201
|
Thirumuruganandham SP, Gómez EA, Lakshmanan S, Hamblin MR. Terahertz Frequency Spectroscopy to Determine Cold Shock Protein Stability upon Solvation and Evaporation - A Molecular Dynamics Study. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY 2017; 7:131-143. [PMID: 30881732 PMCID: PMC6419770 DOI: 10.1109/tthz.2016.2637380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Infrared (IR) and Terahertz (THz) spectroscopy simulations were carried out using CHARMM35b2 to determine protein stability. The stabilities of three bacterial cold shock proteins (Csps) originating from mesophiles, thermophiles and hyper- thermophiles respectively were investigated in this study. The three different Csps were investigated by Normal-Mode analysis and Molecular Dynamics simulation of THz spectra using the Hessian matrix for solvated systems, interpreted in the harmonic approximation at optimum near-melting temperatures of each homologue, by incorporating differences in the hydrous and anhydrous states of the Csps. The results show slight variations in the large scale protein motion. However, the IR spectra of Csps observed at the low frequency saddle surface region, clearly distinguishes the thermophilic and mesophilic proteins based on their stability. Further studies on protein stability employing low-frequency collective modes have the potential to reveal functionally important conformational changes that are biologically significant.
Collapse
Affiliation(s)
| | - Edgar A Gómez
- Programa de Física, Universidad del Quindío, Armenia, Colombia
| | - Shanmugamurthy Lakshmanan
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
202
|
Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW. Development of a human vasopressin V 1a-receptor antagonist from an evolutionary-related insect neuropeptide. Sci Rep 2017; 7:41002. [PMID: 28145450 PMCID: PMC5286520 DOI: 10.1038/srep41002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023] Open
Abstract
Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.
Collapse
Affiliation(s)
- Maria Giulia Di Giglio
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072 Brisbane, Australia
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Zita Liutkeviciute
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Peter Keov
- School of Biomedical Sciences, The University of Queensland, QLD 4072 Brisbane, Australia
| | - Thomas Eder
- IST Austria (Institute of Science and Technology), Am Campus 1, 3400 Klosterneuburg, Austria
- CUBE-Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas Rattei
- CUBE-Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Sarah Arrowsmith
- Harris-Wellbeing Preterm Birth Research Centre, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, L69 3BX, United Kingdom
| | - Susan Wray
- Harris-Wellbeing Preterm Birth Research Centre, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, L69 3BX, United Kingdom
| | - Ales Marek
- Laboratory of Radioisotopes, Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomas Elbert
- Laboratory of Radioisotopes, Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072 Brisbane, Australia
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
- School of Biomedical Sciences, The University of Queensland, QLD 4072 Brisbane, Australia
| |
Collapse
|
203
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
204
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
205
|
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) is a key mechanism permitting communication between cells and organs. Enormous progress has recently elucidated the structural and dynamic features of GPCR transmembrane signaling. Nanobodies, the recombinant antigen-binding fragments of camelid heavy-chain-only antibodies, have emerged as important research tools to lock GPCRs in particular conformational states. Active-state stabilizing nanobodies have elucidated several agonist-bound structures of hormone-activated GPCRs and have provided insight into the dynamic character of receptors. Nanobodies have also been used to stabilize transient GPCR transmembrane signaling complexes, yielding the first structural insights into GPCR signal transduction across the cellular membrane. Beyond their in vitro uses, nanobodies have served as conformational biosensors in living systems and have provided novel ways to modulate GPCR function. Here, we highlight several examples of how nanobodies have enabled the study of GPCR function and give insights into potential future uses of these important tools.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305; ,
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305; ,
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- VIB Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
206
|
Kwon J, Hwang D, Lee JW, Zoh I, Kang J, Kim SK. Generation of highly luminescent micro rings by optical irradiation. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc01409k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report light-induced generation of a circular, highly luminescent and robust microstructure strongly adhered to a glass surface.
Collapse
Affiliation(s)
- Jiwoong Kwon
- Department of Biophysics and Chemical Biology
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Doyk Hwang
- Department of Biophysics and Chemical Biology
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jong Woo Lee
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Inhae Zoh
- Department of Biophysics and Chemical Biology
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jooyoun Kang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Seong Keun Kim
- Department of Biophysics and Chemical Biology
- Seoul National University
- Seoul 08826
- Republic of Korea
- Department of Chemistry
| |
Collapse
|
207
|
Chaney SY, Mukherjee S, Giddabasappa A, Rueda EM, Hamilton WR, Johnson JE, Fox DA. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis 2016; 22:1468-1489. [PMID: 28050121 PMCID: PMC5204453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/22/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. METHODS C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. RESULTS Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl, Nr2e3, and Crx and the rod-specific functional gene Rho, along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene or protein expression, a marker for late-born Müller glial cells, were observed in the developing retinas. In the retinas from the GLE mice, anti-PKCα, -Chx10 (Vsx2) and -secretagogin antibodies revealed a two- to three-day delay in the differentiation of rod and cone BCs, whereas the expression of the proneural and BC genes Otx2 and Chx10, respectively, increased. In addition, confocal studies of proteins associated with functional synapses (e.g., vesicular glutamate transporter 1 [VGluT1], plasma membrane calcium ATPase [PMCA], transient receptor potential channel M1 [TRPM1], and synaptic vesicle glycoprotein 2B [SV2B]) revealed a two-day delay in the formation of the outer and inner plexiform layers of the GLE retinas. Moreover, several markers revealed that the initiation of the differentiation and intensity of the labeling of early-born cells in the retinal ganglion cell and inner plexiform layers were not different in the control retinas. CONCLUSIONS Our combined gene, confocal, and immunoblot findings revealed that the onset of rod and BC differentiation and their subsequent synaptic development is delayed by two to three days in GLE retinas. These results suggest that perturbations during the early proliferative stages of late-born RPCs fated to be rods and BCs ultimately alter the coordinated time-dependent progression of rod and BC differentiation and synaptic development. These GLE effects were selective for late-born neurons. Although the molecular mechanisms are unknown, alterations in soluble neurotrophic factors and/or their receptors are likely to play a role. Since neurodevelopmental delays and altered synaptic connectivity are associated with neuropsychiatric and behavioral disorders as well as cognitive deficits, future work is needed to determine if similar effects occur in the brains of GLE mice and whether children with GLE experience similar delays in retinal and brain neuronal differentiation and synaptic development.
Collapse
Affiliation(s)
- Shawnta Y. Chaney
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Shradha Mukherjee
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Anand Giddabasappa
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Elda M. Rueda
- College of Optometry, University of Houston, Houston, TX
| | - W. Ryan Hamilton
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jerry E. Johnson
- College of Optometry, University of Houston, Houston, TX,Department of Natural Sciences, University of Houston-Downtown; Houston, TX
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX,Department of Pharmacology and Pharmaceutical Science, University of Houston, Houston, TX
| |
Collapse
|
208
|
Cappai MG, Lunesu MGA, Accioni F, Liscia M, Pusceddu M, Burrai L, Nieddu M, Dimauro C, Boatto G, Pinna W. Blood serum retinol levels in Asinara white donkeys reflect albinism-induced metabolic adaptation to photoperiod at Mediterranean latitudes. Ecol Evol 2016; 7:390-398. [PMID: 28070301 PMCID: PMC5216663 DOI: 10.1002/ece3.2613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
Previous works on albinism form of Asinara white donkeys (Equus asinus) identified the mutation leading to the peculiar phenotype spread to all specimens of the breed. Inbreeding naturally occurred under geographic isolation, on Asinara Island, in the Mediterranean Sea. Albino individuals can be more susceptible to develop health problems when exposed to natural sun radiation. Alternative metabolic pathways involved in photoprotection were explored in this trial. Nutrition‐related metabolites are believed to contribute to the conservation of Asinara donkeys, in which melanin, guaranteeing photoprotection, is lacking. Biochemical profiles with particular focus on blood serum β‐carotene and retinol levels were monitored. Identical natural grazing conditions for both Asinara (albino) and Sardo (pigmented) donkey breeds were assured on same natural pastures throughout the experimental period. A comparative metabolic screening, with emphasis on circulating retinol and nutrient‐related metabolites between the two breeds, was carried out over one year. Potential intra‐ and interspecimen fluctuations of metabolites involved in photoprotection were monitored, both during negative and positive photoperiods. Differences (p = .064) between blood serum concentrations of retinol from Asinara versus Sardo breed donkeys (0.630 vs. 0.490 μg/ml, respectively) were found. Retinol levels of blood serum turned out to be similar in the two groups (0.523 vs. 0.493 μg/ml, respectively, p = .051) during the negative photoperiod, but markedly differed during the positive one (0.738 vs. 0.486, respectively, p = .016). Blood serum β‐carotene levels displayed to be constantly around the limit of sensitivity in all animals of both breeds. Variations in blood serum concentrations of retinol in Asinara white donkeys can reflect the need to cope with seasonal exposure to daylight at Mediterranean latitudes, as an alternative to the lack of melanin. These results may suggest that a pulsed mobilization of retinol from body stores occurs to increase circulating levels during positive photoperiod.
Collapse
Affiliation(s)
| | | | - Francesca Accioni
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | | | | | - Lucia Burrai
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences University of Sassari Sassari Italy
| | - Gianpiero Boatto
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Walter Pinna
- Department of Agricultural Sciences University of Sassari Sassari Italy
| |
Collapse
|
209
|
Guareschi R, Valsson O, Curutchet C, Mennucci B, Filippi C. Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin. J Phys Chem Lett 2016; 7:4547-4553. [PMID: 27786481 DOI: 10.1021/acs.jpclett.6b02043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light sensing in photoreceptor proteins is subtly modulated by the multiple interactions between the chromophoric unit and its binding pocket. Many theoretical and experimental studies have tried to uncover the fundamental origin of these interactions but reached contradictory conclusions as to whether electrostatics, polarization, or intrinsically quantum effects prevail. Here, we select rhodopsin as a prototypical photoreceptor system to reveal the molecular mechanism underlying these interactions and regulating the spectral tuning. Combining a multireference perturbation method and density functional theory with a classical but atomistic and polarizable embedding scheme, we show that accounting for electrostatics only leads to a qualitatively wrong picture, while a responsive environment can successfully capture both the classical and quantum dominant effects. Several residues are found to tune the excitation by both differentially stabilizing ground and excited states and through nonclassical "inductive resonance" interactions. The results obtained with such a quantum-in-classical model are validated against both experimental data and fully quantum calculations.
Collapse
Affiliation(s)
- Riccardo Guareschi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Omar Valsson
- Department of Chemistry and Applied Bioscience, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera italiana , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | - Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
210
|
Porath-Krause AJ, Pairett AN, Faggionato D, Birla BS, Sankar K, Serb JM. Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae). BMC Evol Biol 2016; 16:250. [PMID: 27855630 PMCID: PMC5114761 DOI: 10.1186/s12862-016-0823-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Opsins are the only class of proteins used for light perception in image-forming eyes. Gene duplication and subsequent functional divergence of opsins have played an important role in expanding photoreceptive capabilities of organisms by altering what wavelengths of light are absorbed by photoreceptors (spectral tuning). However, new opsin copies may also acquire novel function or subdivide ancestral functions through changes to temporal, spatial or the level of gene expression. Here, we test how opsin gene copies diversify in function and evolutionary fate by characterizing four rhabdomeric (Gq-protein coupled) opsins in the scallop, Argopecten irradians, identified from tissue-specific transcriptomes. Results Under a phylogenetic analysis, we recovered a pattern consistent with two rounds of duplication that generated the genetic diversity of scallop Gq-opsins. We found strong support for differential expression of paralogous Gq-opsins across ocular and extra-ocular photosensitive tissues, suggesting that scallop Gq-opsins are used in different biological contexts due to molecular alternations outside and within the protein-coding regions. Finally, we used available protein models to predict which amino acid residues interact with the light-absorbing chromophore. Variation in these residues suggests that the four Gq-opsin paralogs absorb different wavelengths of light. Conclusions Our results uncover novel genetic and functional diversity in the light-sensing structures of the scallop, demonstrating the complicated nature of Gq-opsin diversification after gene duplication. Our results highlight a change in the nearly ubiquitous shadow response in molluscs to a narrowed functional specificity for visual processes in the eyed scallop. Our findings provide a starting point to study how gene duplication may coincide with eye evolution, and more specifically, different ways neofunctionalization of Gq-opsins may occur. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0823-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita J Porath-Krause
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Autum N Pairett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Davide Faggionato
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Bhagyashree S Birla
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, 50011, IA, USA.,Interdepartmental Graduate Program in Bioinformatics and Computational Biology, Iowa State University, Ames, 50011, IA, USA
| | - Kannan Sankar
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, 50011, IA, USA.,Interdepartmental Graduate Program in Bioinformatics and Computational Biology, Iowa State University, Ames, 50011, IA, USA
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA.
| |
Collapse
|
211
|
Calmet P, De Maria M, Harté E, Lamb D, Serrano-Vega M, Jazayeri A, Tschammer N, Alves ID. Real time monitoring of membrane GPCR reconstitution by plasmon waveguide resonance: on the role of lipids. Sci Rep 2016; 6:36181. [PMID: 27824122 PMCID: PMC5099921 DOI: 10.1038/srep36181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
G-protein coupled receptors (GPCRs) are important therapeutic targets since more than 40% of the drugs on the market exert their action through these proteins. To decipher the molecular mechanisms of activation and signaling, GPCRs often need to be isolated and reconstituted from a detergent-solubilized state into a well-defined and controllable lipid model system. Several methods exist to reconstitute membrane proteins in lipid systems but usually the reconstitution success is tested at the end of the experiment and often by an additional and indirect method. Irrespective of the method used, the reconstitution process is often an intractable and time-consuming trial-and-error procedure. Herein, we present a method that allows directly monitoring the reconstitution of GPCRs in model planar lipid membranes. Plasmon waveguide resonance (PWR) allows following GPCR lipid reconstitution process without any labeling and with high sensitivity. Additionally, the method is ideal to probe the lipid effect on receptor ligand binding as demonstrated by antagonist binding to the chemokine CCR5 receptor.
Collapse
Affiliation(s)
- Pierre Calmet
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Chemistry and Biology of Membranes and Nanoobjects, UMR 5248 CNRS, University of Bordeaux, Bat. B14 allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Monica De Maria
- Department of Developmental Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Etienne Harté
- Chemistry and Biology of Membranes and Nanoobjects, UMR 5248 CNRS, University of Bordeaux, Bat. B14 allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Daniel Lamb
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Maria Serrano-Vega
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Nuska Tschammer
- Department of Developmental Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany.,NanoTemper Technologies GmbH, Munich, Germany
| | - Isabel D Alves
- Chemistry and Biology of Membranes and Nanoobjects, UMR 5248 CNRS, University of Bordeaux, Bat. B14 allée Geoffroy St. Hilaire, 33600 Pessac, France
| |
Collapse
|
212
|
Shrestha UR, Perera SMDC, Bhowmik D, Chawla U, Mamontov E, Brown MF, Chu XQ. Quasi-elastic Neutron Scattering Reveals Ligand-Induced Protein Dynamics of a G-Protein-Coupled Receptor. J Phys Chem Lett 2016; 7:4130-4136. [PMID: 27628201 PMCID: PMC5378701 DOI: 10.1021/acs.jpclett.6b01632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond-nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differences can be attributed to the influence of the covalently bound retinal ligand. Furthermore, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.
Collapse
Affiliation(s)
- Utsab R. Shrestha
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | | | - Debsindhu Bhowmik
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Eugene Mamontov
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | - Xiang-qiang Chu
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
213
|
Chen H, Zhu H, Liu P, Li L. A study on the conformational space of the all-trans retinal deprotonated Schiff base. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
214
|
Ren Z, Ren PX, Balusu R, Yang X. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin. Sci Rep 2016; 6:34129. [PMID: 27658480 PMCID: PMC5034245 DOI: 10.1038/srep34129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.,Renz Research, Inc., Westmont, IL 60559, USA
| | - Peter X Ren
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Rohith Balusu
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
215
|
Roulin AC, Bourgeois Y, Stiefel U, Walser JC, Ebert D. A Photoreceptor Contributes to the Natural Variation of Diapause Induction inDaphnia magna. Mol Biol Evol 2016; 33:3194-3204. [DOI: 10.1093/molbev/msw200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
216
|
Metabolic and redox signaling in the retina. Cell Mol Life Sci 2016; 74:3649-3665. [PMID: 27543457 PMCID: PMC5597695 DOI: 10.1007/s00018-016-2318-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/04/2023]
Abstract
Visual perception by photoreceptors relies on the interaction of incident photons from light with a derivative of vitamin A that is covalently linked to an opsin molecule located in a special subcellular structure, the photoreceptor outer segment. The photochemical reaction produced by the photon is optimal when the opsin molecule, a seven-transmembrane protein, is embedded in a lipid bilayer of optimal fluidity. This is achieved in vertebrate photoreceptors by a high proportion of lipids made with polyunsaturated fatty acids, which have the detrimental property of being oxidized and damaged by light. Photoreceptors cannot divide, but regenerate their outer segments. This is an enormous energetic challenge that explains why photoreceptors metabolize glucose through aerobic glycolysis, as cancer cells do. Uptaken glucose produces metabolites to renew that outer segment as well as reducing power through the pentose phosphate pathway to protect photoreceptors against oxidative damage.
Collapse
|
217
|
|
218
|
Guerrero RD, Arango CA, Reyes A. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal. J Chem Phys 2016; 145:031101. [PMID: 27448862 DOI: 10.1063/1.4958968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.
Collapse
Affiliation(s)
- R D Guerrero
- Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - C A Arango
- Department of Chemical Sciences, Universidad Icesi, Cali, Colombia
| | - A Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
219
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
220
|
Nosrati M, Berbasova T, Vasileiou C, Borhan B, Geiger JH. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution. J Am Chem Soc 2016; 138:8802-8. [PMID: 27310917 DOI: 10.1021/jacs.6b03681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization.
Collapse
Affiliation(s)
- Meisam Nosrati
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - James H Geiger
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
221
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
222
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
223
|
Zen A, Coccia E, Gozem S, Olivucci M, Guidoni L. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model. J Chem Theory Comput 2016; 11:992-1005. [PMID: 25821414 PMCID: PMC4357234 DOI: 10.1021/ct501122z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 01/22/2023]
Abstract
![]()
The
penta-2,4-dieniminium cation (PSB3) displays similar ground
state and first excited state potential energy features as those of
the retinal protonated Schiff base (RPSB) chromophore in rhodopsin.
Recently, PSB3 has been used to benchmark several electronic structure
methods, including highly correlated multireference wave function
approaches, highlighting the necessity to accurately describe the
electronic correlation in order to obtain reliable properties even
along the ground state (thermal) isomerization paths. In this work,
we apply two quantum Monte Carlo approaches, the variational Monte
Carlo and the lattice regularized diffusion Monte Carlo, to study
the energetics and electronic properties of PSB3 along representative
minimum energy paths and scans related to its thermal cis–trans isomerization. Quantum Monte Carlo
is used in combination with the Jastrow antisymmetrized geminal power
ansatz, which guarantees an accurate and balanced description of the
static electronic correlation thanks to the multiconfigurational nature
of the antisymmetrized geminal power term, and of the dynamical correlation,
due to the presence of the Jastrow factor explicitly depending on
electron–electron distances. Along the two ground state isomerization
minimum energy paths of PSB3, CASSCF calculations yield wave functions
having either charge transfer or diradical character in proximity
of the two transition state configurations. Here, we observe that
at the quantum Monte Carlo level of theory, only the transition state
with charge transfer character can be located. The conical intersection,
which becomes highly sloped, is observed only if the path connecting
the two original CASSCF transition states is extended beyond the diradical
one, namely by increasing the bond-length-alternation (BLA). These
findings are in good agreement with the results obtained by MRCISD+Q
calculations, and they demonstrate the importance of having an accurate
description of the static and dynamical correlation when studying
isomerization and transition states of conjugated systems.
Collapse
|
224
|
Abstract
In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in phytoplankton can inform us about the selective forces that drove evolution in the important steps from light detection to vision. We show here that the evolution from simple photoreception to vision seems to have independently followed identical paths and principles in phytoplankton and animals, significantly strengthening our understanding of this important biological process.
Collapse
Affiliation(s)
- Nansi Jo Colley
- *Department of Ophthalmology and Visual Sciences, Department of Genetics, McPherson Eye Research Institute, University of Wisconsin, Madison, 53792 WI, USA
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, University of Lund, Lund, SE-221 00, Sweden
| |
Collapse
|
225
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
226
|
Sears AE, Palczewski K. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry 2016; 55:3082-91. [PMID: 27183166 DOI: 10.1021/acs.biochem.6b00319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations.
Collapse
Affiliation(s)
- Avery E Sears
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
227
|
Comitato A, Di Salvo MT, Turchiano G, Montanari M, Sakami S, Palczewski K, Marigo V. Dominant and recessive mutations in rhodopsin activate different cell death pathways. Hum Mol Genet 2016; 25:2801-2812. [PMID: 27149983 DOI: 10.1093/hmg/ddw137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/05/2016] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
Mutations in rhodopsin (RHO) are a common cause of retinal dystrophy and can be transmitted by dominant or recessive inheritance. Clinical symptoms caused by dominant and recessive mutations in patients and animal models are very similar but the molecular mechanisms leading to retinal degeneration may differ. We characterized three murine models of retina degeneration caused by either Rho loss of function or expression of the P23H dominant mutation in Rho. Rho loss of function is characterized by activation of calpains and apoptosis-inducing factor (Aif) in dying photoreceptors. Retinas bearing the P23H dominant mutations activate both the calpain-Aif cell death pathway and ER-stress responses that together contribute to photoreceptor cell demise. In vivo treatment with the calpastatin peptide, a calpain inhibitor, was strongly neuroprotective in mice lacking Rho while photoreceptor survival in retinas expressing the P23H dominant mutation was more affected by treatment with salubrinal, an inhibitor of the ER-stress pathway. The further reduction of photoreceptor cell demise by co-treatment with calpastatin and salubrinal suggests co-activation of the calpain and ER-stress death pathways in mice bearing dominant mutations in the Rho gene.
Collapse
Affiliation(s)
- Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Teresa Di Salvo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giandomenico Turchiano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sanae Sakami
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
228
|
Suomivuori CM, Lang L, Sundholm D, Gamiz-Hernandez AP, Kaila VRI. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry 2016; 22:8254-61. [DOI: 10.1002/chem.201505126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Lucas Lang
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Dage Sundholm
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Ana P. Gamiz-Hernandez
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
229
|
Chan P, Stolz J, Kohl S, Chiang WC, Lin JH. Endoplasmic reticulum stress in human photoreceptor diseases. Brain Res 2016; 1648:538-541. [PMID: 27117871 DOI: 10.1016/j.brainres.2016.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/18/2022]
Abstract
Photoreceptors are specialized sensory neurons essential for light detection in the human eye. Photoreceptor cell dysfunction and death cause vision loss in many eye diseases such as retinitis pigmentosa and achromatopsia. Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling have been implicated in the development and pathology of heritable forms of retinitis pigmentosa and achromatopsia. We review the role of ER stress and UPR in retinitis pigmentosa arising from misfolded rhodopsins (RHO) and in achromatopsia arising from genetic mutations in Activating Transcription Factor 6 (ATF6). This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Priscilla Chan
- Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Julia Stolz
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Wei-Chieh Chiang
- Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan H Lin
- Pathology, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
230
|
Li Z, Ji X, Wang W, Liu J, Liang X, Wu H, Liu J, Eggert US, Liu Q, Zhang X. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR. PLoS One 2016; 11:e0153526. [PMID: 27077655 PMCID: PMC4831814 DOI: 10.1371/journal.pone.0153526] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022] Open
Abstract
Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.
Collapse
Affiliation(s)
- Zhiyuan Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Juanjuan Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaofei Liang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Hong Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Ulrike S Eggert
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| |
Collapse
|
231
|
Mikutis G, Mora CA, Puddu M, Paunescu D, Grass RN, Stark WJ. DNA-Based Sensor Particles Enable Measuring Light Intensity in Single Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2765-2770. [PMID: 26866714 DOI: 10.1002/adma.201504892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
"Lab on a particle" architecture is employed in designing a light nanosensor. Light-sensitive protecting groups are installed on DNA, which is encapsulated in silica particles, qualifying as a self-sufficient light sensor. The nanosensors allow measuring light intensity and duration in very small volumes, such as single cells, and store the irradiation information until readout.
Collapse
Affiliation(s)
- Gediminas Mikutis
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Carlos A Mora
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Michela Puddu
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Daniela Paunescu
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Robert N Grass
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
232
|
Yokoyama S, Tada T, Liu Y, Faggionato D, Altun A. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates. BMC Evol Biol 2016; 16:64. [PMID: 27001075 PMCID: PMC4802639 DOI: 10.1186/s12862-016-0637-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Many vertebrate species use ultraviolet (UV) reception for such basic behaviors as foraging and mating, but many others switched to violet reception and improved their visual resolution. The respective phenotypes are regulated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 and 395-440 nm. Because of strong epistatic interactions, the biological significance of the extensive mutagenesis results on the molecular basis of spectral tuning in SWS1 pigments and the mechanisms of their phenotypic adaptations remains uncertain. RESULTS The magnitudes of the λmax-shifts caused by mutations in a present-day SWS1 pigment and by the corresponding forward mutations in its ancestral pigment are often dramatically different. To resolve these mutagenesis results, the A/B ratio, in which A and B are the areas formed by amino acids at sites 90, 113 and 118 and by those at sites 86, 90 and 118 and 295, respectively, becomes indispensable. Then, all critical mutations that generated the λmax of a SWS1 pigment can be identified by establishing that 1) the difference between the λmax of the ancestral pigment with these mutations and that of the present-day pigment is small (3 ~ 5 nm, depending on the entire λmax-shift) and 2) the difference between the corresponding A/B ratios is < 0.002. CONCLUSION Molecular adaptation has been studied mostly by using comparative sequence analyses. These statistical results provide biological hypotheses and need to be tested using experimental means. This is an opportune time to explore the currently available and new genetic systems and test these statistical hypotheses. Evaluating the λmaxs and A/B ratios of mutagenized present-day and their ancestral pigments, we now have a method to identify all critical mutations that are responsible for phenotypic adaptation of SWS1 pigments. The result also explains spectral tuning of the same pigments, a central unanswered question in phototransduction.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - Takashi Tada
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Yang Liu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Ahmet Altun
- Department of Physics, Fatih University, Istanbul, 34500, Turkey.,Department of Genetics and Bioengineering, Fatih University, Istanbul, 34500, Turkey
| |
Collapse
|
233
|
Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli. Dev Biol 2016; 410:164-177. [PMID: 26769100 DOI: 10.1016/j.ydbio.2015.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli.
Collapse
|
234
|
Centola F, Polticelli F. Molecular models of human visual pigments: insight into the atomic bases of spectral tuning. BIO-ALGORITHMS AND MED-SYSTEMS 2016. [DOI: 10.1515/bams-2016-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe cycle of vision is a chain of biochemical reactions that occur after exposure of the pigments to the light. The known mechanisms of the transduction of the light pulse derive mainly from studies on bovine rhodopsin. The objective of this work is to construct molecular models of human rhodopsin and opsins, for which three-dimensional structures are not available, to analyze the retinal environment and identify the similarities and differences that characterize the human visual pigments. One of the main results of this work is the identification of Glu102 as the probable second counterion of the Schiff base in M opsin (green pigments) and L opsin (red pigments). Further, the analysis of the molecular models allows uncovering the molecular bases of the different absorption maxima of M and L opsins with respect to rhodopsin and S opsin. These differences appear to be due to both an increase in the polarity of the retinal environment and specific electrostatic interactions, which determine a reorganization of the electronic distribution of retinal by selectively stabilizing one of the two resonance forms.
Collapse
|
235
|
Functional stability of rhodopsin in a bicelle system: evaluating G protein activation by rhodopsin in bicelles. Methods Mol Biol 2015; 1271:67-76. [PMID: 25697517 DOI: 10.1007/978-1-4939-2330-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rhodopsin is a prototypical member of the G protein-coupled receptors (GPCRs). This photoreceptor is responsible for initiating the visual signaling transduction cascade upon interaction with its heterotrimeric G protein, transducin (Gt), after light activation. Like all transmembrane proteins, rhodopsin is embedded within a phospholipid bilayer. Many studies have proposed that the membrane composition of this bilayer is an important factor for receptor function during the activation process. Here we describe the methods and assays used to evaluate the function of purified and reconstituted rhodopsin in bicelles.
Collapse
|
236
|
Abstract
Severe loss of photoreceptor cells in inherited or acquired retinal degenerative diseases can result in partial loss of sight or complete blindness. The optogenetic strategy for restoration of vision utilizes optogenetic tools to convert surviving inner retinal neurons into photosensitive cells; thus, light sensitivity is imparted to the retina after the death of photoreceptor cells. Proof-of-concept studies, especially those using microbial rhodopsins, have demonstrated restoration of light responses in surviving retinal neurons and visually guided behaviors in animal models. Significant progress has also been made in improving microbial rhodopsin-based optogenetic tools, developing virus-mediated gene delivery, and targeting specific retinal neurons and subcellular compartments of retinal ganglion cells. In this article, we review the current status of the field and outline further directions and challenges to the advancement of this strategy toward clinical application and improvement in the outcomes of restored vision.
Collapse
Affiliation(s)
- Zhuo-Hua Pan
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; , , .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201;
| | - Qi Lu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201;
| | - Anding Bi
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; , ,
| | | | - Gary W Abrams
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; , ,
| |
Collapse
|
237
|
Pearring JN, Spencer WJ, Lieu EC, Arshavsky VY. Guanylate cyclase 1 relies on rhodopsin for intracellular stability and ciliary trafficking. eLife 2015; 4:e12058. [PMID: 26590321 PMCID: PMC4709261 DOI: 10.7554/elife.12058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/20/2015] [Indexed: 01/21/2023] Open
Abstract
Sensory cilia are populated by a select group of signaling proteins that detect environmental stimuli. How these molecules are delivered to the sensory cilium and whether they rely on one another for specific transport remains poorly understood. Here, we investigated whether the visual pigment, rhodopsin, is critical for delivering other signaling proteins to the sensory cilium of photoreceptor cells, the outer segment. Rhodopsin is the most abundant outer segment protein and its proper transport is essential for formation of this organelle, suggesting that such a dependency might exist. Indeed, we demonstrated that guanylate cyclase-1, producing the cGMP second messenger in photoreceptors, requires rhodopsin for intracellular stability and outer segment delivery. We elucidated this dependency by showing that guanylate cyclase-1 is a novel rhodopsin-binding protein. These findings expand rhodopsin's role in vision from being a visual pigment and major outer segment building block to directing trafficking of another key signaling protein.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - William J Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Eric C Lieu
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
238
|
Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat Commun 2015; 6:8857. [PMID: 26561004 PMCID: PMC4660198 DOI: 10.1038/ncomms9857] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/11/2015] [Indexed: 01/29/2023] Open
Abstract
A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.
Collapse
|
239
|
Light and the evolution of vision. Eye (Lond) 2015; 30:173-8. [PMID: 26541087 DOI: 10.1038/eye.2015.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
It might seem a little ridiculous to cover the period over which vision evolved, perhaps 1.5 billion years, in only 3000 words. Yet, if we examine the photoreceptor molecules of the most basic eukaryote protists and even before that, in those of prokaryote bacteria and cyanobacteria, we see how similar they are to those of mammalian rod and cone photoreceptor opsins and the photoreceptive molecules of light sensitive ganglion cells. This shows us much with regard the development of vision once these proteins existed, but there is much more to discover about the evolution of even more primitive vision systems.
Collapse
|
240
|
Mebed R, Ali YB, Solouma N, Eldib A, Amer M, Osman A. Rhodopsin mutations are scarcely implicated in autosomal recessive retinitis pigmentosa: A preliminary study of Egyptian retinitis pigmentosa patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
241
|
Yokoyama S, Altun A, Jia H, Yang H, Koyama T, Faggionato D, Liu Y, Starmer WT. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions. SCIENCE ADVANCES 2015; 1:e1500162. [PMID: 26601250 PMCID: PMC4643761 DOI: 10.1126/sciadv.1500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/02/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, λmax = 423 nm) from the UV pigment in the amphibian ancestor (λmax = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I-III segments. We show that epistatic interactions involving the remaining TM IV-VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV-VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Ahmet Altun
- Department of Physics and Department of Genetics and Bioengineering, Fatih University, Istanbul 34500, Turkey
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Hui Yang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Takashi Koyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Yang Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
242
|
Kelly M, von Lintig J. STRA6: role in cellular retinol uptake and efflux. Hepatobiliary Surg Nutr 2015; 4:229-42. [PMID: 26312242 DOI: 10.3978/j.issn.2304-3881.2015.01.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
Distribution of vitamin A throughout the body is important to maintain retinoid function in peripheral tissues and to ensure optimal vision. A critical step of this process is the transport of vitamin A across cell membranes. Increasing evidence indicates that this process is mediated by a multidomian membrane protein that is encoded by the stimulated by retinoic acid 6 (STRA6) gene. Biochemical studies revealed that STRA6 is a transmembrane pore which transports vitamin A bidirectionally between extra- and intracellular retinoid binding proteins. Vitamin A accumulation in cells is driven by coupling of transport with vitamin A esterification. Loss-of-function studies in zebrafish and mouse models have unraveled the critical importance of STRA6 for vitamin A homeostasis of peripheral tissues. Impairment in vitamin A transport and uptake homeostasis are associated with diseases including type 2 diabetes and a microphthalmic syndrome known as Matthew Wood Syndrome. This review will discuss the advanced state of knowledge about STRA6's biochemistry, biology and association with disease.
Collapse
Affiliation(s)
- Mary Kelly
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
243
|
Chen Y, Tang H, Seibel W, Papoian R, Li X, Lambert NA, Palczewski K. A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation. Invest Ophthalmol Vis Sci 2015; 56:2553-67. [PMID: 25783607 DOI: 10.1167/iovs.14-16298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Inherent instability of the P23H mutant opsin accounts for approximately 10% of autosomal dominant retinitis pigmentosa cases. Our purpose was to develop an overall set of reliable screening strategies to assess if either stabilization or enhanced degradation of mutant rhodopsin could rescue rod photoreceptors expressing this mutant protein. These strategies promise to reveal active compounds and clarify molecular mechanisms of biologically important processes, such as inhibition of target degradation or enhanced target folding. METHODS Cell-based bioluminescence reporter assays were developed and validated for high-throughput screening (HTS) of compounds that promote either stabilization or degradation of P23H mutant opsin. Such assays were further complemented by immunoblotting and image-based analyses. RESULTS Two stabilization assays of P23H mutant opsin were developed and validated, one based on β-galactosidase complementarity and a second assay involving bioluminescence resonance energy transfer (BRET) technology. Moreover, two additional assays evaluating mutant protein degradation also were employed, one based on the disappearance of luminescence and another employing the ALPHA immunoassay. Imaging of cells revealed the cellular localization of mutant rhodopsin, whereas immunoblots identified changes in the aggregation and glycosylation of P23H mutant opsin. CONCLUSIONS Our findings indicate that these initial HTS and following assays can identify active therapeutic compounds, even for difficult targets such as mutant rhodopsin. The assays are readily scalable and their function has been proven with model compounds. High-throughput screening, supported by automated imaging and classic immunoassays, can further characterize multiple steps and pathways in the biosynthesis and degradation of this essential visual system protein.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Hong Tang
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - William Seibel
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Ruben Papoian
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Xiaoyu Li
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Krzysztof Palczewski
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
244
|
Babino D, Palczewski G, Widjaja-Adhi MAK, Kiser PD, Golczak M, von Lintig J. Characterization of the Role of β-Carotene 9,10-Dioxygenase in Macular Pigment Metabolism. J Biol Chem 2015; 290:24844-57. [PMID: 26307071 DOI: 10.1074/jbc.m115.668822] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
A family of enzymes collectively referred to as carotenoid cleavage oxygenases is responsible for oxidative conversion of carotenoids into apocarotenoids, including retinoids (vitamin A and its derivatives). A member of this family, the β-carotene 9,10-dioxygenase (BCO2), converts xanthophylls to rosafluene and ionones. Animals deficient in BCO2 highlight the critical role of the enzyme in carotenoid clearance as accumulation of these compounds occur in tissues. Inactivation of the enzyme by a four-amino acid-long insertion has recently been proposed to underlie xanthophyll concentration in the macula of the primate retina. Here, we focused on comparing the properties of primate and murine BCO2s. We demonstrate that the enzymes display a conserved structural fold and subcellular localization. Low temperature expression and detergent choice significantly affected binding and turnover rates of the recombinant enzymes with various xanthophyll substrates, including the unique macula pigment meso-zeaxanthin. Mice with genetically disrupted carotenoid cleavage oxygenases displayed adipose tissue rather than eye-specific accumulation of supplemented carotenoids. Studies in a human hepatic cell line revealed that BCO2 is expressed as an oxidative stress-induced gene. Our studies provide evidence that the enzymatic function of BCO2 is conserved in primates and link regulation of BCO2 gene expression with oxidative stress that can be caused by excessive carotenoid supplementation.
Collapse
Affiliation(s)
- Darwin Babino
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Grzegorz Palczewski
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - M Airanthi K Widjaja-Adhi
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Philip D Kiser
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Marcin Golczak
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Johannes von Lintig
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| |
Collapse
|
245
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
246
|
Hiramatsu N, Chiang WC, Kurt TD, Sigurdson CJ, Lin JH. Multiple Mechanisms of Unfolded Protein Response-Induced Cell Death. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1800-8. [PMID: 25956028 PMCID: PMC4484218 DOI: 10.1016/j.ajpath.2015.03.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/09/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER), before delivery to other cellular compartments or the extracellular environment. Correctly folded proteins are released from the ER, and poorly folded proteins are retained until they achieve stable conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological insults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control, leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaperones, enhancing the degradation of misfolded proteins, and reducing protein translation. In mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review discusses the current understanding in both adaptive and apoptotic responses as well as the molecular mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion infection.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Wei-Chieh Chiang
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Timothy D Kurt
- Department of Pathology, University of California-San Diego, La Jolla, California
| | | | - Jonathan H Lin
- Department of Pathology, University of California-San Diego, La Jolla, California.
| |
Collapse
|
247
|
Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z, Golczak M, Tochtrop GP, Palczewski K. Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest 2015; 125:2781-94. [PMID: 26075817 DOI: 10.1172/jci80950] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023] Open
Abstract
Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators.
Collapse
|
248
|
Taura J, Fernández-Dueñas V, Ciruela F. Visualizing G Protein-Coupled Receptor-Receptor Interactions in Brain Using Proximity Ligation In Situ Assay. ACTA ACUST UNITED AC 2015; 67:17.17.1-17.17.16. [PMID: 26061241 DOI: 10.1002/0471143030.cb1717s67] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors, thus representing the more investigated drug targets in the design of new therapeutic strategies. The existence of receptor-receptor interactions has revolutionized the field, since GPCR oligomerization might confer new intervention opportunities in pharmacotherapy. However, demonstrating the existence of such receptor-receptor interactions in native tissue has been a bottleneck in GPCR pharmacology. Here, we discuss an experimental approach, the proximity ligation in situ assay (P-LISA), which provides enough sensitivity to evaluate a receptor's close proximity within a named GPCR oligomer. Indeed, we provide a detailed step-by-step protocol for P-LISA experiments visualizing receptor-receptor interactions in brain slices. Additionally, we provide instructions for slide observation, data acquisition and quantification. Finally, we also discuss these critical aspects determining the success of the technique, namely the fixation process and the validation of the primary antibodies used. Overall, the P-LISA is a powerful and straightforward technique to visualize receptor-receptor interactions when performed under optimal conditions.
Collapse
Affiliation(s)
- Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, Barcelona, Spain.,Department of Physiology, Faculty of Sciences, University of Ghent, Ghent, Belgium
| |
Collapse
|
249
|
Vitamin A and Retinoids as Mitochondrial Toxicants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:140267. [PMID: 26078802 PMCID: PMC4452429 DOI: 10.1155/2015/140267] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Vitamin A and its derivatives, the retinoids, are micronutrient necessary for the human diet in order to maintain several cellular functions from human development to adulthood and also through aging. Furthermore, vitamin A and retinoids are utilized pharmacologically in the treatment of some diseases, as, for instance, dermatological disturbances and some types of cancer. In spite of being an essential micronutrient with clinical application, vitamin A exerts several toxic effects regarding redox environment and mitochondrial function. Moreover, decreased life quality and increased mortality rates among vitamin A supplements users have been reported. However, the exact mechanism by which vitamin A elicits its deleterious effects is not clear yet. In this review, the role of mitochondrial dysfunction in the mechanism of vitamin A-induced toxicity is discussed.
Collapse
|
250
|
Jacobson SG, Cideciyan AV, Aguirre GD, Roman AJ, Sumaroka A, Hauswirth WW, Palczewski K. Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opin Orphan Drugs 2015; 3:563-575. [PMID: 26246977 PMCID: PMC4487613 DOI: 10.1517/21678707.2015.1030393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Inherited retinal degenerations (IRDs) have long been considered untreatable and incurable. Recently, one form of early-onset autosomal recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has responded with some improvement of vision to gene augmentation therapy and oral retinoid administration. This early success now requires refinement of such therapeutics to fully realize the impact of these major scientific and clinical advances. Areas covered: Progress toward human therapy for RPE65-LCA is detailed from the understanding of molecular mechanisms to preclinical proof-of-concept research to clinical trials. Unexpected positive and complicating results in the patients receiving treatment are explained. Logical next steps to advance the clinical value of the therapeutics are suggested. Expert opinion: The first molecularly based early-phase therapies for an IRD are remarkably successful in that vision has improved and adverse events are mainly associated with surgical delivery to the subretinal space. Yet, there are features of the gene augmentation therapeutic response, such as slowed kinetics of night vision, lack of foveal cone function improvement and relentlessly progressive retinal degeneration despite therapy, that still require research attention.
Collapse
Affiliation(s)
- Samuel G Jacobson
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Artur V Cideciyan
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Gustavo D Aguirre
- University of Pennsylvania, School of Veterinary Medicine, Section of Ophthalmology , Philadelphia, PA, USA
| | - Alejandro J Roman
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Alexander Sumaroka
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | | | - Krzysztof Palczewski
- Case Western University, School of Medicine, Cleveland Center for Membrane and Structural Biology, Department of Pharmacology , Cleveland, OH, USA
| |
Collapse
|