201
|
Younes JA, Reid G, van der Mei HC, Busscher HJ. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. Pathog Dis 2016; 74:ftw029. [PMID: 27060097 DOI: 10.1093/femspd/ftw029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 11/12/2022] Open
Abstract
ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm.
Collapse
Affiliation(s)
- Jessica A Younes
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Gregor Reid
- Human Microbiology and Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada Departments of Microbiology and Immunology, and Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
202
|
Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 2016; 47:23-33. [DOI: 10.1016/j.jdent.2016.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022] Open
|
203
|
Forry SP, Madonna MC, López-Pérez D, Lin NJ, Pasco MD. Automation of antimicrobial activity screening. AMB Express 2016; 6:20. [PMID: 26970766 PMCID: PMC4788993 DOI: 10.1186/s13568-016-0191-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/10/2022] Open
Abstract
Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity.
Collapse
Affiliation(s)
- Samuel P. Forry
- />Biosystems and Biomaterials Division, National Institutes of Standard and Technology, Gaithersburg, MD 20899 USA
| | - Megan C. Madonna
- />Biosystems and Biomaterials Division, National Institutes of Standard and Technology, Gaithersburg, MD 20899 USA
| | - Daneli López-Pérez
- />Biosystems and Biomaterials Division, National Institutes of Standard and Technology, Gaithersburg, MD 20899 USA
- />Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993 USA
| | - Nancy J. Lin
- />Biosystems and Biomaterials Division, National Institutes of Standard and Technology, Gaithersburg, MD 20899 USA
| | - Madeleine D. Pasco
- />Biosystems and Biomaterials Division, National Institutes of Standard and Technology, Gaithersburg, MD 20899 USA
| |
Collapse
|
204
|
Two Small Molecules Block Oral Epithelial Cell Invasion by Porphyromons gingivalis. PLoS One 2016; 11:e0149618. [PMID: 26894834 PMCID: PMC4760928 DOI: 10.1371/journal.pone.0149618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of periodontitis. One of its bacterial characteristics is the ability to invade various host cells, including nonphagocytic epithelial cells and fibroblasts, which is known to facilitate P. gingivalis adaptation and survival in the gingival environment. In this study, we investigated two small compounds, Alop1 and dynasore, for their role in inhibition of P. gingivalis invasion. Using confocal microscopy, we showed that these two compounds significantly reduced invasion of P. gingivalis and its outer membrane vesicles into human oral keratinocytes in a dose-dependent manner. The inhibitory effects of dynasore, a dynamin inhibitor, on the bacterial entry is consistent with the notion that P. gingivalis invasion is mediated by a clathrin-mediated endocytic machinery. We also observed that microtubule arrangement, but not actin, was altered in the host cells treated with Alop1 or dynasore, suggesting an involvement of microtubule in this inhibitory activity. This work provides an opportunity to develop compounds against P. gingivalis infection.
Collapse
|
205
|
Zhu W, Lee SW. Surface interactions between two of the main periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. J Periodontal Implant Sci 2016; 46:2-9. [PMID: 26937289 PMCID: PMC4771834 DOI: 10.5051/jpis.2016.46.1.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/21/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Porphyromonas gingivalis and Tannerella forsythia have been implicated as the major etiologic agents of periodontal disease. These two bacteria are frequently isolated together from the periodontal lesion, and it has been suggested that their interaction may increase each one's virulence potential. The purpose of this study was to identify proteins on the surface of these organisms that are involved in interbacterial binding. METHODS Biotin labeling of surface proteins of P. gingivalis and T. forsythia and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed to identify surface proteins involved in the coaggregating activity between P. gingivalis and T. forsythia. RESULTS It was found that three major T. forsythia proteins sized 161, 100, and 62 kDa were involved in binding to P. gingivalis, and P. gingivalis proteins sized 35, 32, and 26 kDa were involved in binding to T. forsythia cells. CONCLUSIONS LC-MS/MS analysis identified one T. forsythia surface protein (TonB-linked outer membrane protein) involved in interbacterial binding to P. gingivalis. However, the nature of other T. forsythia and P. gingivalis surface proteins identified by biotin labeling could not be determined. Further analysis of these proteins will help elucidate the molecular mechanisms that mediate coaggregation between P. gingivalis and T. forsythia.
Collapse
Affiliation(s)
- Weidong Zhu
- Formerly, Department of Medicine, University of California School of Medicine, Los Angeles, CA, USA
| | - Seok-Woo Lee
- Departments of Dental Education and Periodontology, Dental Science Research Institute, Chonnam National University School of Dentistry, Gwangju, Korea
| |
Collapse
|
206
|
Feldman M, Ginsburg I, Al-Quntar A, Steinberg D. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm. Front Microbiol 2016; 7:140. [PMID: 26904013 PMCID: PMC4748032 DOI: 10.3389/fmicb.2016.00140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Abed Al-Quntar
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of JerusalemJerusalem, Israel; Institute of Drug Research, School of Pharmacy, The Hebrew University of JerusalemJerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
207
|
Fournier-Larente J, Azelmat J, Yoshioka M, Hinode D, Grenier D. The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities. PLoS One 2016; 11:e0148860. [PMID: 26859747 PMCID: PMC4747585 DOI: 10.1371/journal.pone.0148860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/25/2016] [Indexed: 01/02/2023] Open
Abstract
Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84), a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8) by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9). In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest.
Collapse
Affiliation(s)
- Jade Fournier-Larente
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Jabrane Azelmat
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Masami Yoshioka
- Department of Oral Health Science and Social Welfare, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Daisuke Hinode
- Department of Hygiene and Oral Health Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
208
|
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:156. [PMID: 27462367 PMCID: PMC4960831 DOI: 10.1186/s13068-016-0565-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. RESULTS Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their novelty. CONCLUSIONS In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and binning approach were used for the first time on different production-scale biogas plants and revealed insights into the genetic potential and functional role of so far unknown species.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madis Rumming
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
209
|
Choi NY, Bae YM, Lee SY. Cell surface properties and biofilm formation of pathogenic bacteria. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0301-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
210
|
Kobayashi K, Ryu M, Izumi S, Ueda T, Sakurai K. Effect of oral cleaning using mouthwash and a mouth moisturizing gel on bacterial number and moisture level of the tongue surface of older adults requiring nursing care. Geriatr Gerontol Int 2015; 17:116-121. [DOI: 10.1111/ggi.12684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichiro Kobayashi
- Department of Removable Prosthodontics and Gerodontology; Tokyo Dental College; Tokyo Japan
| | - Masahiro Ryu
- Department of Removable Prosthodontics and Gerodontology; Tokyo Dental College; Tokyo Japan
| | - Sachi Izumi
- Department of Removable Prosthodontics and Gerodontology; Tokyo Dental College; Tokyo Japan
| | - Takayuki Ueda
- Department of Removable Prosthodontics and Gerodontology; Tokyo Dental College; Tokyo Japan
| | - Kaoru Sakurai
- Department of Removable Prosthodontics and Gerodontology; Tokyo Dental College; Tokyo Japan
| |
Collapse
|
211
|
Cheaib Z, Rakmathulina E, Lussi A, Eick S. Impact of Acquired Pellicle Modification on Adhesion of Early Colonizers. Caries Res 2015; 49:626-32. [DOI: 10.1159/000442169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
Abstract
New preventive approaches against dental erosion caused by acidic drinks and beverages include fortification of beverages with natural polymers. We have shown that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. This study aimed to investigate the effect of pellicle modification by casein, mucin and a casein-mucin mixture on the adhesion of early bacterial colonizers. Test specimens of human tooth enamel were prepared, covered with saliva and coated with 0.5% aqueous (aq.) casein, 0.27% aq. mucin or with 0.5% aq. casein-0.27% aq. mucin, after which the adhesion of Streptococcus gordonii, Streptococcus oralis, and Actinomyces odontolyticus was measured after incubation for 30 min and 2 h. log10 colony-forming units were compared by nonparametric tests. All three bacterial strains adhered in higher number to pellicle-coated enamel than to native enamel. The protein modifications of pellicle all decreased the counts of adhering bacteria up to 0.34 log10/mm2, the most efficient being the casein-mucin mixture. In addition to the recently shown erosion-reducing effect by casein-mucin, modification of the pellicle may inhibit bacterial adherence compared to untreated human pellicle.
Collapse
|
212
|
Abstract
Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria.
Collapse
Affiliation(s)
- Melissa E Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
213
|
Uncoupling of Vascular Endothelial Growth Factor (VEGF) and Inducible Nitric Oxide Synthase (iNOS) in Gingival Tissue of Type 2 Diabetic Patients. Inflammation 2015; 39:632-42. [DOI: 10.1007/s10753-015-0288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
214
|
The Sialic Acid Binding Protein, Hsa, in Streptococcus gordonii DL1 also Mediates Intergeneric Coaggregation with Veillonella Species. PLoS One 2015; 10:e0143898. [PMID: 26606595 PMCID: PMC4659562 DOI: 10.1371/journal.pone.0143898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022] Open
Abstract
Dental biofilm development involves initial colonization of the tooth’s surface by pioneer colonizers, followed by cell-cell coaggregation between the pioneer and later colonizers. Streptococcus gordonii is one of the pioneer colonizers. In addition to its role in oral biofilm development, S. gordonii also is a pathogen in infective endocarditis in susceptible humans. A surface adhesin, Hsa, has been shown to play a critical role in colonization of S. gordonii on the heart tissue; however, its role in oral biofilm development has not been reported. In this study we demonstrate that Hsa is essential for coaggregation between S. gordonii and Veillonella sp., which are bridging species connecting the pioneer colonizers to the late colonizers. Interestingly, the same domains shown to be required for Hsa binding to sialic acid on the human cell surface are also required for coaggregation with Veillonella sp. However, sialic acid appeared not to be required for this intergeneric coaggregation. This result suggests that although the same domains of Hsa are involved in binding to eukaryotic as well as Veillonella cells, the binding mechanism is different. The gene expression pattern of hsa was also studied and shown not to be induced by coaggregation with Veillonella sp.
Collapse
|
215
|
Zomorrodi AR, Segrè D. Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol Biol 2015; 428:837-61. [PMID: 26522937 DOI: 10.1016/j.jmb.2015.10.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/29/2022]
Abstract
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.
Collapse
Affiliation(s)
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA; Department of Biology, Boston University, Boston, MA; Department of Biomedical Engineering, Boston University, Boston, MA.
| |
Collapse
|
216
|
Stevens MRE, Luo TL, Vornhagen J, Jakubovics NS, Gilsdorf JR, Marrs CF, Møretrø T, Rickard AH. Coaggregation occurs between microorganisms isolated from different environments. FEMS Microbiol Ecol 2015; 91:fiv123. [DOI: 10.1093/femsec/fiv123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
|
217
|
Dou Y, Aruni W, Muthiah A, Roy F, Wang C, Fletcher HM. Studies of the extracytoplasmic function sigma factor PG0162 in Porphyromonas gingivalis. Mol Oral Microbiol 2015. [PMID: 26216199 DOI: 10.1111/omi.12122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PG0162, annotated as an extracytoplasmic function (ECF) sigma factor in Porphyromonas gingivalis, is composed of 193 amino acids. As previously reported, the PG0162-deficient mutant, P. gingivalis FLL350 showed significant reduction in gingipain activity compared with the parental strain. Because this ECF sigma factor could be involved in the virulence regulation in P. gingivalis, its genetic properties were further characterized. A 5'-RACE analysis showed that the start of transcription of the PG0162 gene occurred from a guanine (G) residue 69 nucleotides upstream of the ATG translation initiation codon. The function of PG0162 as a sigma factor was confirmed in a run-off in vitro transcription assay using the purified rPG0162 and RNAP core enzyme from Escherichia coli with the PG0162 promoter as template. As an appropriate PG0162 inducing environmental signal is unknown, a strain overexpressing the PG0162 gene designated P. gingivalis FLL391 was created. Compared with the wild-type strain, transcriptome analysis of P. gingivalis FLL391 showed that approximately 24% of the genome displayed altered gene expression (260 upregulated genes; 286 downregulated genes). Two other ECF sigma factors (PG0985 and PG1660) were upregulated more than two-fold. The autoregulation of PG0162 was confirmed with the binding of the rPG0162 protein to the PG0162 promoter in electrophoretic mobility shift assay. In addition, the rPG0162 protein also showed the ability to bind to the promoter region of two genes (PG0521 and PG1167) that were most upregulated in P. gingivalis FLL391. Taken together, our data suggest that PG0162 is a sigma factor that may play an important role in the virulence regulatory network in P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Muthiah
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - F Roy
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
218
|
Wilensky A, Chaushu S, Shapira L. The role of natural killer cells in periodontitis. Periodontol 2000 2015; 69:128-41. [DOI: 10.1111/prd.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
|
219
|
Mahdi Z, Habiboallh G, Mahbobeh NN, Mina ZJ, Majid Z, Nooshin A. Lethal effect of blue light-activated hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on the viability of Porphyromonas gingivalis and Fusobacterium nucleatum. Laser Ther 2015; 24:103-11. [PMID: 26246690 DOI: 10.5978/islsm.15-or-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/08/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation. MATERIALS AND METHODS Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440-480 nm) in combination with erythrosine (22 µm), curcumin (60 µM) and hydrogen peroxide (0.3 mM) for 5 min. Bacterial samples from each treatment groups (radiation-only group, photosensitizer-only group and blue light-activated photosensitizer group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. RESULTS RESULTS for antibacterial assays on P. gingivalis confirmed that curcumin, Hydrogen peroxide and erythrosine alone exerted a moderate bactericidal effect which enhanced noticeably in conjugation with visible light. The survival rate of P. gingivalis reached zero present when the suspension exposed to blue light-activated curcumin and hydrogen peroxide for 2 min. Besides, curcumin exerted a remarkable antibacterial activity against F. nucleatum in comparison with erythrosine and hydrogen peroxide (P=0.00). Furthermore, the bactericidal effect of visible light alone on P. gingivalis as black-pigmented bacteria was significant. CONCLUSION Our result suggested that visible blue light in the presence of erythrosine, curcumin and hydrogen peroxide would be consider as a potential approach of PDT to kill the main gramnegative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally invasive antibacterial treatment of plaque induced periodontal pathologies.
Collapse
Affiliation(s)
- Zakeri Mahdi
- School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghanbari Habiboallh
- Department of Periodontics, School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naderi Nasab Mahbobeh
- Department of Medical Bacteriology & Virology, Emam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zakeri Majid
- School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arjmand Nooshin
- Department of Restorative, School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
220
|
Chandra J, Mukherjee PK. Candida Biofilms: Development, Architecture, and Resistance. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MB-0020-2015. [PMID: 26350306 PMCID: PMC4566167 DOI: 10.1128/microbiolspec.mb-0020-2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.
Collapse
Affiliation(s)
- Jyotsna Chandra
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| | - Pranab K Mukherjee
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
221
|
Wu T, Cen L, Kaplan C, Zhou X, Lux R, Shi W, He X. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum. J Dent Res 2015; 94:1432-8. [PMID: 26152186 DOI: 10.1177/0022034515593706] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens.
Collapse
Affiliation(s)
- T Wu
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - L Cen
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - C Kaplan
- C3 Jian, Inc., Marina del Rey, CA, USA
| | - X Zhou
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Lux
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - W Shi
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - X He
- School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
222
|
Burns MB, Lynch J, Starr TK, Knights D, Blekhman R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 2015; 7:55. [PMID: 26170900 PMCID: PMC4499914 DOI: 10.1186/s13073-015-0177-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background The human gut microbiome is associated with the development of colon cancer, and recent studies have found changes in the microbiome in cancer patients compared to healthy controls. Studying the microbial communities in the tumor microenvironment may shed light on the role of host–bacteria interactions in colorectal cancer. Here, we highlight the major shifts in the colorectal tumor microbiome relative to that of matched normal colon tissue from the same individual, allowing us to survey the microbial communities in the tumor microenvironment and providing intrinsic control for environmental and host genetic effects on the microbiome. Methods We sequenced the microbiome in 44 primary tumor and 44 patient-matched normal colon tissue samples to determine differentially abundant microbial taxa These data were also used to functionally characterize the microbiome of the cancer and normal sample pairs and identify functional pathways enriched in the tumor-associated microbiota. Results We find that tumors harbor distinct microbial communities compared to nearby healthy tissue. Our results show increased microbial diversity in the tumor microenvironment, with changes in the abundances of commensal and pathogenic bacterial taxa, including Fusobacterium and Providencia. While Fusobacterium has previously been implicated in colorectal cancer, Providencia is a novel tumor-associated agent which has not been identified in previous studies. Additionally, we identified a clear, significant enrichment of predicted virulence-associated genes in the colorectal cancer microenvironment, likely dependent upon the genomes of Fusobacterium and Providencia. Conclusions This work identifies bacterial taxa significantly correlated with colorectal cancer, including a novel finding of an elevated abundance of Providencia in the tumor microenvironment. We also describe the predicted metabolic pathways and enzymes differentially present in the tumor-associated microbiome, and show an enrichment of virulence-associated bacterial genes in the tumor microenvironment. This predicted virulence enrichment supports the hypothesis that the microbiome plays an active role in colorectal cancer development and/or progression. Our results provide a starting point for future prognostic and therapeutic research with the potential to improve patient outcomes. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0177-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael B Burns
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN USA ; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN USA
| | - Joshua Lynch
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN USA ; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN USA
| | - Timothy K Starr
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN USA ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA ; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN USA ; Biotechnology Institute, University of Minnesota, Minneapolis, MN USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN USA ; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
223
|
Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication. Biointerphases 2015; 10:029404. [PMID: 25869456 DOI: 10.1116/1.4914382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilms are three-dimensional structures formed by surface-attached microorganisms and their extracellular products. Biofilms formed by pathogenic microorganisms play an important role in human diseases. Higher resistance to antimicrobial agents and changes in microbial physiology make treating biofilm infections very complex. Atmospheric pressure nonthermal plasmas (NTPs) are a novel and powerful tool for antimicrobial treatment. The microbicidal activity of NTPs has an unspecific character due to the synergetic actions of bioactive components of the plasma torch, including charged particles, reactive species, and UV radiation. This review focuses on specific traits of biofilms, their role in human diseases, and those effects of NTP that are helpful for treating biofilm infections. The authors discuss NTP-based strategies for biofilm control, such as surface modifications to prevent bacterial adhesion, killing bacteria in biofilms, and biofilm destruction with NTPs. The unspecific character of microbicidal activity, proven polymer modification and destruction abilities, low toxicity for human tissues and absence of long-living toxic compounds make NTPs a very promising tool for biofilm prevention and control.
Collapse
|
224
|
Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M. Coaggregation ofCandida albicans,Actinomyces naeslundiiandStreptococcus mutansisCandida albicansstrain dependent. FEMS Yeast Res 2015; 15:fov038. [DOI: 10.1093/femsyr/fov038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/26/2022] Open
|
225
|
Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A 2015; 112:7569-74. [PMID: 26034276 DOI: 10.1073/pnas.1506207112] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.
Collapse
|
226
|
Zhang W, Dai W, Tsai SM, Zehnder SM, Sarntinoranont M, Angelini TE. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms. SOFT MATTER 2015; 11:3612-3617. [PMID: 25797701 DOI: 10.1039/c5sm00148j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacterial biofilms are highly structured, surface associated bacteria colonies held together by a cell-generated polymer network known as EPS (extracellular polymeric substance). This polymer network assists in adhesion to surfaces and generates spreading forces as colonies grow over time. In the laboratory and in nature, biofilms often grow at the interface between air and an elastic, semi-permeable nutrient source. As this type of biofilm increases in volume, an accommodating compression of its substrate may arise, potentially driven by the osmotic pressure exerted by the EPS against the substrate surface. Here we study Bacillus subtilis biofilm force generation by measuring the magnitude and rate of deformation imposed by colonies against the agar-nutrient slabs on which they grow. We find that the elastic stress stored in deformed agar is orders of magnitude larger than the drag stress associated with pulling fluid through the agar matrix. The stress exerted by the biofilm is nearly the same as the osmotic pressure generated by the EPS, and mutant colonies incapable of producing EPS exert much lower levels of stress. The fluid flow rate into B. subtilis biofilms suggest that EPS generated pressure provides some metabolic benefit as colonies expand in volume. These results reveal that long-term biofouling and colony expansion may be tied to the hydraulic permeability and elasticity of the surfaces that biofilms colonize.
Collapse
Affiliation(s)
- W Zhang
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
227
|
Huang R, Zhang J, Yang XF, Gregory RL. PCR-Based Multiple Species Cell Counting for In Vitro Mixed Culture. PLoS One 2015; 10:e0126628. [PMID: 25970462 PMCID: PMC4430427 DOI: 10.1371/journal.pone.0126628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/03/2015] [Indexed: 02/05/2023] Open
Abstract
Changes of bacterial profiles in microbial communities are strongly associated with human health. There is an increasing need for multiple species research in vitro. To avoid high cost or measurement of a limited number of species, PCR-based multiple species cell counting (PCR-MSCC) has been conceived. Species-specific sequence is defined as a unique sequence of one species in a multiple species mixed culture. This sequence is identified by comparing a random 1000 bp genomic sequence of one species with the whole genome sequences of the other species in the same artificial mixed culture. If absent in the other genomes, it is the species-specific sequence. Species-specific primers were designed based on the species-specific sequences. In the present study, ten different oral bacterial species were mixed and grown in Brain Heart Infusion Yeast Extract with 1% sucrose for 24 hours. Biofilm was harvested and processed for DNA extraction and q-PCR amplification with the species-specific primers. By comparing the q-PCR data of each species in the unknown culture with reference cultures, in which the cell number of each species was determined by colony forming units on agar plate, the cell number of that strain in the unknown mixed culture was calculated. This technique is reliable to count microorganism numbers that are less than 100,000 fold different from other species within the same culture. Theoretically, it can be used in detecting a species in a mixed culture of over 200 species. Currently PCR-MSCC is one of the most economic methods for quantifying single species cell numbers, especially for the low abundant species, in a multiple artificial mixed culture in vitro.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (RH); (RLG)
| | - Junjie Zhang
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Richard L. Gregory
- Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
- * E-mail: (RH); (RLG)
| |
Collapse
|
228
|
Zhang C, Liu J, Yu W, Sun D, Sun X. Susceptibility to corrosion of laser welding composite arch wire in artificial saliva of salivary amylase and pancreatic amylase. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:267-71. [PMID: 26117761 DOI: 10.1016/j.msec.2015.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/05/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
Abstract
In this study, laser-welded composite arch wire (CAW) with a copper interlayer was exposed to artificial saliva containing salivary amylase or pancreatic amylase, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which salivary amylase and pancreatic amylase contribute to corrosion. The effects of amylase on the electrochemical resistance of CAW were tested by potentiodynamic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surfaces were analyzed by SEM, AFM and EDS. The results showed that both exposure to salivary amylase and pancreatic amylase significantly improved the corrosion resistance of CAW. Even isozyme could have different influences on the alloy surface. When performing in vitro research of materials to be used in oral cavity, the effect of α-amylase should be taken into account since a simple saline solution does not entirely simulate the physiological situation.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Provincial Stomatological Hospital, No. 366 South of Jiangnan Road, Guangzhou 510280, PR China.
| | - Jiming Liu
- Department of Orthodontics, Jilin University, No. 1500 Qinghua Road, Changchun 130021, PR China
| | - Wenwen Yu
- Department of Orthodontics, Jilin University, No. 1500 Qinghua Road, Changchun 130021, PR China
| | - Daqian Sun
- Key Laboratory of Automobile Materials, Ministry of Education, and Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130025, PR China
| | - Xinhua Sun
- Department of Orthodontics, Jilin University, No. 1500 Qinghua Road, Changchun 130021, PR China
| |
Collapse
|
229
|
Romani Vestman N, Chen T, Lif Holgerson P, Öhman C, Johansson I. Oral Microbiota Shift after 12-Week Supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; A Randomized Control Trial. PLoS One 2015; 10:e0125812. [PMID: 25946126 PMCID: PMC4422650 DOI: 10.1371/journal.pone.0125812] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background Lactobacillus spp. potentially contribute to health by modulating bacterial biofilm formation, but their effects on the overall oral microbiota remain unclear. Methods and Findings Oral microbiota was characterized via 454-pyrosequencing of the 16S rDNA hypervariable region V3-V4 after 12 weeks of daily Lactobacillus reuteri DSM 17938 and PTA 5289 consumption. Forty-four adults were assigned to a test group (n = 22) that received lactobacilli lozenges (108 CFU of each strain/lozenge) or a control group that received placebo (n = 22). Presence of L. reuteri was confirmed by cultivation and species specific PCR. Tooth biofilm samples from 16 adults before, during, and after exposure were analyzed by pyrosequencing. A total of 1,310,292 sequences were quality filtered. After removing single reads, 257 species or phylotypes were identified at 98.5% identity in the Human Oral Microbiome Database. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria were the most abundant phyla. Streptococcus was the most common genus and the S. oralis/S. mitis/S. mitis bv2/S. infantis group comprised the dominant species. The number of observed species was unaffected by L. reuteri exposure. However, subjects who had consumed L. reuteri were clustered in a principal coordinates analysis relative to scattering at baseline, and multivariate modeling of pyrosequencing microbiota, and culture and PCR detected L. reuteri separated baseline from 12-week samples in test subjects. L. reuteri intake correlated with increased S. oralis/S. mitis/S. mitis bv2/S. infantis group and Campylobacter concisus, Granulicatella adiacens, Bergeyella sp. HOT322, Neisseria subflava, and SR1 [G-1] sp. HOT874 detection and reduced S. mutans, S. anginosus, N. mucosa, Fusobacterium periodicum, F. nucleatum ss vincentii, and Prevotella maculosa detection. This effect had disappeared 1 month after exposure was terminated. Conclusions L. reuteri consumption did not affect species richness but induced a shift in the oral microbiota composition. The biological relevance of this remains to be elucidated. Trial Registration ClinicalTrials.gov NCT02311218
Collapse
Affiliation(s)
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, United States of America
| | | | - Carina Öhman
- Department of Odontology/section of Cariology, Umeå University, Umeå, Sweden
| | - Ingegerd Johansson
- Department of Odontology/section of Cariology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
230
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
231
|
Abstract
Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections.
Collapse
|
232
|
Inaba T, Oura H, Morinaga K, Toyofuku M, Nomura N. The Pseudomonas Quinolone Signal Inhibits Biofilm Development of Streptococcus mutans. Microbes Environ 2015; 30:189-91. [PMID: 25854411 PMCID: PMC4462930 DOI: 10.1264/jsme2.me14140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in Pseudomonas aeruginosa (the Pseudomonas quinolone signal; PQS) inhibited biofilm formation by Streptococcus mutans. Although the PQS did not affect cell growth, biofilm formation was markedly inhibited. Our results revealed a unique role for this multifunctional PQS and also indicated its application in the development of prophylactic agents against caries-causing S. mutans.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | | | | | | | |
Collapse
|
233
|
do Nascimento C, Trinca NN, Pita MS, Pedrazzi V. Genomic identification and quantification of microbial species adhering to toothbrush bristles after disinfection: A cross-over study. Arch Oral Biol 2015; 60:1039-47. [PMID: 25912552 DOI: 10.1016/j.archoralbio.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of this clinical investigation was to identify and quantify the microbial species adhering to toothbrush bristles after controlled brushing and storage in different antimicrobial agents. METHODS Sixteen healthy participants were enrolled in this study and randomly submitted to 4 interventions in a cross-over design: brushing and toothbrush storage in (I) Periogard/(II) Periobio (Chlorhexidine gluconate 0.12%), (III) Cepacol (cetylpyridinium chloride 0.05%) and (IV) distilled water (positive control). Thirty-eight bacterial species including putative pathogens and 5 Candida spp. were assessed by Checkerboard DNA-DNA hybridization. RESULTS The results of the study have shown a striking reduction of the total microbial counts, including bacteria and Candida spp., on the toothbrush bristles after storage in cetylpyridinium chloride 0.05% (p < 0.0001). Chlorhexidine gluconate 0.12% showed no differences on the total bacterial count when compared to distilled water (p > 0.05). Cetylpyridinium chloride solution also presented the lowest genome counts and frequency of detection for individual target species; distilled water showed the highest individual genome counts (p < 0.05). Potential pathogenic species were recorded in moderate to high levels for chlorhexidine gluconate and distilled water. CONCLUSION Cetylpyridinium chloride 0.05% was the most effective storage solution in the reduction of total and individual microbial counts, including pathogenic species.
Collapse
Affiliation(s)
- Cássio do Nascimento
- Department of Dental Materials and Prosthodontics, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-904, Brazil
| | - Nayara Nascimento Trinca
- Department of Dental Materials and Prosthodontics, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-904, Brazil
| | - Murillo Sucena Pita
- Department of Dental Materials and Prosthodontics, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-904, Brazil
| | - Vinícius Pedrazzi
- Department of Dental Materials and Prosthodontics, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-904, Brazil.
| |
Collapse
|
234
|
Pedrazzi V, Corsi LP, Pedrazzi H, Netto EI, Nascimento CD, Issa JPM. Clinical evaluation of residual tetrasodium pyrophosphate released from two different anticalculus flosses. Braz Dent J 2015; 26:116-20. [PMID: 25831100 DOI: 10.1590/0103-6440201300093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to compare the residual content of tetrasodium pyrophosphate released by two different anticalculus dental flosses (Reach PP®--entangled polypropylene floss and Reach NT®--texturized nylon) in the oral cavity. Ten healthy individuals (aged between 18 and 30 years) were enrolled in this randomized crossover clinical investigation. Participants received instructions on daily dental flossing and the interventions were randomly performed in 2 different groups (NT or PP) of five individuals each according to the dental flosses. Individuals were instructed to use each dental floss with a total of six slides on the two interproximal aspects of target teeth (3 slides on each interproximal aspect). A washout period of one week was used before start flossing interventions and after each type of dental floss to prevent any bias related to the exposure to any product that contained the active ingredient. Samples were collected by #35 sterilized absorbent paper points from interdental fluid after flossing and assessed by ion chromatography. The levels of residual tetrasodium pyrophosphate were evaluated by means of binomial generalized linear model proportions and canonical link function. Both dental flosses were effective in tetrasodium pyrophosphate release at therapeutic levels in the interdental gingival crevicular fluid for a period of up to 2 h after use. No significant differences were found between both groups (p>0.05). It may be concluded that both material composition and physical structure of the new dental floss did not affect the release or the maintenance of anticalculus agent at therapeutic levels for a period of up to 2 h after single use.
Collapse
Affiliation(s)
- Vinícius Pedrazzi
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro Pereira Corsi
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hamilton Pedrazzi
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Emilson I Netto
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cássio do Nascimento
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
235
|
Orrego S, Romberg E, Arola D. Synergistic degradation of dentin by cyclic stress and buffer agitation. J Mech Behav Biomed Mater 2015; 44:121-32. [PMID: 25637823 PMCID: PMC4499057 DOI: 10.1016/j.jmbbm.2015.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
Secondary caries and non-carious lesions develop in regions of stress concentrations and oral fluid movement. The objective of this study was to evaluate the influence of cyclic stress and fluid movement on material loss and subsurface degradation of dentin within an acidic environment. Rectangular specimens of radicular dentin were prepared from caries-free unrestored 3rd molars. Two groups were subjected to cyclic cantilever loading within a lactic acid solution (pH = 5) to achieve compressive stresses on the inner (pulpal) or outer sides of the specimens. Two additional groups were evaluated in the same solution, one subjected to movement only (no stress) and the second held stagnant (control: no stress or movement). Exterior material loss profiles and subsurface degradation were quantified on the two sides of the specimens. Results showed that under cyclic stress material loss was significantly greater (p ≤ 0.0005) on the pulpal side than on the outer side and significantly greater (p ≤ 0.05) under compression than tension. However, movement only caused significantly greater material loss (p ≤ 0.0005) than cyclic stress. Subsurface degradation was greatest at the location of highest stress, but was not influenced by stress state or movement.
Collapse
Affiliation(s)
- Santiago Orrego
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Elaine Romberg
- Department of Endodontics, Prosthodontics, and Operative Dentistry, Dental School, University of Maryland, Baltimore, MD, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
236
|
Jahid IK, Han N, Zhang CY, Ha SD. Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol 2015; 46:383-394. [PMID: 25475308 DOI: 10.1016/j.fm.2014.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 01/10/2023]
Abstract
Control of foodborne pathogens in fresh produce is crucial for food safety, and numerous Salmonella Typhimurium (ST) outbreaks have been reported already. The present study was done to assess effectiveness of cold oxygen plasma (COP) against biofilms of ST mixed with cultivable indigenous microorganisms (CIM). ST and CIM were grown at 15 °C as monocultures and mixed cultures for planktonic state, biofilm on stainless steel, and lettuce leaves. Thereafter, the samples were treated with COP and surviving populations were counted using plate counting methods. Biofilms and stomatal colonization were examined using field emission scanning electron microscopy (FESEM) and food quality was assessed after treatment. Mixed cultures of ST and CIM showed an antagonistic interaction on lettuce but not on SS or in planktonic state. Mixed cultures showed significantly (p < 0.05) greater resistance to COP compared to monoculture biofilms on lettuce but not on SS or planktonic state. Shift from smooth to rugose colony type was found for planktonic and for biofilms on SS but not on lettuce for ST. Mixed culture biofilms colonized stomata on the inside as demonstrated by FESEM. Although, lettuce quality was not affected by COP, this technology has to be optimized for further development of the successful inactivation of complex multispecies biofilm structures presented by real food environment.
Collapse
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, South Korea; Department of Microbiology, Jessore University of Science and Technology, Jessore 7408, Bangladesh
| | - Noori Han
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, South Korea
| | - Cheng-Yi Zhang
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, South Korea
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, South Korea.
| |
Collapse
|
237
|
Luo J, Zhang J, Tan X, McDougald D, Zhuang G, Fane AG, Kjelleberg S, Cohen Y, Rice SA. Characterization of the archaeal community fouling a membrane bioreactor. J Environ Sci (China) 2015; 29:115-123. [PMID: 25766019 DOI: 10.1016/j.jes.2014.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/14/2014] [Accepted: 07/19/2014] [Indexed: 06/04/2023]
Abstract
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment of biofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.
Collapse
Affiliation(s)
- Jinxue Luo
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore.
| | - Jinsong Zhang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Xiaohui Tan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Diane McDougald
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Staffan Kjelleberg
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Yehuda Cohen
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Scott A Rice
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
238
|
Aruni AW, Dou Y, Mishra A, Fletcher HM. The Biofilm Community-Rebels with a Cause. CURRENT ORAL HEALTH REPORTS 2015; 2:48-56. [PMID: 26120510 PMCID: PMC4478205 DOI: 10.1007/s40496-014-0044-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola-the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.
Collapse
Affiliation(s)
- A. Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
239
|
Sullan RMA, Li JK, Crowley PJ, Brady LJ, Dufrêne YF. Binding forces of Streptococcus mutans P1 adhesin. ACS NANO 2015; 9:1448-60. [PMID: 25671413 PMCID: PMC4369792 DOI: 10.1021/nn5058886] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (∼50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (∼500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans-SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.
Collapse
Affiliation(s)
- Ruby May A. Sullan
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| | - James K. Li
- Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H8, Canada
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| |
Collapse
|
240
|
Shanmugam M, Gopal P, El Abbar F, Schreiner HC, Kaplan JB, Fine DH, Ramasubbu N. Role of exopolysaccharide in Aggregatibacter actinomycetemcomitans-induced bone resorption in a rat model for periodontal disease. PLoS One 2015; 10:e0117487. [PMID: 25706999 PMCID: PMC4338281 DOI: 10.1371/journal.pone.0117487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans a causative agent of periodontal disease in humans, forms biofilm on biotic and abiotic surfaces. A. actinomycetemcomitans biofilm is heterogeneous in nature and is composed of proteins, extracellular DNA and exopolysaccharide. To explore the role played by the exopolysaccharide in the colonization and disease progression, we employed genetic reduction approach using our rat model of A. actinomycetemcomitans-induced periodontitis. To this end, a genetically modified strain of A. actinomycetemcomitans lacking the pga operon was compared with the wild-type strain in the rat infection model. The parent and mutant strains were primarily evaluated for bone resorption and disease. Our study showed that colonization, bone resorption/disease and antibody response were all elevated in the wild-type fed rats. The bone resorption/disease caused by the pga mutant strain, lacking the exopolysaccharide, was significantly less (P < 0.05) than the bone resorption/disease caused by the wild-type strain. Further analysis of the expression levels of selected virulence genes through RT-PCR showed that the decrease in colonization, bone resorption and antibody titer in the absence of the exopolysaccharide might be due to attenuated levels of colonization genes, flp-1, apiA and aae in the mutant strain. This study demonstrates that the effect exerted by the exopolysaccharide in A. actinomycetemcomitans-induced bone resorption has hitherto not been recognized and underscores the role played by the exopolysaccharide in A. actinomycetemcomitans-induced disease.
Collapse
Affiliation(s)
- Mayilvahanan Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Prerna Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Faiha El Abbar
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Helen C Schreiner
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Jeffrey B Kaplan
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| |
Collapse
|
241
|
Kouidhi B, Al Qurashi YMA, Chaieb K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog 2015; 80:39-49. [PMID: 25708507 DOI: 10.1016/j.micpath.2015.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022]
Abstract
Oral diseases, such as dental caries and periodontal disease are directly linked with the ability of bacteria to form biofilm. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria colonizing the supragingival biofilm (Streptococcus, Lactobacillus and Actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Cells embedded in biofilm are up to 1000-fold more resistant to antibiotics compared to their planctonic ones. Several mechanisms have been proposed to explain biofilms drug resistance. Given the increased bacterial resistance to antibiotics currently used in dentistry, a great importance is given to natural compounds for the prevention of oral bacterial growth, adhesion and colonization. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. It has been well documented that medicinal plants and natural compounds confer considerable antibacterial activity against various microorganisms including cariogenic and periodontal pathogens. This paper provides a review of the literature focusing on the studies on (i) biofilm in the oral cavity, (ii) drug resistance of bacterial biofilm and (iii) the potential use of plant extracts, essential oils and natural compounds as biofilm preventive agents in dentistry, involving their origin and their mechanism of biofilm inhibition.
Collapse
Affiliation(s)
- Bochra Kouidhi
- College of Applied Medical Sciences, Medical Laboratory Department, Yanbu, Taibah University, Saudi Arabia.
| | | | - Kamel Chaieb
- College of Sciences, Biology Department, Yanbu, Taibah University, Saudi Arabia
| |
Collapse
|
242
|
Zhou P, Liu J, Merritt J, Qi F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol Oral Microbiol 2015; 30:269-279. [PMID: 25440509 DOI: 10.1111/omi.12091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Dental biofilm development is a sequential process, and adherence between microbes and the salivary pellicle (adhesion) as well as among different microbes (co-adhesion or coaggregation) plays a critical role in building a biofilm community. The Veillonella species are among the most predominant species in the oral cavity and coaggregate with many initial, early, middle, and late colonizers. Similar to oral fusobacteria, they are also considered bridging species in biofilm development. However, the mechanism of this ability has yet to be reported, due to the previous lack of a genetic transformation system in the entire genus. In this study, we used our recently discovered transformable Veillonella strain, Veillonella atypica OK5, to probe the mechanism of coaggregation between Veillonella species and other oral bacteria. By insertional inactivation of all eight putative hemagglutinin genes, we identified one gene, hag1, which is involved in V. atypica coaggregation with the initial colonizers Streptococcus gordonii, Streptococcus oralis and Streptococcus cristatus, and the periodontal pathogen Porphyromonas gingivalis. The hag1 mutant also abolished adherence to human buccal cells. Inhibition assays using various chemical or physiological treatments suggest different mechanisms being involved in coaggregation with different partners. The entire hag1 gene was sequenced and shown to be the largest known bacterial hemagglutinin gene.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jinman Liu
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Justin Merritt
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Fengxia Qi
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
243
|
Methodological issues in the quantification of subgingival microorganisms using the checkerboard technique. J Microbiol Methods 2015; 110:68-77. [PMID: 25601790 DOI: 10.1016/j.mimet.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
The reproducibility and reliability of quantitative microbiological assessments using the DNA-DNA hybridization "checkerboard method" (CKB) were assessed. The data originated from 180 chronic periodontitis patients, who were enrolled in a clinical trial and sampled at baseline, and 3 and 12m post-therapy. The samples were divided into two portions allowing evaluation of reproducibility. In total, 531 samples were analyzed in a first run, using standard bacterial preparations of cells and 513 samples were accessible for analysis in the second, using standards based on purified DNA from the species. The microbial probe panel consisted of periodontitis marker bacteria as well as non-oral microorganisms. Three different ways of quantifying and presenting data; the visual scoring method, VSM, the standard curve method, SCM, and the percent method, PM, were compared. The second set of analyses based on the use of standard preparations of pure DNA was shown to be more consistent than the first set using standards based on cells, while the effect of storage time per se up to 2.5y seemed to be marginal. The best reproducibility was found for Tannerella forsythia, irrespective of quantification technique (Spearman's rho=0.587, Pearson's r≥0.540). The percent method (PM) based on percent of High Standard (10(6) cells) was more reliable than SCM based on a linear calibration of the High Standard and a Low Standard (10(5) cells). It was concluded that the reproducibility of the CBK method varied between different bacteria. High quality and pure specific DNA whole genomic probes and standards may have a stronger impact on the precision of the data than storage time and conditions.
Collapse
|
244
|
Onozawa S, Kikuchi Y, Shibayama K, Kokubu E, Nakayama M, Inoue T, Nakano K, Shibata Y, Ohara N, Nakayama K, Ishihara K, Kawakami T, Hasegawa H. Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis. BMC Oral Health 2015; 15:4. [PMID: 25596817 PMCID: PMC4324044 DOI: 10.1186/1472-6831-15-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 12/04/2022] Open
Abstract
Background Porphyromonas gingivalis has been implicated as a major pathogen in the development and progression of chronic periodontitis. P. gingivalis biofilm formation in the subgingival crevice plays an important role in the ability of the bacteria to tolerate stress signals outside the cytoplasmic membrane. Some bacteria use a distinct subfamily of sigma factors to regulate their extracytoplasmic functions (the ECF subfamily). The objective of this study was to determine if P. gingivalis ECF sigma factors affect P. gingivalis biofilm formation. Methods To elucidate the role of ECF sigma factors in P. gingivalis, chromosomal mutants carrying a disruption of each ECF sigma factor-encoding gene were constructed. Bacterial growth curves were measured by determining the turbidity of bacterial cultures. The quantity of biofilm growing on plates was evaluated by crystal violet staining. Results Comparison of the growth curves of wild-type P. gingivalis strain 33277 and the ECF mutants indicated that the growth rate of the mutants was slightly lower than that of the wild-type strain. The PGN_0274- and PGN_1740-defective mutants had increased biofilm formation compared with the wild-type (p < 0.001); however, the other ECF sigma factor mutants or the complemented strains did not enhance biofilm formation. Conclusion These results suggest that PGN_0274 and PGN_1740 play a key role in biofilm formation by P. gingivalis. Electronic supplementary material The online version of this article (doi:10.1186/1472-6831-15-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Yuichiro Kikuchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun 2015; 83:1104-13. [PMID: 25561710 DOI: 10.1128/iai.02838-14] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fusobacterium nucleatum is a common oral anaerobe involved in periodontitis that is known to translocate and cause intrauterine infections. In the oral environment, F. nucleatum adheres to a large diversity of species, facilitating their colonization and creating biological bridges that stabilize the multispecies dental biofilm. Many of these interactions (called coadherences or coaggregations) are galactose sensitive. Galactose-sensitive interactions are also involved in the binding of F. nucleatum to host cells. Hemagglutination of some F. nucleatum strains is also galactose sensitive, suggesting that a single galactose-sensitive adhesin might mediate the interaction of fusobacteria with many partners and targets. In order to identify the fusobacterial galactose-sensitive adhesin, a system for transposon mutagenesis in fusobacteria was created. The mutant library was screened for hemagglutination deficiency, and three clones were isolated. All three clones were found to harbor the transposon in the gene coding for the Fap2 outer membrane autotransporter. The three fap2 mutants failed to show galactose-inhibitable coaggregation with Porphyromonas gingivalis and were defective in cell binding. A fap2 mutant also showed a 2-log reduction in murine placental colonization compared to that of the wild type. Our results suggest that Fap2 is a galactose-sensitive hemagglutinin and adhesin that is likely to play a role in the virulence of fusobacteria.
Collapse
|
246
|
Nelson EM, Mirsaidov U, Sarveswaran K, Perry N, Kurz V, Timp W, Timp G. Ecology of a Simple Synthetic Biofilm. THE PHYSICAL BASIS OF BACTERIAL QUORUM COMMUNICATION 2015. [DOI: 10.1007/978-1-4939-1402-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
247
|
Kamio N, Imai K, Shimizu K, Cueno ME, Tamura M, Saito Y, Ochiai K. Neuraminidase-producing oral mitis group streptococci potentially contribute to influenza viral infection and reduction in antiviral efficacy of zanamivir. Cell Mol Life Sci 2015; 72:357-66. [PMID: 25001578 PMCID: PMC11113501 DOI: 10.1007/s00018-014-1669-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 01/07/2023]
Abstract
Influenza is a serious respiratory disease among immunocompromised individuals, such as the elderly, and its prevention is an urgent social issue. Influenza viruses rely on neuraminidase (NA) activity to release progeny viruses from infected cells and spreading the infection. NA is, therefore, an important target of anti-influenza drugs. A causal relationship between bacteria and influenza virus infection has not yet been established, however, a positive correlation between them has been reported. Thus, in this study, we examined the biological effects of oral mitis group streptococci, which are predominant constituents of human oral florae, on the release of influenza viruses. Among them, Streptococcus oralis ATCC 10557 and Streptococcus mitis ATCC 6249 were found to exhibit NA activity and their culture supernatants promoted the release of influenza virus and cell-to-cell spread of the infection. In addition, culture supernatants of these NA-producing oral bacteria increased viral M1 protein expression levels and cellular ERK activation. These effects were not observed with culture supernatants of Streptococcus sanguinis ATCC 10556 which lacks the ability to produce NA. Although the NA inhibitor zanamivir suppressed the release of progeny viruses from the infected cells, the viral release was restored upon the addition of culture supernatants of NA-producing S. oralis ATCC 10557 or S. mitis ATCC 6249. These findings suggest that an increase in the number of NA-producing oral bacteria could elevate the risk of and exacerbate the influenza infection, hampering the efficacy of viral NA inhibitor drugs.
Collapse
Affiliation(s)
- Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Kazufumi Shimizu
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Marni E. Cueno
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Yuko Saito
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| |
Collapse
|
248
|
Storck T, Picioreanu C, Virdis B, Batstone DJ. Variable cell morphology approach for individual-based modeling of microbial communities. Biophys J 2014; 106:2037-48. [PMID: 24806936 DOI: 10.1016/j.bpj.2014.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/14/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022] Open
Abstract
An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures.
Collapse
Affiliation(s)
- Tomas Storck
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Bernardino Virdis
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia; Centre for Microbial Electrosynthesis, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
249
|
Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol 2014; 6:26102. [PMID: 25523872 PMCID: PMC4270880 DOI: 10.3402/jom.v6.26102] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. OBJECTIVE/DESIGN In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. RESULTS/CONCLUSION Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.
Collapse
Affiliation(s)
- Josefine Hirschfeld
- Center for Dental and Oral Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstraße, 17 D-53111 Bonn, Germany;
| |
Collapse
|
250
|
Molina CA, Vilchez S. Cooperation and bacterial pathogenicity: an approach to social evolution. REVISTA CHILENA DE HISTORIA NATURAL 2014. [DOI: 10.1186/s40693-014-0014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|