27/A43124ParmaItaly
| | - Federica Vacondio
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di ParmaParco Area delle Scienze 27/A43124ParmaItaly
| | - Silvia Bartolucci
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino Carlo BoPiazza Rinascimento 661029UrbinoItaly
| | - Annalida Bedini
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino Carlo BoPiazza Rinascimento 661029UrbinoItaly
| | - Fabiola Fanini
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino Carlo BoPiazza Rinascimento 661029UrbinoItaly
| | - Gilberto Spadoni
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino Carlo BoPiazza Rinascimento 661029UrbinoItaly
| |
Collapse
|
207
|
Patel A, Zhou EW, O'Brien M, Wang X, Zhou S. Melatonin in neuroskeletal biology. Curr Opin Pharmacol 2021; 61:42-48. [PMID: 34607253 DOI: 10.1016/j.coph.2021.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Osteoporosis and neurodegenerative diseases are common diseases in the aging population. Studies demonstrate the complex communication among skeletal, muscular, and nervous systems and point to the emerging roles of neuromuscular systems in bone homeostasis. The discovery that the nervous system directly regulates bone remodeling implies that osteoporosis is a neuroskeletal disease. Melatonin, a hormone secreted from the pineal gland, is a melatonin receptor 1A (MT1) and 1B (MT2) agonist and influences the function of diverse systems. Melatonin is a pharmaceutical ingredient in numerous medicines, over-the-counter medicines, nutraceuticals, and dietary supplements, which benefit disease prevention and treatment, including osteoporosis and neurodegenerative diseases. This review aims to summarize the recent advances in preventing senile, postmenopausal, and neurodegenerative osteoporosis with melatonin and provide new insights into how neuromuscular systems influence bone homeostasis. More preclinical and clinical studies in neuroskeletal biology will eventually improve the lives of people fighting osteoporosis.
Collapse
Affiliation(s)
- Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward W Zhou
- Neuroapoptosis Drug Discovery Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan O'Brien
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Neuroapoptosis Drug Discovery Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shuanhu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
208
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
209
|
Thomson DM, Mitchell EJ, Openshaw RL, Pratt JA, Morris BJ. Mice lacking melatonin MT2 receptors exhibit attentional deficits, anxiety and enhanced social interaction. J Psychopharmacol 2021; 35:1265-1276. [PMID: 34304635 PMCID: PMC8521347 DOI: 10.1177/02698811211032439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aside from regulating circadian rhythms, melatonin also affects cognitive processes, such as alertness, and modulates the brain circuitry underlying psychiatric diseases, such as depression, schizophrenia and bipolar disorder, via mechanisms that are not fully clear. In particular, while melatonin MT1 receptors are thought primarily to mediate the circadian effects of the hormone, the contribution of the MT2 receptor to melatonin actions remains enigmatic. AIMS To characterise the contribution of MT2 receptors to melatonin's effects on cognition and anxiety/sociability. METHODS Mice with a genetic deletion of the MT2 receptor, encoded by the Mtnr1b gene, were compared with wild-type littermates for performance in a translational touchscreen version of the continuous performance task (CPT) to assess attentional processes and then monitored over 3 days in an ethological home-cage surveillance system. RESULTS Mtnr1b knockout (KO) mice were able to perform at relatively normal levels in the CPT. However, they showed consistent evidence of more liberal/risky responding strategies relative to control mice, with increases in hit rates and false alarm rates, which were maintained even when the cognitive demands of the task were increased. Assessment in the home-cage monitoring system revealed that female Mtnr1b KO mice have increased anxiety levels, whereas male Mtnr1b KO mice show increased sociability. CONCLUSIONS The results confirm that the MT2 receptor plays a role in cognition and also modulates anxiety and social interactions. These data provide new insights into the functions of endogenous melatonin and will inform future drug development strategies focussed on the MT2 receptor.
Collapse
Affiliation(s)
- David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Brian J Morris, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
210
|
Ballante F, Kooistra AJ, Kampen S, de Graaf C, Carlsson J. Structure-Based Virtual Screening for Ligands of G Protein-Coupled Receptors: What Can Molecular Docking Do for You? Pharmacol Rev 2021; 73:527-565. [PMID: 34907092 DOI: 10.1124/pharmrev.120.000246] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome and are important therapeutic targets. During the last decade, the number of atomic-resolution structures of GPCRs has increased rapidly, providing insights into drug binding at the molecular level. These breakthroughs have created excitement regarding the potential of using structural information in ligand design and initiated a new era of rational drug discovery for GPCRs. The molecular docking method is now widely applied to model the three-dimensional structures of GPCR-ligand complexes and screen for chemical probes in large compound libraries. In this review article, we first summarize the current structural coverage of the GPCR superfamily and the understanding of receptor-ligand interactions at atomic resolution. We then present the general workflow of structure-based virtual screening and strategies to discover GPCR ligands in chemical libraries. We assess the state of the art of this research field by summarizing prospective applications of virtual screening based on experimental structures. Strategies to identify compounds with specific efficacy and selectivity profiles are discussed, illustrating the opportunities and limitations of the molecular docking method. Our overview shows that structure-based virtual screening can discover novel leads and will be essential in pursuing the next generation of GPCR drugs. SIGNIFICANCE STATEMENT: Extraordinary advances in the structural biology of G protein-coupled receptors have revealed the molecular details of ligand recognition by this large family of therapeutic targets, providing novel avenues for rational drug design. Structure-based docking is an efficient computational approach to identify novel chemical probes from large compound libraries, which has the potential to accelerate the development of drug candidates.
Collapse
Affiliation(s)
- Flavio Ballante
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Albert J Kooistra
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Stefanie Kampen
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Chris de Graaf
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| |
Collapse
|
211
|
Chen K, Zhu P, Chen W, Luo K, Shi XJ, Zhai W. Melatonin inhibits proliferation, migration, and invasion by inducing ROS-mediated apoptosis via suppression of the PI3K/Akt/mTOR signaling pathway in gallbladder cancer cells. Aging (Albany NY) 2021; 13:22502-22515. [PMID: 34580235 PMCID: PMC8507264 DOI: 10.18632/aging.203561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Melatonin is an indolic compound mainly secreted by the pineal gland and plays a vital role in the regulation of circadian rhythms and cancer therapy. However, the effects of melatonin in gallbladder cancer (GBC) and the related mechanism remain unknown. METHODS In this study, the antitumor activity of melatonin on gallbladder cancer was explored both in vitro and in vivo. After treatment with different concentrations of melatonin, the cell viability, migration, and invasion of gallbladder cancer cells (NOZ and GBC-SD cells) were evaluated by CCK-8 assay, wound healing, and Transwell assay. RESULTS The results showed that melatonin inhibited growth, migration, and invasion of gallbladder cancer cells. Subsequently, the assays suggested that melatonin significantly induced apoptosis in gallbladder cancer cells and altered the expression of the apoptotic proteins, including Bax, Bcl-2, cytochrome C, cleaved caspase-3, and PARP. Besides, the intracellular reactive oxygen species (ROS) was found to be upregulated after melatonin treatment in gallbladder cancer cells. Melatonin was found to suppress the PI3K/Akt/mTOR signaling pathway in a time-dependent manner by inhibiting the phosphorylation of PI3K, Akt, and mTOR. Treatment with N-acetyl-L-cysteine (NAC) or 740 Y-P remarkably attenuated the antitumor effects of melatonin in NOZ and GBC-SD cells. Finally, melatonin suppressed the growth of GBC-SD cells in an athymic nude mice xenograft model in vivo. CONCLUSIONS Our study revealed that melatonin could induce apoptosis by suppressing the PI3K/Akt/mTOR signaling pathway. Therefore, melatonin might serve as a potential therapeutic drug in the future treatment of gallbladder cancer.
Collapse
Affiliation(s)
- Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wenhui Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Kai Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
212
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
213
|
Li Y, Zou J, Li B, Du J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J Cell Mol Med 2021; 25:9543-9556. [PMID: 34547170 PMCID: PMC8505851 DOI: 10.1111/jcmm.16894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Jilong Zou
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
214
|
Feng ZY, Yang SD, Wang T, Guo S. Effect of Melatonin for Regulating Mesenchymal Stromal Cells and Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:717913. [PMID: 34540834 PMCID: PMC8440901 DOI: 10.3389/fcell.2021.717913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a hormone, synthesized in the pineal gland, which primarily controls the circadian rhythm of the body. In recent years, melatonin has also been shown to regulate metabolism, provide neuroprotection, and act as an anti-inflammatory, free radical scavenger. There has also been a recent research interest in the role of melatonin in regulating mesenchymal stromal cells (MSCs). MSCs are pivotal for their ability to differentiate into a variety of different tissues. There is also increasing evidence for the therapeutic prospects of MSCs via paracrine signaling. In addition to secreting cytokines and chemokines, MSCs can secrete extracellular vesicles (EVs), allowing them to respond to injury and promote tissue regeneration. While there has been a major research interest in the use of MSCs for regenerative medicine, the clinical application is limited by many risks, including tumorigenicity, senescence, and sensitivity to toxic environments. The use of MSC-derived EVs for cell-free therapy can potentially avoid the disadvantages of MSCs, which makes this an exciting prospect for regenerative medicine. Prior research has shown that MSCs, via paracrine mechanisms, can identify receptor-independent responses to melatonin and then activate a series of downstream pathways, which exert a variety of effects, including anti-tumor and anti-inflammatory effects. Here we review the synthesis of melatonin, its mechanisms of action, and the effect of melatonin on MSCs via paracrine signaling. Furthermore, we summarize the current clinical applications of melatonin and discuss future prospects.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu-De Yang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Wang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
215
|
The protective effects of Agomelatine against Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6 and Agomelatine's potential in AD treatment. Hum Cell 2021; 34:1734-1743. [PMID: 34535875 DOI: 10.1007/s13577-021-00611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a vicious degenerative disease commonly observed in the elderly population, and the deposition of Amyloid β (Aβ) is regarded as the principal pathological inducement of AD. Severe oxidative stress, inflammatory reactions, and cell senescence in neurons can be induced by Aβ1-42 oligomers, which further contribute to the damage on neurons. Agomelatine is an antidepressant that is recently claimed to have promising anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic function of Agomelatine on AD and the possible mechanism. Aβ1-42 oligomers were used to induce an in vitro injury model in SH-SY5Y neuronal cells. First, we found that exposure to Aβ1-42 oligomers significantly exacerbated oxidative stress by increasing hydrogen peroxide production and reducing glutathione peroxidase (GPx), which were partially rescued by Agomelatine. Also, Agomelatine attenuated Aβ1-42 oligomers-induced inflammatory response by decreasing the expression of TNF-α and IL-1β. Notably, Agomelatine improved cellular senescence by reducing senescence-associated β-galactosidase (SA-β-Gal) staining and mitigating Aβ1-42 oligomers-induced reduction of telomerase activity. In addition, the upregulated p16INK4A and p21CIP1 and the suppressed expression of SIRT6 in Aβ1-42 oligomers-treated cells were reversed by Agomelatine. Lastly, after the knockdown of SIRT6, the protective effect of Agomelatine against Aβ1-42 oligomers-induced cellular senescence was significantly eliminated. In conclusion, our data indicated that Agomelatine ameliorated Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6, and thus, Agomelatine could be effective in treating AD.
Collapse
|
216
|
Chai Y, Sun Y, Liu B, Guo L, Liu Z, Zhou L, Dai L, Jia C, Zhang W, Li C. Role of Sulfur Metabolism Gene and High-Sulfur Gene Expression in Wool Growth Regulation in the Cashmere Goat. Front Genet 2021; 12:715526. [PMID: 34484302 PMCID: PMC8416455 DOI: 10.3389/fgene.2021.715526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Sulfur, an essential mineral element for animals, mainly exists in the form of organic sulfur-containing amino acids (SAAs), such as cystine, methionine, and cysteine, within the body. The content, form, and structure of sulfur play an important role in determining the wool fiber quality. In addition, keratin-associated proteins, one of the most crucial wool fiber components, are rich in SAAs. However, sulfur metabolism from the blood to the skin and hair follicles remains unclear. In this study, we analyzed high-sulfur protein gene and sulfur metabolism genes in the cashmere goat and explored the effects of melatonin on their expression. In total, 53 high-sulfur protein genes and 321 sulfur metabolism genes were identified. We found that high-sulfur protein genes were distributed in the 3-4 and 144M regions of chromosome 1 and the 40-41M region of chromosome 19 in goats. Moreover, all year round, allele-specific expression (ASE) is higher in the 40-41M region of chromosome 19 than in the other regions. Total of 47 high-sulfur protein genes showed interaction with transcription factors and cofactors with ASE. These transcription factors and cofactors were inhibited after melatonin implantation. The network analysis revealed that melatonin may activate the sulfur metabolism process via the regulation of the genes related to cell energy metabolism and cell cycle in the skin, which provided sufficient SAAs for wool and cashmere growth. In conclusion, our findings provide a new insight into wool growth regulation by sulfur metabolism genes and high-sulfur protein genes in cashmere goats.
Collapse
Affiliation(s)
- Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanyong Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Bin Liu
- Nei Mongol BioNew Technology Co., Ltd., Hohhot, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunyan Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
217
|
Park HK, Hwang DS, Kim GC, Jang MA, Kim UK. Effects of melatonin receptor expression on prognosis and survival in oral squamous cell carcinoma patients. Int J Oral Maxillofac Surg 2021; 51:713-723. [PMID: 34483028 DOI: 10.1016/j.ijom.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Melatonin receptors can inhibit breast and prostate cancers; however, little is known regarding their effects on oral squamous cell carcinoma. In this study, we collected specimens from 81 patients with oral squamous cell carcinoma and analysed clinicopathological data retrospectively. In addition, the expression of the melatonin receptor was analysed immunohistochemically. Survival rates were calculated using the Kaplan-Meier method and log-rank test. Multivariate analysis was performed based on the Cox proportional-hazards model. Further, an in vitro study was performed using YD15 cells. The cells were transfected with siRNA targeting melatonin receptor 1A and 1B for evaluating the malignancy of melatonin receptors by western blotting, trypan blue-exclusion, colony-forming, wound-healing, and invasion assays. Survival decreased as melatonin receptor expression and clinical and pathological tumour-node-metastasis stages increased. A Cox proportional-hazard model showed that melatonin receptor 1A may serve as a significant predictor of the survival rate of patients with oral squamous cell carcinoma [hazard ratio = 1.423, 95% confidence interval (CI) = 1.019-1.988, p = 0.038]. Melatonin receptor 1A and 1B knockdown significantly suppressed proliferation, migration ability, and invasion ability of YD15 cells in vitro. Our findings reveal that inhibiting melatonin receptor expression may suppress oral squamous cell carcinoma development.
Collapse
Affiliation(s)
- H-K Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - D-S Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - G-C Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - M-A Jang
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - U-K Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea.
| |
Collapse
|
218
|
Melatonin Promotes In Vitro Maturation of Vitrified-Warmed Mouse Germinal Vesicle Oocytes, Potentially by Reducing Oxidative Stress through the Nrf2 Pathway. Animals (Basel) 2021; 11:ani11082324. [PMID: 34438783 PMCID: PMC8388487 DOI: 10.3390/ani11082324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cryopreservation of oocytes can cause high oxidative stress, reduce the quality of vitrified-warmed oocytes, and seriously hinder the application of oocyte cryopreservation technology in production and medicine. In this work, we found for the first time that melatonin can exert antioxidant effects through receptors and regulate the Nrf2 antioxidant pathway to respond to oxidative stress of vitrified-warmed oocytes, thereby improving both oocyte quality and the potential for subsequent development. The results illustrated the molecular mechanism of melatonin’s antioxidant effect in vitrified-warmed oocytes and provided a theoretical basis for the application of melatonin in the cryopreservation of oocytes. These findings are of great significance for the further application of oocyte cryopreservation technology to production and assisted reproduction in the future. Abstract Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
|
219
|
Reynolds JL, Dubocovich ML. Melatonin multifaceted pharmacological actions on melatonin receptors converging to abrogate COVID-19. J Pineal Res 2021; 71:e12732. [PMID: 33759236 PMCID: PMC8250125 DOI: 10.1111/jpi.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
Data indicate that controlling inflammatory responses to COVID-19 may be as important as antiviral therapies or could be an important adjunctive approach. Melatonin possesses anti-inflammation, antioxidation, and immune-enhancing features directly and/or indirectly through its own receptor signaling and is therefore well suited to reduce the severity of COVID-19. Studies have proposed that melatonin regulates COVID-19-associated proteins directly through regulation of molecules such as calmodulin (CALM) 1 and CALM 2, calreticulin (CalR), or myeloperoxidase (MPO) and/or indirectly through actions on GPCR (eg, MTNR1A, MTNR1B) and nuclear (eg, RORα, RORβ) melatonin receptor signaling. However, the exact mechanism(s) and doses by which melatonin reduces the severity of COVID-19 is still open for debate, warranting the need for further testing of melatonin in placebo-controlled randomized clinical trials for COVID-19.
Collapse
Affiliation(s)
- Jessica L. Reynolds
- Department of MedicineJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Margarita L. Dubocovich
- Department of Pharmacology and ToxicologyJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
- Interdepartmental Graduate Program in NeuroscienceJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| |
Collapse
|
220
|
Lépinay J, Taragnat C, Dubois JP, Chesneau D, Jockers R, Delagrange P, Bozon V. Negative regulation of melatonin secretion by melatonin receptors in ovine pinealocytes. PLoS One 2021; 16:e0255249. [PMID: 34324562 PMCID: PMC8320996 DOI: 10.1371/journal.pone.0255249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
Melatonin (MLT) is a biological modulator of circadian and seasonal rhythms and reproduction. The photoperiodic information is detected by retinal photoreceptors and transmitted through nerve transmissions to the pineal gland, where MLT is synthesized and secreted at night into the blood. MLT interacts with two G protein-coupled receptors, MT1 and MT2. The aim of our work was to provide evidence for the presence of MLT receptors in the ovine pineal gland and define their involvement on melatonin secretion. For the first time, we identified the expression of MLT receptors with the specific 2-[125I]-MLT agonistic radioligand in ovin pinealocytes. The values of Kd and Bmax are 2.24 ± 1.1 nM and 20 ± 6.8 fmol/mg. MLT receptors are functional and inhibit cAMP production and activate ERK1/2 through pertussis toxin-sensitive Gi/o proteins. The MLT receptor antagonist/ inverse agonist luzindole increased cAMP production (189 ± 30%) and MLT secretion (866 ± 13%). The effect of luzindole on MLT secretion was additive with the effect of well-described activators of this pathway such as the β-adrenergic agonist isoproterenol and the α-adrenergic agonist phenylephrine. Co-incubation of all three compounds increased MLT secretion by 1236 ± 199%. These results suggest that MLT receptors are involved in the negative regulation of the synthesis of its own ligand in pinealocytes. While adrenergic receptors promote MLT secretion, MLT receptors mitigate this effect to limit the quantity of MLT secreted by the pineal gland.
Collapse
Affiliation(s)
- Julie Lépinay
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Jean-Philippe Dubois
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Véronique Bozon
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| |
Collapse
|
221
|
Qin DZ, Cai H, He C, Yang DH, Sun J, He WL, Li BL, Hua JL, Peng S. Melatonin relieves heat-induced spermatocyte apoptosis in mouse testes by inhibition of ATF6 and PERK signaling pathways. Zool Res 2021; 42:514-524. [PMID: 34254745 PMCID: PMC8317181 DOI: 10.24272/j.issn.2095-8137.2021.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Normal spermatogenic processes require the scrotal temperature to be lower than that of the body as excessive heat affects spermatogenesis in the testes, reduces sperm quality and quantity, and even causes infertility. Endoplasmic reticulum stress (ERS) is a crucial factor in many pathologies. Although several studies have linked ERS to heat stress, researchers have not yet determined which ERS signaling pathways contribute to heat-induced testicular damage. Melatonin activates antioxidant enzymes, scavenges free radicals, and protects the testes from inflammation; however, few studies have reported on the influence of melatonin on heat-induced testicular damage. Using a murine model of testicular hyperthermia, we observed that heat stress causes both ERS and apoptosis in the testes, especially in the spermatocytes. These observations were confirmed using the mouse spermatocyte cell line GC2, where the Atf6 and Perk signaling pathways were activated during heat stress. Knockout of the above genes effectively reduced spermatocyte damage caused by heat stress. Pretreatment with melatonin alleviated heat-induced apoptosis by inhibiting the Atf6 and Perk signaling pathways. This mitigation was dependent on the melatonin receptors. In vivo experiments verified that melatonin treatment relieved heat-induced testicular damage. In conclusion, our results demonstrated that ATF6 and PERK are important mediators for heat-induced apoptosis, which can be prevented by melatonin treatment. Thus, our study highlights melatonin as a potential therapeutic agent in mammals for subfertility/infertility induced by testicular hyperthermia.
Collapse
Affiliation(s)
- De-Zhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hui Cai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chen He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Lai He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ba-Lun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
222
|
Dodson A, Mi K, Russo DP, Scott C, Saulnier M, Snyder K, Racz R. Aggregation and analysis of secondary pharmacology data from investigational new drug submissions at the US Food and Drug Administration. J Pharmacol Toxicol Methods 2021; 111:107098. [PMID: 34229067 DOI: 10.1016/j.vascn.2021.107098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
Secondary pharmacology studies are utilized by the pharmaceutical industry as a cost-efficient tool to identify potential safety liabilities of drugs before entering Phase 1 clinical trials. These studies are recommended by the Food and Drug Administration (FDA) as a part of the Investigational New Drug (IND) application. However, despite the utility of these assays, there is little guidance on which targets should be screened and which format should be used. Here, we evaluated 226 secondary pharmacology profiles obtained from close to 90 unique sponsors. The results indicated that the most tested target in our set was the GABA benzodiazepine receptor (tested 168 times), the most hit target was adenosine 3 (hit 24 times), and the target with the highest hit percentage was the quinone reductase 2 (NQO2) receptor (hit 29% of the time). The overall results were largely consistent with those observed in previous publications. However, this study also identified the need for improvement in the submission process of secondary pharmacology studies by industry, which could enhance their utility for regulatory purpose. FDA-industry collaborative working groups will utilize this data to determine the best methods for regulatory submission of these studies and evaluate the need for a standard target panel.
Collapse
Affiliation(s)
- Andrew Dodson
- Division of Applied Regulatory Science, Food and Drug Administration, Silver Spring, MD 20993, United States of America; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, United States of America
| | - Kevin Mi
- Office of New Drugs, Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Daniel P Russo
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, United States of America; Office of New Drugs, Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Christina Scott
- Division of Applied Regulatory Science, Food and Drug Administration, Silver Spring, MD 20993, United States of America; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, United States of America
| | - Muriel Saulnier
- Office of New Drugs, Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Kevin Snyder
- Office of New Drugs, Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Rebecca Racz
- Division of Applied Regulatory Science, Food and Drug Administration, Silver Spring, MD 20993, United States of America.
| |
Collapse
|
223
|
Pournaghi M, Khodavirdilou R, Saadatlou MAE, Nasimi FS, Yousefi S, Mobarak H, Darabi M, Shahnazi V, Rahbarghazi R, Mahdipour M. Effect of melatonin on exosomal dynamics in bovine cumulus cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
224
|
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021; 37:1010-1024. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which manifests with both motor and non-motor symptoms. Circadian rhythm dysregulation, as one of the most challenging non-motor features of PD, usually appears long before obvious motor symptoms. Moreover, the dysregulated circadian rhythm has recently been reported to play pivotal roles in PD pathogenesis, and it has emerged as a hot topic in PD research. In this review, we briefly introduce the circadian rhythm and circadian rhythm-related genes, and then summarize recent research progress on the altered circadian rhythm in PD, ranging from clinical features to the possible causes of PD-related circadian disorders. We believe that future comprehensive studies on the topic may not only help us to explore the mechanisms of PD, but also shed light on the better management of PD.
Collapse
Affiliation(s)
- Yufei Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Long Niu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xinyao Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
225
|
Jammoul M, Lawand N. Melatonin: a Potential Shield against Electromagnetic Waves. Curr Neuropharmacol 2021; 20:648-660. [PMID: 34635042 DOI: 10.2174/1570159x19666210609163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022] Open
Abstract
Melatonin, a vital hormone synthesized by the pineal gland, has been implicated in various physiological functions and in circadian rhythm regulation. Its role in the protection against the non-ionizing electromagnetic field (EMF), known to disrupt the body's oxidative/anti-oxidative balance, has been called into question due to inconsistent results observed across studies. This review provides the current state of knowledge on the interwoven relationship between melatonin, EMF, and oxidative stress. Based on synthesized evidence, we present a model that best describes the mechanisms underlying the protective effects of melatonin against RF/ELF-EMF induced oxidative stress. We show that the free radical scavenger activity of melatonin is enabled through reduction of the radical pair singlet-triplet conversion rate and the concentration of the triplet products. Moreover, this review aims to highlight the potential therapeutic benefits of melatonin against the detrimental effects of EMF, in general, and electromagnetic hypersensitivity (EHS), in particular.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| |
Collapse
|
226
|
Abstract
Insomnia afflicts many geriatric patients worldwide and results in both clinical and economic consequences. Prescribing hypnotics to the elderly is particularly challenging due to multitudes of adverse effects and drug interactions. Although benzodiazepines and "Z" drugs such as zolpidem have been popular in the past, they carry a high risk of adverse effects in the elderly, such as devastating falls and injuries as well as potentially an increase in mortality. Newer classes of hypnotics such as dual orexin receptor antagonists are much better tolerated and can be explored as a potential treatment for insomnia in the elderly.
Collapse
Affiliation(s)
- Becky X Lou
- Northwell Sleep Medicine Fellowship, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine-Northwell, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA.
| | - Margarita Oks
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine-Northwell, 100 East 77 Street, New York, NY 10075, USA
| |
Collapse
|
227
|
Melhuish Beaupre LM, Brown GM, Gonçalves VF, Kennedy JL. Melatonin's neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders. Transl Psychiatry 2021; 11:339. [PMID: 34078880 PMCID: PMC8172874 DOI: 10.1038/s41398-021-01464-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Melatonin is an ancient molecule that is evident in high concentrations in various tissues throughout the body. It can be separated into two pools; one of which is synthesized by the pineal and can be found in blood, and the second by various tissues and is present in these tissues. Pineal melatonin levels display a circadian rhythm while tissue melatonin does not. For decades now, melatonin has been implicated in promoting and maintaining sleep. More recently, evidence indicates that it also plays an important role in neuroprotection. The beginning of our review will summarize this literature. As an amphiphilic, pleiotropic indoleamine, melatonin has both direct actions and receptor-mediated effects. For example, melatonin has established effects as an antioxidant and free radical scavenger both in vitro and in animal models. This is also evident in melatonin's prominent role in mitochondria, which is reviewed in the next section. Melatonin is synthesized in, taken up by, and concentrated in mitochondria, the powerhouse of the cell. Mitochondria are also the major source of reactive oxygen species as a byproduct of mitochondrial oxidative metabolism. The final section of our review summarizes melatonin's potential role in aging and psychiatric disorders. Pineal and tissue melatonin levels both decline with age. Pineal melatonin declines in individuals suffering from psychiatric disorders. Melatonin's ability to act as a neuroprotectant opens new avenues of exploration for the molecule as it may be a potential treatment for cases with neurodegenerative disease.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Gonçalves
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
228
|
Gu C, Wang F, Zhang Y, Wei S, Liu J, Sun H, Wang G, Liu C. Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming. Aging Cell 2021; 20:e13375. [PMID: 33964119 PMCID: PMC8208780 DOI: 10.1111/acel.13375] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia-mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)-induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti-inflammatory effects of MT1 activation. LPS-induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS-treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti-inflammatory effects of MT1 activation were observed in LPS-stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS-induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti-inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of NeurologySuzhou Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesInstitute of NeuroscienceSoochow UniversitySuzhouChina
- Department of PharmacyChildren’s Hospital of Soochow UniversitySuzhouChina
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesInstitute of NeuroscienceSoochow UniversitySuzhouChina
| | - Yu‐Ting Zhang
- Department of NeurologySuzhou Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesInstitute of NeuroscienceSoochow UniversitySuzhouChina
| | - Shi‐Zhuang Wei
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesInstitute of NeuroscienceSoochow UniversitySuzhouChina
| | - Jun‐Yi Liu
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Hong‐Yang Sun
- Laboratory of Molecular NeuropathologyJiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders &Department of PharmacologyCollege of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Guang‐Hui Wang
- Laboratory of Molecular NeuropathologyJiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders &Department of PharmacologyCollege of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Chun‐Feng Liu
- Department of NeurologySuzhou Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesInstitute of NeuroscienceSoochow UniversitySuzhouChina
| |
Collapse
|
229
|
Sancak B, Ozdemir Z, Ozcan O, Acar E. Melatonin Related Acneiform Lesions: A Case Report and Potential Mechanism. PSYCHIAT CLIN PSYCH 2021; 31:241-244. [PMID: 38765230 PMCID: PMC11079672 DOI: 10.5152/pcp.2021.21234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 05/21/2024] Open
Abstract
Melatonin (MLT) is a hormone secreted by the pineal gland according to the circadian rhythm, which is generated by the suprachiasmatic nucleus. The sleep-promoting effect of exogenous MLT is used to treat sleep disorders. The most common side effects reported are headache, somnolence, palpitations, and abdominal pain. Some studies showed dermatological side effects with the use of exogenous MLT, but did not list the specific symptoms. In this article, we describe a case of facial acne occurring after the use of MLT, which is generally known to have protective and healing effects on the skin, and the potential mechanism of this surprising side effect.
Collapse
Affiliation(s)
- Baris Sancak
- Department of Psychiatry, Acıbadem Mehmet Ali Aydinlar University School of Medicine, Atakent Hospital, Istanbul, Turkey
| | - Zeynep Ozdemir
- Department of Neurology, Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Ozan Ozcan
- Department of Biochemistry, Marmara University School of Dentistry, Istanbul, Turkey
| | - Erkan Acar
- Department of Neurology, Acıbadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
230
|
Gao X, Liu W, Gao P, Li S, Chen Z, Ma F. Melatonin-induced lncRNA LINC01512 prevents Treg/Th17 imbalance by promoting SIRT1 expression in necrotizing enterocolitis. Int Immunopharmacol 2021; 96:107787. [PMID: 34162151 DOI: 10.1016/j.intimp.2021.107787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the fact that melatonin regulates the expression of long noncoding RNAs (lncRNAs) under different physiological and pathological conditions, it has not been confirmed whether melatonin-induced lncRNAs regulate the differentiation of Treg and Th17 cells. Herein, we show that the expression of LINC01512 is significantly down-regulated and correlates with imbalanced Treg/Th17 ratios in necrotising enterocolitis (NEC) tissues. Through gain- and loss-of-function approaches, we found that LINC01512 promotes the differentiation of Treg cells but interferes with that of Th17 cells. Mechanistically, LINC01512 promotes SIRT1 in Treg and Th17 cells, and subsequently enhances the differentiation of Treg cells and inhibits that of Th17 cells. Furthermore, we demonstrate that melatonin up-regulates the transcription of LINC01512 via the AMPK signalling pathway and that the blockade of AMPK represses LINC01512 expression in Treg and Th17 cells. Overall, our results confirm that SIRT1-regulated differentiation of Treg/Th17 cells is actually modulated by melatonin-induced LINC0512. Moreover, manipulation of the AMPK/LINC01512/SIRT1 axis via melatonin may be a novel therapeutic approach to reduce inflammation.
Collapse
Affiliation(s)
- Xiaoyan Gao
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Wangkai Liu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingmin Gao
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyu Chen
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Fei Ma
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
231
|
Tubulin Polymerization Promoting Protein Affects the Circadian Timing System in C57Bl/6 Mice. J Circadian Rhythms 2021; 19:5. [PMID: 34046074 PMCID: PMC8139294 DOI: 10.5334/jcr.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The circadian timing system (CTS) is a complex set of cyclic cellular mechanisms which serve to synchronize discrete cell groups across multiple organ systems to adapt the bodys physiology to a (roughly) 24-hour clock. Many genes and hormones have been shown to be strongly associated with the CTS, some of which include the genes Bmal1, Period1, Period2, Cryptochrome1, and Cryptochrome2, and the hormone melatonin. Previous data suggest that microtubule dynamics play an important role in melatonin function as it relates to the CTS in vitro, though this relationship has never been explored in vivo. The purpose of this study was to determine whether disruption of microtubule regulation in C57Bl/6 mice results in measurable changes to the CTS. To study the potential effects of microtubule dynamics on the CTS in vivo, we utilized a mouse model of microtubule instability, knocked out for the tubulin polymerization promoting protein gene (Tppp -/-), comparing them to their wild type (WT) littermates in three categories: locomotor activity (in light/dark and dark/dark photoperiods), serial clock gene expression, and serial serum melatonin concentration. These comparisons showed differences in all three categories, including significant differences in locomotor characteristics under dark/dark conditions. Our findings support and extend previous reports that microtubule dynamics are a modulator of circadian rhythm regulation likely through a mechanism involving melatonin induced phase shifting.
Collapse
|
232
|
Kanarskii M, Nekrasova J, Vitkovskaya S, Pradhan P, Peshkov S, Borisova E, Borisov I, Panasenkova O, Petrova MV, Pryanikov I. Effect of Retinohypothalamic Tract Dysfunction on Melatonin Level in Patients with Chronic Disorders of Consciousness. Brain Sci 2021; 11:brainsci11050559. [PMID: 33925097 PMCID: PMC8145260 DOI: 10.3390/brainsci11050559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study is to compare the secretion level of nocturnal melatonin and the characteristics of the peripheral part of the visual analyzer in patients with chronic disorders of consciousness (DOC). MATERIALS AND METHODS We studied the level of melatonin in 22 patients with chronic DOC and in 11 healthy volunteers. The fundus condition was assessed using the ophthalmoscopic method. RESULTS The average level of nocturnal melatonin in patients with DOC differed by 80% from the level of indole in healthy volunteers. This reveals a direct relationship between etiology, the level of consciousness, gaze fixation, coma recovery scale-revised score and the level of melatonin secretion. Examination by an ophthalmologist revealed a decrease in the macular reflex in a significant number of DOC patients, which in turn correlates negatively with the time from brain injury and positively with low values of nocturnal melatonin.
Collapse
Affiliation(s)
- Mikhail Kanarskii
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Julia Nekrasova
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Svetlana Vitkovskaya
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Pranil Pradhan
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
- Correspondence:
| | - Sergey Peshkov
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Elena Borisova
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Ilya Borisov
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Olga Panasenkova
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| | - Marina V. Petrova
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
- Department of Anestesiology-Reanimatology, People’s Friendship University of Russia, 117198 Moscow, Russia
| | - Igor Pryanikov
- Department for the Study of Chronic Disorder of Consciousness, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 117647 Moscow, Russia; (M.K.); (J.N.); (S.V.); (S.P.); (E.B.); (I.B.); (O.P.); (M.V.P.); (I.P.)
| |
Collapse
|
233
|
Gao Q, Guo X, Cao Y, Jia X, Xu S, Lu C, Zhu H. Melatonin Protects HT22 Hippocampal Cells from H 2O 2-induced Injury by Increasing Beclin1 and Atg Protein Levels to Activate Autophagy. Curr Pharm Des 2021; 27:446-454. [PMID: 32838711 DOI: 10.2174/1381612826666200824105835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aging of hippocampal neurons leads to a substantial decline in memory formation, storage and processing. The neuroprotective effect of melatonin has been confirmed, however, its protective mechanism remains unclear. OBJECTIVE In this study, mouse hippocampus-derived neuronal HT22 cells were used to investigate whether melatonin protects the hippocampus from hydrogen peroxide (H2O2)-induced injury by regulating autophagy. METHODS Rapamycin (an activator of autophagy) and 3-methyladenine (3MA, an inhibitor of autophagy) were used to induce or inhibit autophagy, respectively. HT22 cells were treated with 200 μM H2O2 in the presence or absence of 50 μM melatonin. Cell counting kit 8 (CCK-8), β-galactosidase and Hoechst staining were used to measure the viability, aging and apoptosis of cells, respectively. Western blot analysis was used to detect the levels of autophagy-related proteins. RESULTS The activation of autophagy by rapamycin alleviated H2O2-induced oxidative injury, as evidenced by morphological changes and decreased viability, while the inhibition of autophagy by 3MA exacerbated H2O2- induced injury. The inhibitory effect of melatonin on H2O2-induced injury was similar to that of rapamycin. Melatonin also alleviated H2O2-induced aging and apoptosis. Melatonin activated autophagy in the presence or absence of H2O2, as evidenced by an increased Lc3b 14/16 kd ratio and a decreased P62 level. In addition, H2O2 decreased the levels of Beclin1 and Atg5/12/16, which were reversed by rapamycin or melatonin. The effects of melatonin on H2O2-induced injury, autophagy and protein expressions were effectively reversed by 3MA. CONCLUSION In conclusion, these results demonstrate that melatonin protects HT22 hippocampal neurons from H2O2-induced injury by increasing the levels of the Beclin1 and Atg proteins to activate autophagy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaocheng Guo
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shanshan Xu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
234
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
235
|
Akyuz E, Kullu I, Arulsamy A, Shaikh MF. Melatonin as an Antiepileptic Molecule: Therapeutic Implications via Neuroprotective and Inflammatory Mechanisms. ACS Chem Neurosci 2021; 12:1281-1292. [PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyuz
- University of Health Sciences, International Medicine Faculty, Department of Biophysics, Istanbul, Turkey
| | - Irem Kullu
- Medical School, Yozgat Bozok University, 66100 Yozgat, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| |
Collapse
|
236
|
Cao Y, Wang F, Wang Y, Long J. Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model. Aging (Albany NY) 2021; 13:13548-13559. [PMID: 33839700 PMCID: PMC8202857 DOI: 10.18632/aging.202836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/15/2020] [Indexed: 01/01/2023]
Abstract
Background and purpose: Ischemic/reperfusions are regarded as the clinical consensus for stroke treatment, which results in secondary injury of brain tissues. Increased blood-brain barrier (BBB) permeability and infiltration of inflammatory cells are responsible for the ischemic/reperfusion injury. In the present study, we aimed to investigate the effects of Agomelatine on brain ischemic/reperfusions injury and the underlying mechanism. Methods: MCAO model was established in mice. The expressions of CD68 and claudin-5 in the cerebral cortex were determined using an immunofluorescence assay. Brain permeability was evaluated using Evans blue staining assay. A two-chamber and two-cell trans-well assay was used to detect the migration ability of macrophages through endothelial cells. The expression levels of claudin-5 and MCP-1 in the endothelial cells were determined using qRT-PCR and ELISA. Results: CD68 was found to be up-regulated in the cerebral cortex of MCAO mice but was down-regulated by treatment with Agomelatine. The expression level of down-regulated claudin-5 in the cerebral cortex of MCAO mice was significantly suppressed by Agomelatine. Deeper staining of Evans blue was found in the MCAO group, which was however faded significantly in the Agomelatine treated MCAO mice. The migrated macrophages were significantly increased by hypoxia incubation but were greatly suppressed by the introduction of Agomelatine. The down-regulated claudin-5 by hypoxic incubation in endothelial cells was up-regulated by treatment with Agomelatine. Furthermore, the increased expression of MCP-1 in endothelial cells under hypoxic conditions was significantly inhibited by Agomelatine. Conclusion: Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model.
Collapse
Affiliation(s)
- Yiqiang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yonggang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jiang Long
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
237
|
Ghorbani-Anarkooli M, Dabirian S, Zendedel A, Moladoust H, Bahadori MH. Effects of melatonin on the toxicity and proliferation of human anaplastic thyroid cancer cell line. Acta Histochem 2021; 123:151700. [PMID: 33667778 DOI: 10.1016/j.acthis.2021.151700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Thyroid carcinoma is the most common endocrine malignancy and anaplastic thyroid carcinoma (ATC) is a rare but most aggressive cancer. Melatonin has enhanced or induced apoptosis in many different cancer cells, however, there has not been any study on the effects of melatonin in the treatment of ATC. In this study, we examined the effect of melatonin on cytotoxicity in the human ATC cell line. MATERIALS AND METHODS Cultured ATC cells were treated at melatonin concentrations 0.6, 1, 4, 16, 28 mM for 24 h. The MTT assay was performed to examine cell viability. Cytotoxicity was assayed with the determination of lactic dehydrogenase (LDH) activity. Apoptosis was detected by acridine orange/ethidium bromide and Hoechst 33342 staining. Giemsa staining is considered for evaluating the morphological changes of ATC cells. The reproductive ability of cells to form a colony was evaluated by the clonogenic assay. RESULTS Results showed that melatonin could significantly decrease cell viability and the lowest cell viability was observed at 28 mM, 10.26 % ± 0.858 versus control. Similar results were obtained when analyzing LDH activity. The highest LDH levels were observed at 16 and 28 mM (546.08 ± 4.66, 577.82 ± 3.14 munit/mL versus control) that confirmed the occurrence of late apoptosis. The clonogenic assay showed that cells at the high concentration of melatonin (16 and 28 mM) don't enable to form the colony that approved the occurrence of reproductive death. CONCLUSION Our results showed a dose-dependent cytotoxic effect of melatonin on ATC cells that significantly decreased cell viability and induced cell reproductive death at the concentration greater than 1 mM and findings suggested that MLT might be useful as an adjuvant in ATC therapy.
Collapse
|
238
|
Zou Y, Sun H, Guo Y, Shi Y, Jiang Z, Huang J, Li L, Jiang F, Lin Z, Wu J, Zhou R, Liu Y, Ao L. Integrative Pan-Cancer Analysis Reveals Decreased Melatonergic Gene Expression in Carcinogenesis and RORA as a Prognostic Marker for Hepatocellular Carcinoma. Front Oncol 2021; 11:643983. [PMID: 33842355 PMCID: PMC8029983 DOI: 10.3389/fonc.2021.643983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin has been shown to play a protective role in the development and progression of cancer. However, the relationship between alterations in the melatonergic microenvironment and cancer development has remained unclear. Methods We performed a comprehensive investigation on 12 melatonergic genes and their relevance to cancer occurrence, progression and survival by integrating multi-omics data from microarray analysis and RNA sequencing across 11 cancer types. Specifically, the 12 melatonergic genes that we investigated, which reflect the melatonergic microenvironment, included three membrane receptor genes, three nuclear receptor genes, two intracellular receptor genes, one synthetic gene, and three metabolic genes. Results Widely coherent underexpression of nuclear receptor genes, intracellular receptor genes, and metabolic genes was observed in cancerous samples from multiple cancer types compared to that in normal samples. Furthermore, genomic and/or epigenetic alterations partially contributed to these abnormal expression patterns in cancerous samples. Moreover, the majority of melatonergic genes had significant prognostic effects in predicting overall survival. Nevertheless, few corresponding alterations in expression were observed during cancer progression, and alterations in expression patterns varied greatly across cancer types. However, the association of melatonergic genes with one specific cancer type, hepatocellular carcinoma, identified RORA as a tumor suppressor and a prognostic marker for patients with hepatocellular carcinoma. Conclusions Overall, our study revealed decreased melatonergic gene expression in various cancers, which may help to better elucidate the relationship between melatonin and cancer development. Taken together, our findings highlight the potential prognostic significance of melatonergic genes in various cancers.
Collapse
Affiliation(s)
- Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaqin Sun
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jingxuan Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruixiang Zhou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuncai Liu
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
239
|
Xu S, Li L, Wu J, An S, Fang H, Han Y, Huang Q, Chen Z, Zeng Z. Melatonin Attenuates Sepsis-Induced Small-Intestine Injury by Upregulating SIRT3-Mediated Oxidative-Stress Inhibition, Mitochondrial Protection, and Autophagy Induction. Front Immunol 2021; 12:625627. [PMID: 33790896 PMCID: PMC8006917 DOI: 10.3389/fimmu.2021.625627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin reportedly alleviates sepsis-induced multi-organ injury by inducing autophagy and activating class III deacetylase Sirtuin family members (SIRT1-7). However, whether melatonin attenuates small-intestine injury along with the precise underlying mechanism remain to be elucidated. To investigate this, we employed cecal ligation and puncture (CLP)- or endotoxemia-induced sepsis mouse models and confirmed that melatonin treatment significantly prolonged the survival time of mice and ameliorated multiple-organ injury (lung/liver/kidney/small intestine) following sepsis. Melatonin partially protected the intestinal barrier function and restored SIRT1 and SIRT3 activity/protein expression in the small intestine. Mechanistically, melatonin treatment enhanced NF-κB deacetylation and subsequently reduced the inflammatory response and decreased the TNF-α, IL-6, and IL-10 serum levels; these effects were abolished by SIRT1 inhibition with the selective blocker, Ex527. Correspondingly, melatonin treatment triggered SOD2 deacetylation and increased SOD2 activity and subsequently reduced oxidative stress; this amelioration of oxidative stress by melatonin was blocked by the SIRT3-selective inhibitor, 3-TYP, and was independent of SIRT1. We confirmed this mechanistic effect in a CLP-induced sepsis model of intestinal SIRT3 conditional-knockout mice, and found that melatonin preserved mitochondrial function and induced autophagy of small-intestine epithelial cells; these effects were dependent on SIRT3 activation. This study has shown, to the best of our knowledge, for the first time that melatonin alleviates sepsis-induced small-intestine injury, at least partially, by upregulating SIRT3-mediated oxidative-stress inhibition, mitochondrial-function protection, and autophagy induction.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyang Han
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
240
|
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
241
|
Huang YS, Lu KC, Chao HW, Chen A, Chao TK, Guo CY, Hsieh HY, Shih HM, Sytwu HK, Wu CC. The MTNR1A mRNA is stabilized by the cytoplasmic hnRNPL in renal tubular cells. J Cell Physiol 2021; 236:2023-2035. [PMID: 32730662 DOI: 10.1002/jcp.29988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
The downregulation of melatonin receptor 1A (MTNR1A) is associated with a range of pathological conditions, including membranous nephropathy. Knowledge of the mechanism underlying MTNR1A expression has been limited to the transcriptional regulation level. Here, RNA interference screening in human kidney cells revealed that heterogeneous nuclear ribonucleoprotein L (hnRNPL) upregulated MTNR1A RNA post-transcriptionally. hnRNPL knockdown or overexpression led to increased or decreased levels of cyclic adenosine monophosphate-responsive element-binding protein phosphorylation, respectively. Molecular studies showed that cytoplasmic hnRNPL exerts a stabilizing effect on the MTNR1A transcript through CA-repeat elements in its coding region. Further studies revealed that the interaction between hnRNPL and MTNR1A serves to protect MNTR1A RNA degradation by the exosome component 10 protein. MTNR1A, but not hnRNPL, displays a diurnal rhythm in mouse kidneys. Enhanced levels of MTNR1A recorded at midnight correlated with robust binding activity between cytoplasmic hnRNPL and the MTNR1A transcript. Both hnRNPL and MTNR1A were decreased in the cytoplasm of tubular epithelial cells from experimental membranous nephropathy kidneys, supporting their clinical relevance. Collectively, our data identified cytoplasmic hnRNPL as a novel player in the upregulation of MTNR1A expression in renal tubular epithelial cells, and as a potential therapeutic target.
Collapse
MESH Headings
- Animals
- Cell Line
- Circadian Rhythm/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cytoplasm/metabolism
- Epithelial Cells/metabolism
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Glomerulonephritis, Membranous/genetics
- Glomerulonephritis, Membranous/pathology
- Heterogeneous-Nuclear Ribonucleoprotein L/metabolism
- Humans
- Kidney Tubules/metabolism
- Kidney Tubules/pathology
- Mice, Inbred BALB C
- Models, Biological
- Open Reading Frames/genetics
- Phosphorylation
- RNA Stability/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yi Guo
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Yi Hsieh
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
242
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
243
|
Ferreira MA, Azevedo H, Mascarello A, Segretti ND, Russo E, Russo V, Guimarães CRW. Discovery of ACH-000143: A Novel Potent and Peripherally Preferred Melatonin Receptor Agonist that Reduces Liver Triglycerides and Steatosis in Diet-Induced Obese Rats. J Med Chem 2021; 64:1904-1929. [PMID: 33626870 DOI: 10.1021/acs.jmedchem.0c00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The modulation of melatonin signaling in peripheral tissues holds promise for treating metabolic diseases like obesity, diabetes, and nonalcoholic steatohepatitis. Here, several benzimidazole derivatives have been identified as novel agonists of the melatonin receptors MT1 and MT2. The lead compounds 10b, 15a, and 19a demonstrated subnanomolar potency at MT1/MT2 receptors, high oral bioavailability in rodents, peripherally preferred exposure, and excellent selectivity in a broad panel of targets. Two-month oral administration of 10b in high-fat diet rats led to a reduction in body weight gain similar to dapagliflozin with superior results on hepatic steatosis and triglyceride levels. An early toxicological assessment indicated that 10b (also codified as ACH-000143) was devoid of hERG binding, genotoxicity, and behavioral alterations at doses up to 100 mg/kg p.o., supporting further investigation of this compound as a drug candidate.
Collapse
Affiliation(s)
| | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo 07034-904, Brazil
| | | | | | - Elisa Russo
- Zirkon Ind. Com de Insumos Químicos, Itapira, São Paulo 13977-105, Brazil
| | - Valter Russo
- Zirkon Ind. Com de Insumos Químicos, Itapira, São Paulo 13977-105, Brazil
| | | |
Collapse
|
244
|
Nishimon S, Nishino N, Nishino S. Advances in the pharmacological management of non-24-h sleep-wake disorder. Expert Opin Pharmacother 2021; 22:1039-1049. [PMID: 33618599 DOI: 10.1080/14656566.2021.1876665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction: Melatonin, a hormone that regulates circadian rhythms and the sleep-wake cycle, is produced mainly during the dark period in the pineal gland and is suppressed by light exposure. Patients with non-24-h sleep-wake disorder (non-24) fail to entrain the master clock with the 24-h light-dark cycle due to the lack of light perception to the suprachiasmatic nucleus typically in totally blind individuals or other organic disorders in sighted individuals, causing a progressive delay in the sleep-wake cycle and periodic insomnia and daytime sleepiness.Areas covered: Herein, the authors review the pharmacological therapies including exogenous melatonin and melatonin receptor agonists for the management of non-24. They introduce a historical report about the effects of melatonin on the phase shift and entrainment for blind individuals with the free-running circadian rhythm.Expert opinion: Orally administered melatonin entrains the endogenous circadian rhythm and improves nighttime sleep and daytime alertness for non-24. Currently, tasimelteon is the only approved medication for non-24 by the US Food and Drug Administration and the European Medicines Agency. Treatments that focus only on sleep problems are insufficient for the treatment of non-24, and aids to entrain the free-running rhythm with the light-dark cycle are needed.
Collapse
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA.,Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoya Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
245
|
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov 2021; 20:287-307. [PMID: 33589815 DOI: 10.1038/s41573-020-00109-w] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The circadian clock evolved in diverse organisms to integrate external environmental changes and internal physiology. The clock endows the host with temporal precision and robust adaptation to the surrounding environment. When circadian rhythms are perturbed or misaligned, as a result of jet lag, shiftwork or other lifestyle factors, adverse health consequences arise, and the risks of diseases such as cancer, cardiovascular diseases or metabolic disorders increase. Although the negative impact of circadian rhythm disruption is now well established, it remains underappreciated how to take advantage of biological timing, or correct it, for health benefits. In this Review, we provide an updated account of the circadian system and highlight several key disease areas with altered circadian signalling. We discuss environmental and lifestyle modifications of circadian rhythm and clock-based therapeutic strategies, including chronotherapy, in which dosing time is deliberately optimized for maximum therapeutic index, and pharmacological agents that target core clock components and proximal regulators. Promising progress in research, disease models and clinical applications should encourage a concerted effort towards a new era of circadian medicine.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
246
|
Kory P, Meduri GU, Iglesias J, Varon J, Marik PE. Clinical and Scientific Rationale for the "MATH+" Hospital Treatment Protocol for COVID-19. J Intensive Care Med 2021; 36:135-156. [PMID: 33317385 DOI: 10.1177/0885066620973585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In December 2019, COVID-19, a severe respiratory illness caused by the new coronavirus SARS-CoV-2 (COVID-19) emerged in Wuhan, China. The greatest impact that COVID-19 had was on intensive care units (ICUs), given that approximately 20% of hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission. Based on the assumption that COVID-19 represented a viral pneumonia and no anti-coronaviral therapy existed, nearly all national and international health care societies' recommended "supportive care only" avoiding other therapies outside of randomized controlled trials, with a specific prohibition against the use of corticosteroids in treatment. However, early studies of COVID-19-associated ARF reported inexplicably high mortality rates, with frequent prolonged durations of mechanical ventilation (MV), even from centers expert in such supportive care strategies. These reports led the authors to form a clinical expert panel called the Front-Line COVID-19 Critical Care Alliance (www.flccc.net). The panel collaboratively reviewed the emerging clinical, radiographic, and pathological reports of COVID-19 while initiating multiple discussions among a wide clinical network of front-line clinical ICU experts from initial outbreak areas in China, Italy, and New York. Based on the shared early impressions of "what was working and what wasn't working," the increasing medical journal publications and the rapidly accumulating personal clinical experiences with COVID-19 patients, a treatment protocol was created for the hospitalized patients based on the core therapies of methylprednisolone, ascorbic acid, thiamine, heparin and co-interventions (MATH+). This manuscript reviews the scientific and clinical rationale behind MATH+ based on published in-vitro, pre-clinical, and clinical data in support of each medicine, with a special emphasis of studies supporting their use in the treatment of patients with viral syndromes and COVID-19 specifically. The review concludes with a comparison of published multi-national mortality data with MATH+ center outcomes.
Collapse
Affiliation(s)
- Pierre Kory
- 22392Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - G Umberto Meduri
- Memphis VA Medical Center, 12326University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose Iglesias
- Jersey Shore University Medical Center, Hackensack School of Medicine at Seton Hall, NJ, USA
| | - Joseph Varon
- 12340University of Texas Health Science Center, Houston, TX, USA
| | - Paul E Marik
- 6040Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
247
|
Liu PI, Chang AC, Lai JL, Lin TH, Tsai CH, Chen PC, Jiang YJ, Lin LW, Huang WC, Yang SF, Tang CH. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: implications for bone metastases. Oncogene 2021; 40:1503-1515. [PMID: 33452455 DOI: 10.1038/s41388-020-01613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Cancer-related bone erosion occurs frequently in bone metastasis and is associated with severe complications such as chronic bone pain, fractures, and lower survival rates. In recognition of the fact that the darkness hormone melatonin is capable of regulating bone homeostasis, we explored its therapeutic potential in bone metastasis. We found that melatonin directly reduces osteoclast differentiation, bone resorption activity and promotes apoptosis of mature osteoclasts. We also observed that melatonin inhibits RANKL production in lung and prostate cancer cells by downregulating the p38 MAPK pathway, which in turn prevents cancer-associated osteoclast differentiation. In lung and prostate bone metastasis models, twice-weekly melatonin treatment markedly reduced tumor volumes and numbers of osteolytic lesions. Melatonin also substantially lowered the numbers of TRAP-positive osteoclasts in tibia bone marrow and RANKL expression in tumor tissue. These findings show promise for melatonin in the treatment of bone metastases.
Collapse
Affiliation(s)
- Po-I Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jiun-Lin Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Ya-Jing Jiang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
248
|
Cankara FN, Günaydın C, Çelik ZB, Şahin Y, Pekgöz Ş, Erzurumlu Y, Gülle K. Agomelatine confers neuroprotection against cisplatin-induced hippocampal neurotoxicity. Metab Brain Dis 2021; 36:339-349. [PMID: 33165734 DOI: 10.1007/s11011-020-00634-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023]
Abstract
Neurotoxicity caused by cisplatin is a major obstacle during chemotherapy. Oxidative stress and inflammation are considered the primary mechanism behind neuronal damage which affects the continuing chemotherapy regimen. Agomelatine was recently described as a neuroprotective compound against toxic insults in the nervous systems. It is an analog of the well-known antioxidant and anti-inflammatory compound melatonin and currently used for depression and sleep disturbances. In the current study, we investigated the possible neuroprotective role of agomelatine against cisplatin-induced oxidative, inflammatory, and behavioral alterations in male rats. Our results show that agomelatine prevented cisplatin-induced neurotoxicity in the HT-22 mouse hippocampal neuronal cell line. Additionally, agomelatine treatment inhibited cisplatin-induced behavioral deficits and neuronal integrity in vivo. For the evaluation of the effect of agomelatine on oxidative stress and inflammation, GSH, MDA, TNF, and IL-6 levels were analyzed in HT-22 cells and hippocampal tissues. Agomelatine significantly attenuated oxidative stress and inflammation due to the cisplatin insult in vitro and in vivo. Also, agomelatine treatment ameliorated the neuronal pathology in the hippocampus, which is strongly related to cognition and memory. Taken together, our results indicate that in males, the neuroprotective effect of agomelatine is mediated through its antioxidant and anti-inflammatory actions abrogating functional deficits.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Zülfinaz Betül Çelik
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Yasemin Şahin
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Şakir Pekgöz
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Kanat Gülle
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
249
|
Glatfelter GC, Jones AJ, Rajnarayanan RV, Dubocovich ML. Pharmacological Actions of Carbamate Insecticides at Mammalian Melatonin Receptors. J Pharmacol Exp Ther 2021; 376:306-321. [PMID: 33203660 PMCID: PMC7841424 DOI: 10.1124/jpet.120.000065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Integrated in silico chemical clustering and melatonin receptor molecular modeling combined with in vitro 2-[125I]-iodomelatonin competition binding were used to identify carbamate insecticides with affinity for human melatonin receptor 1 (hMT1) and human melatonin receptor 2 (hMT2). Saturation and kinetic binding studies with 2-[125I]-iodomelatonin revealed lead carbamates (carbaryl, fenobucarb, bendiocarb, carbofuran) to be orthosteric ligands with antagonist apparent efficacy at hMT1 and agonist apparent efficacy at hMT2 Furthermore, using quantitative receptor autoradiography in coronal brain slices from C3H/HeN mice, carbaryl, fenobucarb, and bendiocarb competed for 2-[125I]-iodomelatonin binding in the suprachiasmatic nucleus (SCN), paraventricular nucleus of the thalamus (PVT), and pars tuberalis (PT) with affinities similar to those determined for the hMT1 receptor. Carbaryl (10 mg/kg i.p.) administered in vivo also competed ex vivo for 2-[125I]-iodomelatonin binding to the SCN, PVT, and PT, demonstrating the ability to reach brain melatonin receptors in C3H/HeN mice. Furthermore, the same dose of carbaryl given to C3H/HeN mice in constant dark for three consecutive days at subjective dusk (circadian time 10) phase-advanced circadian activity rhythms (mean = 0.91 hours) similar to melatonin (mean = 1.12 hours) when compared with vehicle (mean = 0.04 hours). Carbaryl-mediated phase shift of overt circadian activity rhythm onset is likely mediated via interactions with SCN melatonin receptors. Based on the pharmacological actions of carbaryl and other carbamate insecticides at melatonin receptors, exposure may modulate time-of-day information conveyed to the master biologic clock relevant to adverse health outcomes. SIGNIFICANCE STATEMENT: In silico chemical clustering and molecular modeling in conjunction with in vitro bioassays identified several carbamate insecticides (i.e., carbaryl, carbofuran, fenobucarb, bendiocarb) as pharmacologically active orthosteric melatonin receptor 1 and 2 ligands. This work further demonstrated that carbaryl competes for melatonin receptor binding in the master biological clock (suprachiasmatic nucleus) and phase-advances overt circadian activity rhythms in C3H/HeN mice, supporting the relevance of circadian effects when interpreting toxicological findings related to carbamate insecticide exposure.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Anthony J Jones
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rajendram V Rajnarayanan
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
250
|
Kopustinskiene DM, Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021; 13:129. [PMID: 33498316 PMCID: PMC7909293 DOI: 10.3390/pharmaceutics13020129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Melatonin, an endogenously synthesized indolamine, is a powerful antioxidant exerting beneficial action in many pathological conditions. Melatonin protects from oxidative stress in ischemic/reperfusion injury, neurodegenerative diseases, and aging, decreases inflammation, modulates the immune system, inhibits proliferation, counteracts the Warburg effect, and promotes apoptosis in various cancer models. Melatonin stimulates antioxidant enzymes in the cells, protects mitochondrial membrane phospholipids, especially cardiolipin, from oxidation thus preserving integrity of the membranes, affects mitochondrial membrane potential, stimulates activity of respiratory chain enzymes, and decreases the opening of mitochondrial permeability transition pore and cytochrome c release. This review will focus on the molecular mechanisms of melatonin effects in the cells during normal and pathological conditions and possible melatonin clinical applications.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|