201
|
Transient behaviour of a Galton–Watson process with a large number of types. J Appl Probab 2016. [DOI: 10.1017/s002190020002026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Modelling the distribution of mutations of mitochondrial DNA in exponentially growing cell cultures leads to the study of a multitype Galton–Watson process during its transient phase. The number of types corresponds to the number of mtDNA per cell and may be considered as large. By taking advantage of this fact we prove that the stochastic process is deterministic-like on the set of nonextinction. On this set almost all trajectories are well approximated by the unique solution of a partial differential problem. This result allows also the comparison of trajectories corresponding to different modelling assumptions, for instance different values of the number of types.
Collapse
|
202
|
Reder C. Transient behaviour of a Galton–Watson process with a large number of types. J Appl Probab 2016. [DOI: 10.1239/jap/1067436097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modelling the distribution of mutations of mitochondrial DNA in exponentially growing cell cultures leads to the study of a multitype Galton–Watson process during its transient phase. The number of types corresponds to the number of mtDNA per cell and may be considered as large. By taking advantage of this fact we prove that the stochastic process is deterministic-like on the set of nonextinction. On this set almost all trajectories are well approximated by the unique solution of a partial differential problem. This result allows also the comparison of trajectories corresponding to different modelling assumptions, for instance different values of the number of types.
Collapse
|
203
|
Landau A, Lencina F, Pacheco MG, Prina AR. Plastome Mutations and Recombination Events in Barley Chloroplast Mutator Seedlings. J Hered 2016; 107:266-73. [PMID: 26774059 PMCID: PMC4885237 DOI: 10.1093/jhered/esw003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
The barley chloroplast mutator (cpm) is an allele of a nuclear gene that when homozygous induces several types of cytoplasmically inherited chlorophyll deficiencies. In this work, a plastome Targeting Induced Local Lesions in Genomes (TILLING) strategy based on mismatch digestion was used on families that carried the cpm genotype through many generations. Extensive scanning of 33 plastome genes and a few intergenic regions was conducted. Numerous polymorphisms were detected on both genic and intergenic regions. The detected polymorphisms can be accounted for by at least 61 independent mutational events. The vast majority of the polymorphisms originated in substitutions and small indels (insertions/deletions) in microsatellites. The rpl23 and the rps16 genes were the most polymorphic. Interestingly, the variation observed in the rpl23 gene consisted of several combinations of 5 different one nucleotide polymorphisms. Besides, 4 large indels that have direct repeats at both ends were also observed, which appear to be originated from recombinational events. The cpm mutation spectrum suggests that the CPM gene product is probably involved in plastome mismatch repair. The numerous subtle molecular changes that were localized in a wide range of plastome sites show the cpm as a valuable source of plastome variability for plant research and/or plant breeding. Moreover, the cpm mutant appears to be an interesting experimental material for investigating the mechanisms responsible for maintaining the stability of plant organelle DNA.
Collapse
Affiliation(s)
- Alejandra Landau
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - Franco Lencina
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - María G Pacheco
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - Alberto R Prina
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina).
| |
Collapse
|
204
|
Lesica P, Adams B, Smith CT. Can physiographic regions substitute for genetically-determined conservation units? A case study with the threatened plant, Silene spaldingii. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0842-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
205
|
Zimmerman KCK, Levitis DA, Pringle A. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa. J Evol Biol 2016; 29:1379-93. [PMID: 27062053 DOI: 10.1111/jeb.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
Abstract
Maternal effects are widely documented in animals and plants, but not in fungi or other eukaryotes. A principal cause of maternal effects is asymmetrical parental investment in a zygote, creating greater maternal vs. paternal influence on offspring phenotypes. Asymmetrical investments are not limited to animals and plants, but are also prevalent in fungi and groups including apicomplexans, dinoflagellates and red algae. Evidence suggesting maternal effects among fungi is sparse and anecdotal. In an experiment designed to test for maternal effects across sexual reproduction in the model fungus Neurospora crassa, we measured offspring phenotypes from crosses of all possible pairs of 22 individuals. Crosses encompassed reciprocals of 11 mating-type 'A' and 11 mating-type 'a' wild strains. After controlling for the genetic and geographic distances between strains in any individual cross, we found strong evidence for maternal control of perithecia (sporocarp) production, as well as maternal effects on spore numbers and spore germination. However, both parents exert equal influence on the percentage of spores that are pigmented and size of pigmented spores. We propose a model linking the stage-specific presence or absence of maternal effects to cellular developmental processes: effects appear to be mediated primarily through the maternal cytoplasm, and, after spore cell walls form, maternal influence on spore development is limited. Maternal effects in fungi, thus far largely ignored, are likely to shape species' evolution and ecologies. Moreover, the association of anisogamy and maternal effects in a fungus suggests maternal effects may also influence the biology of other anisogamous eukaryotes.
Collapse
Affiliation(s)
- K C K Zimmerman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - D A Levitis
- Department of Biology, Bates College, Lewiston, ME, USA
| | - A Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
206
|
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1070-85. [PMID: 26311018 PMCID: PMC11389173 DOI: 10.1111/pbi.12454] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
207
|
Welker CAD, Souza-Chies TT, Longhi-Wagner HM, Peichoto MC, McKain MR, Kellogg EA. Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae-Andropogoneae): Taxonomic implications and evidence of interspecific hybridization. Mol Phylogenet Evol 2016; 99:155-167. [PMID: 26947710 DOI: 10.1016/j.ympev.2016.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/04/2023]
Abstract
Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference.
Collapse
Affiliation(s)
- Cassiano A D Welker
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Tatiana T Souza-Chies
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Hilda M Longhi-Wagner
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Myriam Carolina Peichoto
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias (UNNE), Sargento Cabral 2131, Corrientes 3400, Argentina.
| | - Michael R McKain
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA.
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA.
| |
Collapse
|
208
|
Daubois L, Beaudet D, Hijri M, de la Providencia I. Independent mitochondrial and nuclear exchanges arising in Rhizophagus irregularis crossed-isolates support the presence of a mitochondrial segregation mechanism. BMC Microbiol 2016; 16:11. [PMID: 26803293 PMCID: PMC4724407 DOI: 10.1186/s12866-016-0627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are members of the phylum Glomeromycota, an early divergent fungal lineage that forms symbiotic associations with the large majority of land plants. These organisms are asexual obligate biotrophs, meaning that they cannot complete their life cycle in the absence of a suitable host. These fungi can exchange genetic information through hyphal fusions (i.e. anastomosis) with genetically compatible isolates belonging to the same species. The occurrence of transient mitochondrial length-heteroplasmy through anastomosis between geographically distant Rhizophagus irregularis isolates was previously demonstrated in single spores resulting from crossing experiments. However, (1) the persistence of this phenomenon in monosporal culture lines from crossed parental isolates, (2) its correlation with nuclear exchanges and (3) the potential mechanisms responsible for mitochondrial inheritance are still unknown. Using the AMF model organism R. irregularis, we tested whether the presence of a heteroplasmic state in progeny spores was linked to the occurrence of nuclear exchanges and whether the previously observed heteroplasmic state persisted in monosporal in vitro crossed-culture lines. We also investigated the presence of a putative mitochondrial segregation apparatus in Glomeromycota by identifying proteins similar to those found in other fungal groups. RESULTS We observed the occurrence of biparental inheritance both for mitochondrial and nuclear markers tested in single spores obtained from crossed-isolates. However, only one parental mitochondrial DNA and nuclear genotype were recovered in each monosporal crossed-cultures, with an overrepresentation of certain mitochondrial haplotypes. These results strongly support the presence of a nuclear-independent mitochondrial segregation mechanism in R. irregularis. Furthermore, a nearly complete set of genes was identified with putative orthology to those found in other fungi and known to be associated with the mitochondrial segregation in Saccharomyces cerevisiae and filamentous fungi. CONCLUSIONS Our findings suggest that mitochondrial segregation might take place either during spore formation or colony development and that it might be independent of the nuclear segregation machinery. We present the basic building blocks for a better understanding of the mitochondrial inheritance process and segregation in these important symbiotic fungi. The comprehension of these processes is of great importance since it has been shown that different segregated lines of the same isolate can have variable effects on the host plant.
Collapse
Affiliation(s)
- Laurence Daubois
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Denis Beaudet
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Ivan de la Providencia
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| |
Collapse
|
209
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|
210
|
Minoiu I, Burzyński A, Breton S. Analysis of the coding potential of the ORF in the control region of the female-transmitted Mytilus mtDNA. Gene 2016; 576:586-8. [DOI: 10.1016/j.gene.2015.09.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022]
|
211
|
Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, Gao G, Xu K, Li J, Wu X. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:409-18. [PMID: 26031705 PMCID: PMC11388923 DOI: 10.1111/pbi.12395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 05/14/2023]
Abstract
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Mengxian Cai
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guixin Yan
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Nian Wang
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Binyun Chen
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guizhen Gao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kun Xu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jun Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
212
|
Ngo Ngwe MFS, Omokolo DN, Joly S. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices. PLoS One 2015; 10:e0145364. [PMID: 26691919 PMCID: PMC4686806 DOI: 10.1371/journal.pone.0145364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.
Collapse
Affiliation(s)
- Marie Florence Sandrine Ngo Ngwe
- Laboratory of Plant Physiology, Higher Teacher’s Training College, University of Yaoundé 1, P. O. Box 47, Yaounde, Cameroon
- Institute of Agricultural Research for Development-CEREFEN, BP 167, Meyomessala, Cameroon
- * E-mail:
| | - Denis Ndoumou Omokolo
- Laboratory of Plant Physiology, Higher Teacher’s Training College, University of Yaoundé 1, P. O. Box 47, Yaounde, Cameroon
| | - Simon Joly
- Institut de recherche en biologie végétale, Montreal Botanical Garden and Université de Montréal, 4101 Sherbrooke East, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
213
|
|
214
|
Ness RW, Kraemer SA, Colegrave N, Keightley PD. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in theChlamydomonas reinhardtiiPlastid Genome. Mol Biol Evol 2015; 33:800-8. [DOI: 10.1093/molbev/msv272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
215
|
Conservation genetics and geographic patterns of genetic variation of endangered shrub Ammopiptanthus (Fabaceae) in northwestern China. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0798-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
216
|
Portnoy DS, Puritz JB, Hollenbeck CM, Gelsleichter J, Chapman D, Gold JR. Selection and sex-biased dispersal in a coastal shark: the influence of philopatry on adaptive variation. Mol Ecol 2015; 24:5877-85. [DOI: 10.1111/mec.13441] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 01/18/2023]
Affiliation(s)
- D. S. Portnoy
- Department of Life Sciences; Marine Genomics Laboratory; Harte Research Institute; Texas A&M University-Corpus Christi; 6300 Ocean Drive Corpus Christi TX 78412 USA
| | - J. B. Puritz
- Department of Life Sciences; Marine Genomics Laboratory; Harte Research Institute; Texas A&M University-Corpus Christi; 6300 Ocean Drive Corpus Christi TX 78412 USA
| | - C. M. Hollenbeck
- Department of Life Sciences; Marine Genomics Laboratory; Harte Research Institute; Texas A&M University-Corpus Christi; 6300 Ocean Drive Corpus Christi TX 78412 USA
| | - J. Gelsleichter
- University of North Florida; 1 UNF Drive Jacksonville FL 32224 USA
| | - D. Chapman
- Stony Brook University; Stony Brook NY 11776 USA
| | - J. R. Gold
- Department of Life Sciences; Marine Genomics Laboratory; Harte Research Institute; Texas A&M University-Corpus Christi; 6300 Ocean Drive Corpus Christi TX 78412 USA
| |
Collapse
|
217
|
Cellular Heterogeneity in the Level of mtDNA Heteroplasmy in Mouse Embryonic Stem Cells. Cell Rep 2015; 13:1304-1309. [DOI: 10.1016/j.celrep.2015.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/19/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
|
218
|
Muhammad Tahir H, Akhtar S. Services of DNA barcoding in different fields. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4463-4474. [DOI: 10.3109/19401736.2015.1089572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Samreen Akhtar
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
219
|
Radojičić JM, Krizmanić I, Kasapidis P, Zouros E. Extensive mitochondrial heteroplasmy in hybrid water frog (Pelophylax spp.) populations from Southeast Europe. Ecol Evol 2015; 5:4529-41. [PMID: 26668720 PMCID: PMC4670067 DOI: 10.1002/ece3.1692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
Water frogs of the genus Pelophylax (previous Rana) species have been much studied in Europe for their outstanding reproductive mechanism in which sympatric hybridization between genetically distinct parental species produces diverse genetic forms of viable hybrid animals. The most common hybrid is P. esculentus that carries the genomes of both parental species, P. ridibundus and P. lessonae, but usually transfers the whole genome of only one parent to its offsprings (hybridogenesis). The evolutionary cost of transfer of the intact genome and hence the hemiclonal reproduction is the depletion of heterozygosity in the hybrid populations. Pelophylax esculentus presents an excellent example of the long‐term sustained hybridization and hemiclonal reproduction in which the effects of the low genetic diversity are balanced through the novel mutations and periodic recombinations. In this study, we analyzed the mitochondrial (mt) and microsatellites DNA variations in hybrid Pelophylax populations from southern parts of the Pannonian Basin and a north–south transect of the Balkan Peninsula, which are home for a variety of Pelophylax genetic lineages. The mtDNA haplotypes found in this study corresponded to P. ridibundus and P. epeiroticus of the Balkan – Anatolian lineage (ridibundus–bedriagae) and to P. lessonae and a divergent lessonae haplotype of the lessonae lineage. The mtDNA genomes showed considerable intraspecific variation and geographic differentiation. The Balkan wide distributed P. ridibundus was found in all studied populations and its nuclear genome, along with either the lessonae or the endemic epeiroticus genome, in all hybrids. An unexpected finding was that the hybrid populations were invariably heteroplasmic, that is, they contained the mtDNA of both parental species. We discussed the possibility that such extensive heteroplasmy is a result of hybridization and it comes from regular leakage of the paternal mtDNA from a sperm of one species that fertilizes eggs of another. In this case, the mechanisms that protect the egg from heterospecific fertilization and further from the presence of sperm mtDNA could become compromised due to their differences and divergence at both, mitochondrial and nuclear DNA. The heteroplasmy once retained in the fertilized egg could be transmitted by hybrid backcrossing to the progeny and maintained in a population over generations. The role of interspecies and heteroplasmic hybrid animals due to their genomic diversity and better fitness compare to the parental species might be of the special importance in adaptations to miscellaneous and isolated environments at the Balkan Peninsula.
Collapse
Affiliation(s)
- Jelena M Radojičić
- Hellenic Centre for Marine Research Institute of Marine Biology, Biotechnology and Aquaculture Heraklion Greece ; Department of Biology University of Crete Heraklion Greece
| | - Imre Krizmanić
- Faculty of Biology Institute of Zoology University of Belgrade Belgrade Serbia
| | - Panagiotis Kasapidis
- Hellenic Centre for Marine Research Institute of Marine Biology, Biotechnology and Aquaculture Heraklion Greece
| | | |
Collapse
|
220
|
Scarcelli N, Mariac C, Couvreur TLP, Faye A, Richard D, Sabot F, Berthouly‐Salazar C, Vigouroux Y. Intra‐individual polymorphism in chloroplasts from
NGS
data: where does it come from and how to handle it? Mol Ecol Resour 2015; 16:434-45. [DOI: 10.1111/1755-0998.12462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 01/11/2023]
Affiliation(s)
- N. Scarcelli
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Mariac
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - T. L. P. Couvreur
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Département des Sciences Biologiques Laboratoire de Botanique Systématique et d'Ecologie Ecole Normale Supérieure Université de Yaoundé I BP 047 Yaoundé Cameroon
| | - A. Faye
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - D. Richard
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - F. Sabot
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Berthouly‐Salazar
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Route des Hydrocarbures Centre de Recherche de Bel‐Air IRD/ISRA BP 1386 – 18524 Dakar Senegal
| | - Y. Vigouroux
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| |
Collapse
|
221
|
Szczecińska M, Sawicki J. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae. Int J Mol Sci 2015; 16:22258-79. [PMID: 26389887 PMCID: PMC4613307 DOI: 10.3390/ijms160922258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022] Open
Abstract
Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatillavernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.
Collapse
Affiliation(s)
- Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, 10-728 Olsztyn, Poland.
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, 10-728 Olsztyn, Poland.
- Department of Biology and Ecology, University of Ostrava, 71000 Ostrava, Czech Republic.
| |
Collapse
|
222
|
Abstract
Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.
Collapse
Affiliation(s)
- Sophie Breton
- a Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Donald T Stewart
- b Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
223
|
Milani L, Ghiselli F, Pecci A, Maurizii MG, Passamonti M. The Expression of a Novel Mitochondrially-Encoded Gene in Gonadic Precursors May Drive Paternal Inheritance of Mitochondria. PLoS One 2015; 10:e0137468. [PMID: 26339998 PMCID: PMC4560408 DOI: 10.1371/journal.pone.0137468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
Mitochondria have an active role in germ line development, and their inheritance dynamics are relevant to this process. Recently, a novel protein (RPHM21) was shown to be encoded in sperm by the male-transmitted mtDNA of Ruditapes philippinarum, a species with Doubly Uniparental Inheritance (DUI) of mitochondria. In silico analyses suggested a viral origin of RPHM21, and we hypothesized that the endogenization of a viral element provided sperm mitochondria of R. philippinarum with the ability to invade male germ line, thus being transmitted to the progeny. In this work we investigated the dynamics of germ line development in relation to mitochondrial transcription and expression patterns using qPCR and specific antibodies targeting the germ line marker VASPH (R. philippinarum VASA homolog), and RPHM21. Based on the experimental results we conclude that both targets are localized in the primordial germ cells (PGCs) of males, but while VASPH is detected in all PGCs, RPHM21 appears to be expressed only in a subpopulation of them. Since it has been predicted that RPHM21 might have a role in cell proliferation and migration, we here suggest that PGCs expressing it might gain advantage over others and undertake spermatogenesis, accounting for RPHM21 presence in all spermatozoa. Understanding how foreign sequence endogenization and co-option can modify the biology of an organism is of particular importance to assess the impact of such events on evolution.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
224
|
Hwang JY, Lee CK, Kim H, Nam BH, An CM, Park JY, Park KH, Huh CS, Kim EB. Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamily-specific genomic and evolutionary features. Mar Genomics 2015; 24 Pt 3:329-34. [PMID: 26343338 DOI: 10.1016/j.margen.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
Abstract
Veneroida is the largest order of bivalves, and these clams are commercially important in Asian countries. Although numerous studies have focused on the genomic characters of individual species or genera in Veneroida, superfamily-specific genomic characters have not been determined. In this study, we performed a comparative genomic analysis of 12 mitochondrial protein coding genes (PCGs) from 25 clams in six Veneroida superfamilies to determine genomic and evolutionary features of each superfamily. Length and distribution of nucleotides encoding the PCGs were too variable to define superfamily-specific genomic characters. Phylogenetic analysis revealed that PCGs are suitable for classification of species in three superfamilies: Cardioidea, Mactroidea, and Veneroidea. However, one species classified in Tellinoidea, Sinonovacula constricta, was evolutionarily closer to Solenoidea clams than Tellinoidea clams. dN/dS analysis showed that positively selected sites in NADH dehydrogenase subunit, nd4 and subunit of ATP synthase, atp6 were present in Mactroidea. Differences in selected sites in the nd4 and atp6 could be caused by superfamily-level differences in sodium transport or ATP synthesis functions, respectively. These differences in selected sites in NADH may have conferred these animals, which have low motility and do not generally move, with increased flexibility to maintain homeostasis in the face of osmotic pressure. Our study provides insight into evolutionary traits as well as facilitates identification of veneroids.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Kangwon-do 232-916, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Kangwon-do 232-916, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Kyu-Hyun Park
- Department of Animal Life System, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chul-Sung Huh
- Graduate School of International Agricultural Technology/GBST, Seoul National University, Pyeongchang 232-916, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
225
|
Fang F, Ji Y, Zhao Q, Wang Y, Gao W, Chu K, Sun H. Phylogeography of the Chinese endemic freshwater crabSinopotamon acutum(Brachyura, Potamidae). ZOOL SCR 2015. [DOI: 10.1111/zsc.12131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Yongkun Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Qiang Zhao
- College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Yujuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Wei Gao
- College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Kelin Chu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| |
Collapse
|
226
|
Pervasive Mitochondrial Sequence Heteroplasmy in Natural Populations of Wild Carrot, Daucus carota spp. carota L. PLoS One 2015; 10:e0136303. [PMID: 26295342 PMCID: PMC4546501 DOI: 10.1371/journal.pone.0136303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022] Open
Abstract
Exceptions to the generally accepted rules that plant mitochondrial genomes are strictly maternally inherited and that within-individual sequence diversity in those genomes, i.e., heteroplasmy, should be minimal are becoming increasingly apparent especially with regard to sequence-level heteroplasmy. These findings raise questions about the potential significance of such heteroplasmy for plant mitochondrial genome evolution. Still studies quantifying the amount and consequences of sequence heteroplasmy in natural populations are rare. In this study, we report pervasive sequence heteroplasmy in natural populations of wild carrot, a close relative of the cultivated crop. In order to assay directly for this heteroplasmy, we implemented a quantitative PCR assay that can detect and quantify intra-individual SNP variation in two mitochondrial genes (Cox1 and Atp9). We found heteroplasmy in > 60% of all wild carrot populations surveyed and in > 30% of the 140 component individuals that were genotyped. Heteroplasmy ranged from a very small proportion of the total genotype (e.g., 0.995:0.005) to near even mixtures (e.g., 0.590:0.410) in some individuals. These results have important implications for the role of intra-genomic recombination in the generation of plant mitochondrial genome genotypic novelty. The consequences of such recombination are evident in the results of this study through analysis of the degree of linkage disequilibrium (LD) between the SNP sites at the two genes studied.
Collapse
|
227
|
Hadjivasiliou Z, Iwasa Y, Pomiankowski A. Cell-cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes. J R Soc Interface 2015; 12:20150342. [PMID: 26156301 PMCID: PMC4535405 DOI: 10.1098/rsif.2015.0342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller-detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Andrew Pomiankowski
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
228
|
Chou JY, Leu JY. The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front Genet 2015; 6:187. [PMID: 26042149 PMCID: PMC4437034 DOI: 10.3389/fgene.2015.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/05/2015] [Indexed: 01/08/2023] Open
Abstract
Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused by incompatible alleles between mitochondrial and nuclear genomes, has been suggested to play a critical role during speciation. Several features of the mitochondrial genome (mtDNA), including high mutation rate, dynamic genomic structure, and uniparental inheritance, make mtDNA more likely to accumulate mutations in the population. Once mtDNA has changed, the nuclear genome needs to play catch-up due to the intimate interactions between these two genomes. In two populations, if cyto-nuclear co-evolution is driven in different directions, it may eventually lead to hybrid incompatibility. Although cyto-nuclear incompatibility has been observed in a wide range of organisms, it remains unclear what type of mutations drives the co-evolution. Currently, evidence supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been known that some mutations allow mtDNA to propagate more efficiently but compromise the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect may contribute to the frequent observation of cyto-nuclear incompatibility and be the underlying driving force of some human mitochondrial diseases.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education , Changhua, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica , Taipei, Taiwan
| |
Collapse
|
229
|
Abstract
Transposable elements (TEs) are an important factor shaping eukaryotic genomes. Although a significant body of research has been conducted on the abundance of TEs in nuclear genomes, TEs in mitochondrial genomes remain elusive. In this study, we successfully assembled 28 complete yeast mitochondrial genomes and took advantage of the power of population genomics to determine mobile DNAs and their propensity. We have observed compelling evidence of GC clusters propagating within the mitochondrial genome and being horizontally transferred between species. These mitochondrial TEs experience rapid diversification by nucleotide substitution and, more importantly, undergo dynamic merger and shuffling to form new TEs. Given the hyper mobile and transformable nature of mitochondrial TEs, our findings open the door to a deeper understanding of eukaryotic mitochondrial genome evolution and the origin of nonautonomous TEs.
Collapse
|
230
|
Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L. Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS One 2015; 10:e0121965. [PMID: 25880993 PMCID: PMC4399884 DOI: 10.1371/journal.pone.0121965] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
Abstract
Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns.
Collapse
Affiliation(s)
- Aurélien Lauron-Moreau
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
| | - Frédéric E. Pitre
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
- * E-mail:
| | - Luc Brouillet
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
231
|
Abstract
In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods. We also discuss the consequences of linkage between mitochondria and other maternally transmitted genetic elements, including the role of cytonuclear incompatibilities in maintaining polymorphism. Finally, as a case study, we discuss a recently discovered maternally transmitted sex ratio distortion in an insect that is associated with extraordinarily divergent mitochondria.
Collapse
|
232
|
Kang AR, Kim MJ, Park IA, Kim KY, Kim I. Extent and divergence of heteroplasmy of the DNA barcoding region in Anapodisma miramae (Orthoptera: Acrididae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3405-14. [PMID: 25835040 DOI: 10.3109/19401736.2015.1022730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene is widely used as a molecular marker for species identification in animals, also termed a DNA barcode. However, the presence of more than one sequence type in a single individual, also known as heteroplasmy, is one of the shortcomings of barcode identification. In this study, we examined the extent and divergence of COI heteroplasmy, including nuclear-encoded mitochondrial pseudogenes (NUMTs), at the genomic-DNA level from 13 insect species including orthopteran Anapodisma miramae, and a long fragment of mitochondrial DNA and cDNA from A. miramae as templates. When multiple numbers of clones originated from genomic DNA were sequenced, heteroplasmy was prevalent in all species and NUMTs were observed in five species. Long fragment DNA (∼13.5 kb) also is a source of heteroplasmic amplification, but the divergent haplotypes and NUMTs obtained from genomic DNA were not detected in A. miramae. On the other hand, cDNA was relatively heteroplasmy-free. Consistently, one dominant haplotype was always obtained from the genomic DNA-origin clones in all species and also from the long fragment- and cDNA-origin clones in the two tested individuals of A. miramae. Furthermore, the dominant haplotype was identical in sequence, regardless of the DNA source in A. miramae. Thus, one possible solution to avoid the barcoding problem in relationship to heteroplasmy could be the acquisition of multiple numbers of barcoding sequences to determine a dominant haplotype that can be assigned as barcoding sequence for a given species.
Collapse
Affiliation(s)
- Ah Rang Kang
- a College of Agriculture & Life Sciences, Chonnam National University , Gwangju , Korea and
| | - Min Jee Kim
- a College of Agriculture & Life Sciences, Chonnam National University , Gwangju , Korea and
| | - In Ah Park
- a College of Agriculture & Life Sciences, Chonnam National University , Gwangju , Korea and
| | - Kee Young Kim
- b Department of Agricultural Biology , National Academy of Agricultural Science , Wanju-gun , Korea
| | - Iksoo Kim
- a College of Agriculture & Life Sciences, Chonnam National University , Gwangju , Korea and
| |
Collapse
|
233
|
Kuijper B, Lane N, Pomiankowski A. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm? J Evol Biol 2015; 28:468-80. [PMID: 25653025 PMCID: PMC4413368 DOI: 10.1111/jeb.12582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work.
Collapse
Affiliation(s)
- B Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
234
|
Wagner-Vogel G, Lämmer F, Kämper J, Basse CW. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy. BMC Microbiol 2015; 15:23. [PMID: 25652096 PMCID: PMC4326477 DOI: 10.1186/s12866-015-0358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Background Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. Results This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Conclusions Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0358-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaby Wagner-Vogel
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Frauke Lämmer
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jörg Kämper
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Christoph W Basse
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
235
|
Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol Phylogenet Evol 2015; 83:156-66. [DOI: 10.1016/j.ympev.2014.11.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
236
|
Wang Z, Wilson A, Xu J. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii. Fungal Genet Biol 2015; 75:1-10. [DOI: 10.1016/j.fgb.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
|
237
|
Wang G, Xue T, Chen M, Guo L, Li J. Complete F-type mitochondrial genome of freshwater mussels Unio douglasiae. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4021-4022. [PMID: 25629504 DOI: 10.3109/19401736.2014.1003825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete F-type mitochondrial genome of Unio douglasiae is reported for the first time in this research. It is 15,767 bp in size and contains 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Except for COI, ND2, CYTB, ND1, ND6, ND4L, ATP8 with ATA start codon, and ND4 with ATT start codon, the remaining protein-coding genes initiate with the orthodox ATG start codon. There are 25 noncoding regions found throughout the mitogenome of Unio douglasiae, ranging in the size from 1 to 312 bp, the largest of which is between tRNAGlu and ND2 (312 bp).
Collapse
Affiliation(s)
- Guiling Wang
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , Shanghai Ocean University , Shanghai , China
| | - Ting Xue
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , Shanghai Ocean University , Shanghai , China
| | - Meiling Chen
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , Shanghai Ocean University , Shanghai , China
| | - Liping Guo
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , Shanghai Ocean University , Shanghai , China
| | - Jiale Li
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , Shanghai Ocean University , Shanghai , China
| |
Collapse
|
238
|
Milani L, Ghiselli F, Maurizii MG, Nuzhdin SV, Passamonti M. Paternally transmitted mitochondria express a new gene of potential viral origin. Genome Biol Evol 2015; 6:391-405. [PMID: 24500970 PMCID: PMC3942028 DOI: 10.1093/gbe/evu021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial ORFans (open reading frames having no detectable homology and with unknown function) were discovered in bivalve molluscs with doubly uniparental inheritance (DUI) of mitochondria. In these animals, two mitochondrial lineages are present, one transmitted through eggs (F-type), the other through sperm (M-type), each showing a specific ORFan. In this study, we used in situ hybridization and immunocytochemistry to provide evidence for the expression of Ruditapes philippinarum male-specific ORFan (orf21): both the transcript and the protein (RPHM21) were localized in spermatogenic cells and mature spermatozoa; the protein was localized in sperm mitochondria and nuclei, and in early embryos. Also, in silico analyses of orf21 flanking region and RPHM21 structure supported its derivation from viral sequence endogenization. We propose that RPHM21 prevents the recognition of M-type mitochondria by the degradation machinery, allowing their survival in the zygote. The process might involve a mechanism similar to that of Modulators of Immune Recognition, viral proteins involved in the immune recognition pathway, to which RPHM21 showed structural similarities. A viral origin of RPHM21 may also support a developmental role, because some integrated viral elements are involved in development and sperm differentiation of their host. Mitochondrial ORFans could be responsible for or participate in the DUI mechanism and their viral origin could explain the acquired capability of M-type mitochondria to avoid degradation and invade the germ line, that is what viruses do best: to elude host immune system and proliferate.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
239
|
Abstract
Why the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall-back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Johanna Sobanski
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
240
|
Li L, Hu L, Han LP, Ji H, Zhu Y, Wang X, Ge J, Xu M, Shen D, Dong H. Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:381. [PMID: 25547226 PMCID: PMC4310184 DOI: 10.1186/s12870-014-0381-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recently we showed that de novo expression of a turtle riboflavin-binding protein (RfBP) in transgenic Arabidopsis increased H2O2 concentrations inside leaf cells, enhanced the expression of floral regulatory gene FD and floral meristem identity gene AP1 at the shoot apex, and induced early flowering. Here we report that RfBP-induced H2O2 presumably results from electron leakage at the mitochondrial electron transport chain (METC) and this source of H2O2 contributes to the early flowering phenotype. RESULTS While enhanced expression of FD and AP1 at the shoot apex was correlated with early flowering, the foliar expression of 13 of 19 METC genes was repressed in RfBP-expressing (RfBP+) plants. Inside RfBP+ leaf cells, cytosolic H2O2 concentrations were increased possibly through electron leakage because similar responses were also induced by a known inducer of electron leakage from METC. Early flowering no longer occurred when the repression on METC genes was eliminated by RfBP gene silencing, which restored RfBP+ to wild type in levels of FD and AP1 expression, H2O2, and flavins. Flowering was delayed by the external riboflavin application, which brought gene expression and flavins back to the steady-state levels but only caused 55% reduction of H2O2 concentrations in RfBP+ plants. RfBP-repressed METC gene expression remedied the cytosolic H2O2 diminution by genetic disruption of transcription factor NFXLl and compensated for compromises in FD and AP1 expression and flowering time. By contrast, RfBP resembled a peroxisomal catalase mutation, which augments the cytosolic H2O2, to enhance FD and AP1 expression and induce early flowering. CONCLUSIONS RfBP-repressed METC gene expression potentially causes electron leakage as one of cellular sources for the generation of H2O2 with the promoting effect on flowering. The repressive effect on METC gene expression is not the only way by which RfBP induces H2O2 and currently unappreciated factors may also function under RfBP+ background.
Collapse
Affiliation(s)
- Liang Li
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li Hu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li-Ping Han
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Yueyue Zhu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Xiaobing Wang
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Jun Ge
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Manyu Xu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| |
Collapse
|
241
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
242
|
Autophagy and ubiquitin-mediated proteolysis may not be involved in the degradation of spermatozoon mitochondria in mouse and porcine early embryos. ZYGOTE 2014; 24:31-41. [PMID: 25513816 DOI: 10.1017/s0967199414000689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mitochondrial genome is maternally inherited in animals, despite the fact that paternal mitochondria enter oocytes during fertilization. Autophagy and ubiquitin-mediated degradation are responsible for the elimination of paternal mitochondria in Caenorhabditis elegans; however, the involvement of these two processes in the degradation of paternal mitochondria in mammals is not well understood. We investigated the localization patterns of light chain 3 (LC3) and ubiquitin in mouse and porcine embryos during preimplantation development. We found that LC3 and ubiquitin localized to the spermatozoon midpiece at 3 h post-fertilization, and that both proteins were colocalized with paternal mitochondria and removed upon fertilization during the 4-cell stage in mouse and the zygote stage in porcine embryos. Sporadic paternal mitochondria were present beyond the morula stage in the mouse, and paternal mitochondria were restricted to one blastomere of 4-cell embryos. An autophagy inhibitor, 3-methyladenine (3-MA), did not affect the distribution of paternal mitochondria compared with the positive control, while an autophagy inducer, rapamycin, accelerated the removal of paternal mitochondria compared with the control. After the intracytoplasmic injection of intact spermatozoon into mouse oocytes, LC3 and ubiquitin localized to the spermatozoon midpiece, but remnants of undegraded paternal mitochondria were retained until the blastocyst stage. Our results show that paternal mitochondria colocalize with autophagy receptors and ubiquitin and are removed after in vitro fertilization, but some remnants of sperm mitochondrial sheath may persist up to morula stage after intracytoplasmic spermatozoon injection (ICSI).
Collapse
|
243
|
Naue J, Hörer S, Sänger T, Strobl C, Hatzer-Grubwieser P, Parson W, Lutz-Bonengel S. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion 2014; 20:82-94. [PMID: 25526677 DOI: 10.1016/j.mito.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Mitochondrial point heteroplasmy is a common event observed not only in patients with mitochondrial diseases but also in healthy individuals. We here report a comprehensive investigation of heteroplasmy occurrence in human including the whole mitochondrial control region from nine different tissue types of 100 individuals. Sanger sequencing was used as a standard method and results were supported by cloning, minisequencing, and massively parallel sequencing. Only 12% of all individuals showed no heteroplasmy, whereas 88% showed at least one heteroplasmic position within the investigated tissues. In 66% of individuals up to 8 positions were affected. The highest relative number of heteroplasmies was detected in muscle and liver (79%, 69%), followed by brain, hair, and heart (36.7%-30.2%). Lower percentages were observed in bone, blood, lung, and buccal cells (19.8%-16.2%). Accumulation of position-specific heteroplasmies was found in muscle (positions 64, 72, 73, 189, and 408), liver (position 72) and brain (partial deletion at position 71). Deeper analysis of these specific positions in muscle revealed a non-random appearance and position-specific dependency on age. MtDNA heteroplasmy frequency and its potential functional importance have been underestimated in the past and its occurrence is ubiquitous and dependent at least on age, tissue, and position-specific mutation rates.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
| | - Steffen Hörer
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Timo Sänger
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Petra Hatzer-Grubwieser
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| | - Sabine Lutz-Bonengel
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| |
Collapse
|
244
|
Molecular phylogeography and intraspecific divergence of Spiraea alpina (Rosaceae) distributed in the Qinghai-Tibetan Plateau and adjacent regions inferred from nrDNA. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
245
|
Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QCB. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). THE NEW PHYTOLOGIST 2014; 204:693-703. [PMID: 25078531 DOI: 10.1111/nph.12956] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 05/03/2023]
Abstract
As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar.
Collapse
Affiliation(s)
- Daisie I Huang
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Charles A Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Natalia Kolosova
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
246
|
Zhihao S, Mingli Z. A range wide geographic pattern of genetic diversity and population structure of Hexinia polydichotoma (Asteraceae) in Tarim Basin and adjacent areas. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
247
|
Dobler R, Rogell B, Budar F, Dowling DK. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol 2014; 27:2021-34. [DOI: 10.1111/jeb.12468] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Affiliation(s)
- R. Dobler
- Institute of Evolution and Ecology; University of Tübingen; Tübingen Germany
| | - B. Rogell
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - F. Budar
- UMR 1318; Institut Jean-Pierre Bourgin; INRA; Versailles France
- UMR 1318; Institut Jean-Pierre Bourgin; AgroParisTech; Versailles France
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
248
|
Heindryckx B, Neupane J, Vandewoestyne M, Christodoulou C, Jackers Y, Gerris J, Van den Abbeel E, Van Coster R, Deforce D, De Sutter P. Mutation-free baby born from a mitochondrial encephalopathy, lactic acidosis and stroke-like syndrome carrier after blastocyst trophectoderm preimplantation genetic diagnosis. Mitochondrion 2014; 18:12-7. [DOI: 10.1016/j.mito.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023]
|
249
|
Abstract
The lability in size, structure, and sequence content of mitochondrial genome (mtDNA) across plant species has sharply limited its use in taxonomic studies. However, due to the new opportunities offered by the availability of complete mtDNA sequence in plant species and the subsequent development of universal primers, the number of mtDNA-based molecular studies has recently increased. Historically, universal primers have enabled to characterize mtDNA polymorphism mainly by the RFLP technique. This methodology has been progressively replaced by Sanger DNA sequencing, which actually provides the full phylogenetic information content of a DNA fragment (single nucleotide, insertion/deletion, and single sequence repeat length polymorphism). This chapter presents a sequencing working protocol to be routinely used in mtDNA-based phylogenetic studies.
Collapse
|
250
|
Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev Cell 2014; 29:305-20. [PMID: 24823375 DOI: 10.1016/j.devcel.2014.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/16/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
Abstract
Almost all animals contain mitochondria of maternal origin only, but the exact mechanisms underlying this phenomenon are still vague. We investigated the fate of Drosophila paternal mitochondria after fertilization. We demonstrate that the sperm mitochondrial derivative (MD) is rapidly eliminated in a stereotypical process dubbed paternal mitochondrial destruction (PMD). PMD is initiated by a network of vesicles resembling multivesicular bodies and displaying common features of the endocytic and autophagic pathways. These vesicles associate with the sperm tail and mediate the disintegration of its plasma membrane. Subsequently, the MD separates from the axoneme and breaks into smaller fragments, which are then sequestered by autophagosomes for degradation in lysosomes. We further provide evidence for the involvement of the ubiquitin pathway and the autophagy receptor p62 in this process. Finally, we show that the ubiquitin ligase Parkin is not involved in PMD, implying a divergence from the autophagic pathway of damaged mitochondria.
Collapse
Affiliation(s)
- Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Kalifa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|