201
|
Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration. Neural Plast 2011; 2011:783901. [PMID: 21876821 PMCID: PMC3159303 DOI: 10.1155/2011/783901] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/06/2011] [Accepted: 05/23/2011] [Indexed: 12/30/2022] Open
Abstract
There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury.
Collapse
|
202
|
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JCF. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One 2011; 6:e21499. [PMID: 21747937 PMCID: PMC3128591 DOI: 10.1371/journal.pone.0021499] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/30/2011] [Indexed: 11/23/2022] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.
Collapse
Affiliation(s)
- Rachel Lin
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Thomas W. Rosahl
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - Paul J. Whiting
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - James W. Fawcett
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C. F. Kwok
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
203
|
English AW, Wilhelm JC, Sabatier MJ. Enhancing recovery from peripheral nerve injury using treadmill training. Ann Anat 2011; 193:354-61. [PMID: 21498059 PMCID: PMC3137663 DOI: 10.1016/j.aanat.2011.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/03/2011] [Accepted: 02/22/2011] [Indexed: 12/25/2022]
Abstract
Full functional recovery after traumatic peripheral nerve injury is rare. We postulate three reasons for the poor functional outcome measures observed. Axon regeneration is slow and not all axons participate. Significant misdirection of regenerating axons to reinnervate inappropriate targets occurs. Seemingly permanent changes in neural circuitry in the central nervous system are found to accompany axotomy of peripheral axons. Exercise in the form of modest daily treadmill training impacts all three of these areas. Compared to untrained controls, regenerating axons elongate considerably farther in treadmill trained animals and do so via an autocrine/paracrine neurotrophin signaling pathway. This enhancement of axon regeneration takes place without an increase in the amount of misdirection of regenerating axons found without training. The enhancement also occurs in a sex-dependent manner. Slow continuous training is effective only in males, while more intense interval training is effective only in females. In treadmill trained, but not untrained mice the extent of coverage of axotomized motoneurons is maintained, thus preserving important elements of the spinal circuitry.
Collapse
Affiliation(s)
- Arthur W English
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
204
|
Vakharia KT, Lindsay RW, Knox C, Edwards C, Henstrom D, Weinberg J, Hadlock TA, Heaton JT. The effects of potential neuroprotective agents on rat facial function recovery following facial nerve injury. Otolaryngol Head Neck Surg 2011; 144:53-9. [PMID: 21493387 DOI: 10.1177/0194599810390892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate whether a series of pharmacologic agents with potential neuroprotective effects accelerate and/or improve facial function recovery after facial nerve crush injury. STUDY DESIGN Randomized animal study. SETTING Tertiary care facility. METHODS Eighty female Wistar-Hannover rats underwent head restraint implantation and daily conditioning. Animals then underwent unilateral crush injury to the main trunk of the facial nerve and were randomized to receive treatment with atorvastatin (n = 10), sildenafil (n = 10), darbepoetin (n = 20), or a corresponding control agent (n = 40). The return of whisking function was tracked throughout the recovery period. RESULTS All rats initiated the return of whisking function from nerve crush by day 12. Darbepoetin-treated rats (n = 20) showed significantly improved whisking amplitude and velocity across the recovery period, with several days of significant pairwise differences vs comparable control rats (n = 16) across the first 2 weeks of whisking function return. In contrast, rats treated with sildenafil (n = 10) and atorvastatin (n = 10) did not show significant improvement in whisking function recovery after facial nerve crush compared to controls. By week 8, all darbepoetin-treated animals and comparable nerve crush control animals fully recovered whisking function and were statistically indistinguishable. CONCLUSION Among the 3 potentially neuroprotective agents evaluated, only darbepoetin administration resulted in accelerated recovery of whisking parameters after facial nerve crush injury. Further efforts to define the mechanism of action and translate these findings to the use of darbepoetin in the care of patients with traumatic facial paralysis are needed.
Collapse
Affiliation(s)
- Kalpesh T Vakharia
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J Neurosci 2011; 31:4137-47. [PMID: 21411654 DOI: 10.1523/jneurosci.2592-10.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.
Collapse
|
206
|
Chang YM, Chi WY, Lai TY, Chen YS, Tsai FJ, Tsai CH, Kuo WW, Cheng YC, Lin CC, Huang CY. Dilong: role in peripheral nerve regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:380809. [PMID: 21799677 PMCID: PMC3136393 DOI: 10.1093/ecam/neq079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 01/18/2023]
Abstract
Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Chang YM, Kuo WH, Lai TY, Shih YT, Tsai FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW, Huang CY. RSC96 Schwann Cell Proliferation and Survival Induced by Dilong through PI3K/Akt Signaling Mediated by IGF-I. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:216148. [PMID: 20040524 PMCID: PMC3135880 DOI: 10.1093/ecam/nep216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/19/2009] [Indexed: 12/31/2022]
Abstract
Schwann cell proliferation is critical for the regeneration of injured nerves. Dilongs are widely used in Chinese herbal medicine to remove stasis and stimulate wound-healing functions. Exactly how this Chinese herbal medicine promotes tissue survival remains unclear. The aim of the present study was to investigate the molecular mechanisms by which Dilong promote neuron regeneration. Our results show that treatment with extract of Dilong induces the phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway, and activates protein expression of cell nuclear antigen (PCNA) in a time-dependent manner. Cell cycle analysis showed that G1 transits into the S phase in 12–16 h, and S transits into the G2 phase 20 h after exposure to earthworm extract. Strong expression of cyclin D1, cyclin E and cyclin A occurs in a time-dependent manner. Small interfering RNA (siRNA)-mediated knockdown of PI3K significantly reduced PI3K protein expression levels, resulting in Bcl2 survival factor reduction and a marked blockage of G1 to S transition in proliferating cells. These results demonstrate that Dilong promotes the proliferation and survival of RSC96 cells via IGF-I signaling. The mechanism is mainly dependent on the PI3K protein.
Collapse
Affiliation(s)
- Yung-Ming Chang
- Graduate Institute of Chinese Medical Science and Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
English AW, Cucoranu D, Mulligan A, Rodriguez JA, Sabatier MJ. Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury. Eur J Neurosci 2011; 33:2265-71. [PMID: 21623957 DOI: 10.1111/j.1460-9568.2011.07724.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of neurotrophin-4/5 (NT-4/5) in the enhancement of axon regeneration in peripheral nerves produced by treadmill training was studied in mice. Common fibular nerves of animals of the H strain of thy-1-YFP mice, in which a subset of axons in peripheral nerves is marked by the presence of yellow fluorescent protein, were cut and surgically repaired using nerve grafts from non-fluorescent mice. Lengths of profiles of fluorescent regenerating axons were measured using optical sections made through whole mounts of harvested nerves. Measurements from mice that had undergone 1 h of daily treadmill training at modest speed (10 m/min) were compared with those of untrained (control) mice. Modest treadmill training resulted in fluorescent axon profiles that were nearly twice as long as controls at 1, 2 and 4 week survival times. Similar enhanced regeneration was found when cut nerves of wild type mice were repaired with grafts from NT-4/5 knockout mice or grafts made acellular by repeated freezing/thawing. No enhancement was produced by treadmill training in NT-4/5 knockout mice, irrespective of the nature of the graft used to repair the cut nerve. Much as had been observed previously for the effects of brief electrical stimulation, the effects of treadmill training on axon regeneration in cut peripheral nerves are independent of changes produced in the distal segment of the cut nerve and depend on the promotion of axon regeneration by changes in NT-4/5 expression by cells in the proximal nerve segment.
Collapse
Affiliation(s)
- Arthur W English
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
209
|
Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials 2011; 32:3764-75. [DOI: 10.1016/j.biomaterials.2011.01.065] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
|
210
|
Wang Q, Wang Y, Zhou Z, Lu X, Cao Y, Liu Y, Yan M, He F, Pan X, Qian X, Ji Y, Yang H. Expressions of forkhead class box O 3a on crushed rat sciatic nerves and differentiated primary Schwann cells. Cell Mol Neurobiol 2011; 31:509-18. [PMID: 21259047 PMCID: PMC11498445 DOI: 10.1007/s10571-010-9644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Forkhead box-containing protein, class O 3 a (FOXO3a), an Akt downstream target, plays an important role in peripheral nervous system. FOXO3a shares the ability to be inhibited and translocated from the nucleus on phosphorylation by proteins such as Akt/PKB in the PI3K signaling pathway. To elucidate the expression and possible function of FOXO3a in lesion and repair, we performed an acute sciatic nerve crush model and studied differential expressions of FOXO3a. We observed that expressions of FOXO3a in Schwann cells (SCs) of the peripheral nervous system and cAMP-induced differentiation were dynamically regulated. Western blot analysis showed FOXO3a level significantly decreased post injury. Moreover, Immunofluorescence double labeling suggested the changes were striking especially in SCs. In vitro, Western blot analysis showed that the expression of FOXO3a was decreased in cAMP-induced differentiated primary SCs. The FOXO3a siRNA-transfected SCs treated by cAMP promote differentiation of SCs through the PI3K/Akt pathway. The results indicate that FOXO3a plays an important role during differentiation of SCs.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Zhengming Zhou
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Xiang Lu
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Yi Cao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Yonghua Liu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Meijuan Yan
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Fei He
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Xia Pan
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Xiaoli Qian
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Yuhong Ji
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| |
Collapse
|
211
|
Abstract
It is well known that the adult brain is capable of profound plasticity. Much of our understanding of the mechanisms underlying injury-induced changes in the brain is based on animal models. The development of sophisticated noninvasive neuroimaging techniques over the past decade provides a unique opportunity to examine brain plasticity in humans. In this article, the authors examine the consequences of nerve injury and surgical repair on peripheral nerve degeneration and regeneration and review classic animal literature that laid the foundation of injury-induced plasticity research. They relate these concepts to recent findings of functional and structural changes in the human brain following peripheral nerve injury. They then present a working theoretical model that links behavioral outcomes of nerve injury with functional and structural brain plasticity and personality.
Collapse
Affiliation(s)
- Karen D. Davis
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Keri S. Taylor
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Dimitri J. Anastakis
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
212
|
Sabatier MJ, To BN, Nicolini J, English AW. Effect of axon misdirection on recovery of electromyographic activity and kinematics after peripheral nerve injury. Cells Tissues Organs 2011; 193:298-309. [PMID: 21411964 DOI: 10.1159/000323677] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, patterns of activity in the soleus (Sol) and tibialis anterior (TA) muscles and hindlimb kinematics were evaluated during slope walking in rats after transection and surgical repair either of the entire sciatic nerve (Sci group) or of its two branches separately, the tibial and common fibular nerves (T/CF group). With the latter method, axons from the tibial and common fibular nerves could not reinnervate targets of the other nerve branch after injury, reducing the opportunity for misdirection. Activity in the TA shifted from the swing phase in intact rats to nearly the entire step cycle in both injured groups. Since these changes occur without misdirection of regenerating axons, they are interpreted as centrally generated. Sol activity was changed from reciprocal to that of TA in intact rats to coactivate with TA, but only in the Sci group rats. In the T/CF group rats, Sol activity was not altered from that observed in intact rats. Despite effects of injury that limited foot movements, hindlimb kinematics were conserved during downslope walking in both injury groups and during level walking in the T/CF group. During level walking in the Sci group and during upslope walking in both groups of injured rats, the ability to compensate for the effects of the nerve injury was less effective and resulted in longer limb lengths held at more acute angles throughout the step cycle. Changes in limb movements occur irrespective of axon misdirection and reflect compensatory changes in the outputs of the neural circuits that drive locomotion.
Collapse
Affiliation(s)
- Manning J Sabatier
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
213
|
Auer M, Hausott B, Klimaschewski L. Rho GTPases as regulators of morphological neuroplasticity. Ann Anat 2011; 193:259-66. [PMID: 21459565 PMCID: PMC3143277 DOI: 10.1016/j.aanat.2011.02.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/28/2011] [Indexed: 11/17/2022]
Abstract
GTPases function as intracellular, bimolecular switches by adopting different conformational states in response to binding GDP or GTP. Their activation is mediated through cell-surface receptors. Rho GTPases act on several downstream effectors involved in cellular morphogenesis, cell polarity, migration and cell division. In neurons, Rho GTPases regulate various features of dendritic and axonal outgrowth during development and regeneration mainly through their effects on the cytoskeleton. This review summarizes the main functions of Rho, Rac and Cdc42 GTPases as key regulators of morphological neuroplasticity under normal and pathological conditions.
Collapse
Affiliation(s)
- Maria Auer
- Division of Neuroanatomy, Medical University of Innsbruck, Muellerstrasse 59, Innsbruck, Austria
| | | | | |
Collapse
|
214
|
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193:267-75. [PMID: 21458249 DOI: 10.1016/j.aanat.2011.02.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, Brno, Czech Republic.
| |
Collapse
|
215
|
Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain 2011; 152:742-754. [PMID: 21345591 PMCID: PMC3071978 DOI: 10.1016/j.pain.2010.12.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022]
Abstract
Neuropathic pain is a severe health problem for which there is a lack of effective therapy. A frequent underlying condition of neuropathic pain is a sustained overexcitability of pain-sensing (nociceptive) sensory fibres. Therefore, the identification of mechanisms for such abnormal neuronal excitability is of utmost importance for understanding neuropathic pain. Despite much effort, an inclusive model explaining peripheral overexcitability is missing. We investigated transcriptional regulation of the Kcnq2 gene, which encodes the Kv7.2 subunit of membrane potential-stabilizing M channel, in peripheral sensory neurons in a model of neuropathic pain—partial sciatic nerve ligation (PSNL). We show that Kcnq2 is the major Kcnq gene transcript in dorsal root ganglion (DRG); immunostaining and patch-clamp recordings from acute ganglionic slices verified functional expression of Kv7.2 in small-diameter nociceptive DRG neurons. Neuropathic injury induced substantial downregulation of Kv7.2 expression. Levels of repressor element 1–silencing transcription factor (REST), which is known to suppress Kcnq2 expression, were upregulated in response to neuropathic injury identifying the likely mechanism of Kcnq2 regulation. Behavioural experiments demonstrated that neuropathic hyperalgesia following PSNL developed faster than the downregulation of Kcnq2 expression could be detected, suggesting that this transcriptional mechanism may contribute to the maintenance rather than the initiation of neuropathic pain. Importantly, the decrease in the peripheral M channel abundance could be functionally compensated by peripherally applied M channel opener flupirtine, which alleviated neuropathic hyperalgesia. Our work suggests a novel mechanism for neuropathic overexcitability and brings focus on M channels and REST as peripheral targets for the treatment of neuropathic pain. Neuropathic injury induces transcriptional downregulation of the Kcnq2 potassium channel gene by the transcriptional suppressor repressor element 1–silencing transcription factor; this mechanism contributes to peripheral sensitization of the afferent fibres.
Collapse
Affiliation(s)
- Kirstin Rose
- Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, Leeds, UK Pain TA, Pfizer Global Research and Development, Sandwich, UK
| | | | | | | | | | | |
Collapse
|
216
|
Chang YM, Shih YT, Chen YS, Liu CL, Fang WK, Tsai CH, Tsai FJ, Kuo WW, Lai TY, Huang CY. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:395458. [PMID: 19808845 PMCID: PMC3135425 DOI: 10.1093/ecam/nep131] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/06/2009] [Indexed: 12/03/2022]
Abstract
The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- Graduate Institute of Chinese Medical Science, China Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Zanon RG, Cartarozzi LP, Victório SCS, Moraes JC, Morari J, Velloso LA, Oliveira ALR. Interferon (IFN) beta treatment induces major histocompatibility complex (MHC) class I expression in the spinal cord and enhances axonal growth and motor function recovery following sciatic nerve crush in mice. Neuropathol Appl Neurobiol 2011; 36:515-34. [PMID: 20831746 DOI: 10.1111/j.1365-2990.2010.01095.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Major histocompatibility complex (MHC) class I expression by neurones and glia constitutes an important pathway that regulates synaptic plasticity. The upregulation of MHC class I after treatment with interferon beta (IFN beta) accelerates the response to injury. Therefore the present work studied the regenerative outcome after peripheral nerve lesion and treatment with IFN beta, aiming at increasing MHC class I upregulation in the spinal cord. METHODS C57BL/6J mice were subjected to unilateral sciatic nerve crush and treatment with IFN beta. The lumbar spinal cords were processed for immunohistochemistry, in situ hybridization, Western blotting and RT-PCR, while the sciatic nerves were submitted for immunohistochemistry, morphometry and counting of regenerated axons. Motor function recovery was monitored using the walking track test. RESULTS Increased MHC class I expression in the motor nucleus of IFN beta-treated animals was detected. In the peripheral nerve, IFN beta-treated animals showed increased S100, GAP-43 and p75NTR labelling coupled with a significantly greater number of regenerated axons. No significant differences were found in neurofilament or laminin labelling. The morphological findings, indicating improvements in the regenerative process after IFN treatment were in line with the motor behaviour test applied to the animals during the recovery process. CONCLUSIONS The present data reinforce the role of MHC class I upregulation in the response to injury, and suggest that IFN treatment may be beneficial to motor recovery after axotomy.
Collapse
Affiliation(s)
- R G Zanon
- Laboratory of Nerve Regeneration, Department of Anatomy, Institute of Biology Laboratory of experimental gastroenterology, Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
218
|
Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
219
|
Angelov DN. Factors Limiting Motor Recovery After Facial Nerve Injury. PHYSICAL REHABILITATION OF PARALYSED FACIAL MUSCLES: FUNCTIONAL AND MORPHOLOGICAL CORRELATES 2011. [DOI: 10.1007/978-3-642-18120-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
220
|
Martínez de Albornoz P, Delgado PJ, Forriol F, Maffulli N. Non-surgical therapies for peripheral nerve injury. Br Med Bull 2011; 100:73-100. [PMID: 21429947 DOI: 10.1093/bmb/ldr005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Non-surgical approaches have been developed to enhance nerve recovery, which are complementary to surgery and are an adjunct to the reinnervation process. SOURCES OF DATA A search of PubMed, Medline, CINAHL, DH data and Embase databases was performed using the keywords 'peripheral nerve injury' and 'treatment'. AREAS OF CONTROVERSY Most of the conservative therapies are focused to control neuropathic pain after nerve tissue damage. Only physical therapy modalities have been studied in humans and their effectiveness is not proved. GROWING POINTS Many modalities have been experimented with to promote nerve healing and restore function in animal models and in vitro studies. Despite this, none have been actually translated into clinical practice. AREAS TIMELY FOR DEVELOPING RESEARCH The hypotheses proved in animals and in vitro should be translated to human clinical practice.
Collapse
Affiliation(s)
- Pilar Martínez de Albornoz
- Department of Trauma and Orthopaedic Surgery, FREMAP Hospital, Ctra de Pozuelo 61, 28220 Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
221
|
Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury. Ageing Res Rev 2011; 10:43-53. [PMID: 20943206 DOI: 10.1016/j.arr.2010.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023]
Abstract
Studies of the influence of age on regeneration and reinnervation in the peripheral nervous system (PNS) and neuromuscular junction (NMJ) are reviewed, with a particular focus on aged and denervated skeletal muscles. The morphological and functional features of incomplete regeneration and reinnervation are compared between adult and aged animals. In addition, some possible mechanisms of the age-related defects will be discussed. Increased fragmentation or damage in individual components of the NMJ (terminal Schwann cells (TSCs), axon terminals and acetylcholine receptor sites occurs during muscle reinnervation following PNS injury in the aged animals. The capacity to produce ultraterminal sprouting or multiple innervation secondary to PNS injury is maintained, but not the capacity to eliminate such anomalous axonal profiles. The frequency and accuracy of reoccupation of the synaptic sites by TSCs and axon terminals are impaired. Thus, despite the capability of extending neural processes, the rate at which regenerating nerve fibers grow, mature and precisely appose the postsynaptic muscle fiber is impaired, resulting in the failure of re-establishment of the normal single motor innervation in the NMJ. A complex set of cellular interactions in the NMJ are known to participate in the neurotrophism and neurotrophism to support growth of the regenerating and sprouting axons and their pathfinding to direct the target muscle fiber. Besides the capability of α-motoneurons, signaling originating from the TSCs and muscle may be impaired during aging.
Collapse
|
222
|
Joung I, Yoo M, Woo JH, Chang CY, Heo H, Kwon YK. Secretion of EGF-like domain of heregulinβ promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells 2010; 30:477-84. [PMID: 20957456 DOI: 10.1007/s10059-010-0137-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 01/12/2023] Open
Abstract
Neuregulin 1 (NRG1) and epidermal growth factor receptor (ErbB) signaling pathways control Schwann cells during axonal regeneration in an injured peripheral nervous system. We investigated whether a persistent supply of recombinant NRG1 to the injury site could improve axonal growth and recovery of sensory and motor functions in rats during nerve regeneration. We generated a recombinant adenovirus expressing a secreted form of EGF-like domain from Heregulinβ (sHRGβE-Ad). This virus, sHRGβE-Ad allowed for the secretion of 30-50 ng of small sHRGβE peptides per 10(7-8) virus particle outside cells and was able to phosphorylate ErbB receptors. Transduction of the concentrated sHRGβE-Ad into an axotomy model of sciatic nerve damage caused an effective promotion of nerve regeneration, as shown by histological features of the axons and Schwann cells, as well as increased expression of neurofilaments, GAP43 and S100 in the distal stump of the injury site. This result is consistent with longer axon lengths and thicker calibers observed in the sHRGβE-Ad treated animals. Furthermore, sensory and motor functions were significantly improved in sHRGβE-Ad treated animals when evaluated by a behavioral test. These results suggest a therapeutic potential for sHRGβE-Ad in treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Insil Joung
- Department of Biological Sciences, Hanseo University, Seosan, 352-820, Korea
| | | | | | | | | | | |
Collapse
|
223
|
Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol 2010; 69:973-85. [PMID: 20720501 DOI: 10.1097/nen.0b013e3181eff6dc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) that are available from cell banks can be induced to differentiate into various cell types, thereby making them practical potential sources for cell-based therapies. In injured peripheral nerves, Schwann cells (SCs) contribute to functional recovery by supporting axonal regeneration and myelin reconstruction. Here, we first demonstrate a system to induce UC-MSCs to differentiate into cells with SC properties (UC-SCs) by treatment with β-mercaptoethanol followed by retinoic acid and a set of specific cytokines. The UC-SCs are morphologically similar to SCs and express SC markers, including P0, as assessed by immunocytochemistry and reverse transcription polymerase chain reaction. Transplantation of UC-SCs into transected sciatic nerves in adult rats enhanced nerve regeneration. The effectiveness of UC-SCs for axonal regeneration was comparable to that of authentic human SCs based on histological criteria and functional recovery. Immunohistochemistry and immunoelectron microscopy also demonstrated myelination of regenerated axons by UC-SCs. These findings indicate that cells with SC properties and with the ability to support axonal regeneration and reconstruct myelin can be successfully induced from UC-MSCs to promote functional recovery after peripheral nerve injury. This system may be applicable for the development of cell-based therapies.
Collapse
|
224
|
Lopes-Filho JD, Caldas HC, Santos FCA, Mazzer N, Simões GF, Kawasaki-Oyama RS, Abbud-Filho M, Oliveira AR, Toboga SR, Chueire AG. Microscopic evidences that bone marrow mononuclear cell treatment improves sciatic nerve regeneration after neurorrhaphy. Microsc Res Tech 2010; 74:355-63. [PMID: 20734409 DOI: 10.1002/jemt.20916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022]
Abstract
Cell therapy constitutes a possibility for improving nerve regeneration, increasing the success of nerve repair. We evaluate the use of mononuclear cells in the regeneration of the sciatic nerve after axotomy followed by end-to-end neurorrhaphy. Forty adult male Wistar rats (250-300 g) were divided into four groups: (1) sham, (2) neurorrhaphy: the sciatic nerve was sectioned and repaired using epineural sutures, (3) culture medium: after the suture, received an injection of 10 μL of culture medium into the nerve, and (4) mononuclear cell: after the suture, a concentration of 3 × 10(6) of mononuclear cell was injected in epineurium region. Mononuclear cells were obtained from the bone marrow aspirates and separated by Ficoll-Hypaque method. The histological analyses were performed at the 4th postoperative day. The sciatic functional index, histological, and morphometric analyzes were used to evaluate nerve regeneration at the 6th postoperative week. Six rats were used for immunohistochemical analysis on the 4th postoperative day. In the group 4, on the fourth day, the histological analysis demonstrated a more accelerated degenerative process and an increase of the neurotrophic factors was observed. In the 6th week, all the morphometric results of the group 4 were statistically better compared with groups 2 and 3. There was a statistically significant improvement in the sciatic functional index for group 4 compared with groups 2 and 3. Mononuclear cells stimulated nerve regeneration, most probably by speeding up the Wallerian degeneration process as well as stimulating the synthesis of neurotrophic factors.
Collapse
Affiliation(s)
- João D Lopes-Filho
- Department of Orthopaedics and Traumatology, Famerp/Funfarme, São José Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Magill CK, Moore AM, Yan Y, Tong AY, MacEwan MR, Yee A, Hayashi A, Hunter DA, Ray WZ, Johnson PJ, Parsadanian A, Myckatyn TM, Mackinnon SE. The differential effects of pathway- versus target-derived glial cell line-derived neurotrophic factor on peripheral nerve regeneration. J Neurosurg 2010; 113:102-9. [PMID: 19943736 DOI: 10.3171/2009.10.jns091092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECT Glial cell line-derived neurotrophic factor (GDNF) has potent survival effects on central and peripheral nerve populations. The authors examined the differential effects of GDNF following either a sciatic nerve crush injury in mice that overexpressed GDNF in the central or peripheral nervous systems (glial fibrillary acidic protein [GFAP]-GDNF) or in the muscle target (Myo-GDNF). METHODS Adult mice (GFAP-GDNF, Myo-GDNF, or wild-type [WT] animals) underwent sciatic nerve crush and were evaluated using histomorphometry and muscle force and power testing. Uninjured WT animals served as controls. RESULTS In the sciatic nerve crush, the Myo-GDNF mice demonstrated a higher number of nerve fibers, fiber density, and nerve percentage (p < 0.05) at 2 weeks. The early regenerative response did not result in superlative functional recovery. At 3 weeks, GFAP-GDNF animals exhibit fewer nerve fibers, decreased fiber width, and decreased nerve percentage compared with WT and Myo-GDNF mice (p < 0.05). By 6 weeks, there were no significant differences between groups. CONCLUSIONS Peripheral delivery of GDNF resulted in earlier regeneration following sciatic nerve crush injuries than that with central GDNF delivery. Treatment with neurotrophic factors such as GDNF may offer new possibilities for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Christina K Magill
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Panaite PA, Barakat-Walter I. Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury. J Neurosci Res 2010; 88:1751-63. [PMID: 20127814 DOI: 10.1002/jnr.22344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Collapse
|
227
|
Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 2010; 35:868-892. [PMID: 20582161 PMCID: PMC2889711 DOI: 10.1016/j.progpolymsci.2010.03.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular matrix fibers (ECM) such as collagen, elastin, and keratin provide biological and physical support for cell attachment, proliferation, migration, differentiation and ultimately cell fate. Therefore, ECM fibers are an important component in tissue and organ development and regeneration. Meanwhile, polymer nanofibers could play the same critical role in tissue regeneration process. Fibrous structures can be fabricated from a variety of materials and methods with diameters ranging throughout the size scale where cells can sense individual fibers (several nanometers to several microns). Polymer nanofiber scaffolds can be designed in a way that predictably modulates a variety of important cell behaviors towards a desired overall function. The nanofibrous topography itself, independent of the fiber material, has demonstrated the potential to modulate cell behaviors desirable in tissue engineering such as: unidirectional alignment; increased viability, attachment, and ECM production; guided migration; and controlled differentiation. The versatility of polymer nanofibers for functionalization with biomolecules opens the door to vast opportunities for the design of tissue engineering scaffolds with even greater control over cell incorporation and function. Despite the promise of polymer nanofibers as tissue engineering scaffolds there have been few clinically relevant successes because no single fabrication technique currently combines control over structural arrangement, material composition, and biofunctionalization, while maintaining reasonable cost and yield. Promising strategies are currently being investigated to allow for the fabrication of optimal polymer nanofiber tissue engineering scaffolds with the goal of treating damaged and degenerated tissues in a clinical setting.
Collapse
Affiliation(s)
- Vince Beachley
- Clemson-MUSC Bioengineering program; Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | - Xuejun Wen
- Clemson-MUSC Bioengineering program; Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Orthopedic Surgery, Medical university of South Carolina, Charleston, SC 29425, USA
- The Institute for Advanced Materials and Nano Biomedicine (iNANO), Tongji University, Shanghai 200072, People’s Republic of China
| |
Collapse
|
228
|
Mesnard NA, Alexander TD, Sanders VM, Jones KJ. Use of laser microdissection in the investigation of facial motoneuron and neuropil molecular phenotypes after peripheral axotomy. Exp Neurol 2010; 225:94-103. [PMID: 20570589 DOI: 10.1016/j.expneurol.2010.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
The mechanism underlying axotomy-induced motoneuron loss is not fully understood, but appears to involve molecular changes within the injured motoneuron and the surrounding local microenvironment (neuropil). The mouse facial nucleus consists of six subnuclei which respond differentially to facial nerve transection at the stylomastoid foramen. The ventromedial (VM) subnucleus maintains virtually full facial motoneuron (FMN) survival following axotomy, whereas the ventrolateral (VL) subnucleus results in significant FMN loss with the same nerve injury. We hypothesized that distinct molecular phenotypes of FMN existed within the two subregions, one responsible for maintaining cell survival and the other promoting cell death. In this study, we used laser microdissection to isolate VM and VL facial subnuclear regions for molecular characterization. We discovered that, regardless of neuronal fate after injury, FMN in either subnuclear region respond vigorously to injury with a characteristic "regenerative" profile and additionally, the surviving VL FMN appear to compensate for the significant FMN loss. In contrast, significant differences in the expression of pro-inflammatory cytokine mRNA in the surrounding neuropil response were found between the two subnuclear regions of the facial nucleus that support a causative role for glial and/or immune-derived molecules in directing the contrasting responses of the FMN to axonal transection.
Collapse
Affiliation(s)
- Nichole A Mesnard
- Neuroscience Program, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
229
|
Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells. J Neuropathol Exp Neurol 2010; 69:386-95. [PMID: 20448483 DOI: 10.1097/nen.0b013e3181d68d12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After peripheral nerve injury, Schwann cells (SCs) vigorously divide to survive and produce a sufficient number of cells to accompany regenerating axons. Matrix metalloproteinases (MMPs) have emerged as modulators of SC signaling and mitosis. Using a 5-bromo-2-deoxyuridine (BrdU) incorporation assay, we previously found that a broad-spectrum MMP inhibitor (MMPi), GM6001 (or ilomastat), enhanced division of cultured primary SCs. Here, we tested the hypothesis that the ability of MMPi to stimulate SC mitosis may advance nerve regeneration in vivo. GM6001 administration immediately after rat sciatic nerve crush and daily thereafter produced increased nerve regeneration as determined by nerve pinch test and growth-associated protein 43 expression. The MMPi promoted endoneurial BrdU incorporation relative to vehicle control. The dividing cells were mainly SCs and were associated with growth-associated protein 43-positive regenerating axons. After MMP inhibition, myelin basic protein mRNA expression (determined by Taqman real-time quantitative polymerase chain reaction) and active mitosis of myelin-forming SCs were reduced, indicating that MMPs may suppress their dedifferentiation preceding mitosis. Intrasciatic injection of mitomycin,the inhibitor of SC mitosis, suppressed nerve regrowth, which was reversed by MMPi, suggesting that its effect on axonal growth promotion depends on its promitogenic action in SCs. These studies establish novel roles for MMPs in peripheral nerve repair via control of SC mitosis, differentiation, and myelin protein mRNA expression.
Collapse
|
230
|
Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig. Brain Res 2010; 1331:28-38. [DOI: 10.1016/j.brainres.2010.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
|
231
|
Kato K, Liu H, Kikuchi SI, Myers RR, Shubayev VI. Immediate anti-tumor necrosis factor-alpha (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res 2010; 88:360-8. [PMID: 19746434 DOI: 10.1002/jnr.22202] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral nerve regeneration begins immediately after injury. Understanding the mechanisms by which early modulators of axonal degeneration regulate neurite outgrowth may affect the development of new strategies to promote nerve repair. Tumor necrosis factor-alpha (TNF-alpha) plays a crucial role in the initiation of degenerative cascades after peripheral nerve injury. Here we demonstrate using real-time Taqman quantitative RT-PCR that, during the time course (days 1-60) of sciatic nerve crush, TNF-alpha mRNA expression is induced at 1 day and returned to baseline at 5 days after injury in nerve and the corresponding dorsal root ganglia (DRG). Immediate therapy with the TNF-alpha antagonist etanercept (fusion protein of TNFRII and human IgG), administered systemically (i.p.) and locally (epineurially) after nerve crush injury, enhanced the rate of axonal regeneration, as determined by nerve pinch test and increased number of characteristic clusters of regenerating nerve fibers distal to nerve crush segments. These fibers were immunoreactive for growth associated protein-43 (GAP-43) and etanercept, detected by anti-human IgG immunofluorescence. Increased GAP-43 expression was found in the injured nerve and in the corresponding DRG and ventral spinal cord after systemic etanercept compared with vehicle treatments. This study established that immediate therapy with TNF-alpha antagonist supports axonal regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Kinshi Kato
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
232
|
Wang Y, Khaing ZZ, Li N, Hall B, Schmidt CE, Ellington AD. Aptamer antagonists of myelin-derived inhibitors promote axon growth. PLoS One 2010; 5:e9726. [PMID: 20300533 PMCID: PMC2838799 DOI: 10.1371/journal.pone.0009726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
Myelin of the adult central nervous system (CNS) is one of the major sources of inhibitors of axon regeneration following injury. The three known myelin-derived inhibitors (Nogo, MAG, and OMgp) bind with high affinity to the Nogo-66 receptor (NgR) on axons and limit neurite outgrowth. Here we show that RNA aptamers can be generated that bind with high affinity to NgR, compete with myelin-derived inhibitors for binding to NgR, and promote axon elongation of neurons in vitro even in the presence of these inhibitors. Aptamers may have key advantages over protein antagonists, including low immunogenicity and the possibility of ready modification during chemical synthesis for stability, signaling, or immobilization. This first demonstration that aptamers can directly influence neuronal function suggests that aptamers may prove useful for not only healing spinal cord and other neuronal damage, but may be more generally useful as neuromodulators.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Zin Z. Khaing
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Na Li
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Brad Hall
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Christine E. Schmidt
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrew D. Ellington
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
233
|
Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M. Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 2010; 223:537-47. [PMID: 20153320 DOI: 10.1016/j.expneurol.2010.01.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 12/13/2022]
Abstract
Based on their differentiation ability, bone marrow stromal cells (MSCs) are a good source for cell therapy. Using a cynomolgus monkey peripheral nervous system injury model, we examined the safety and efficacy of Schwann cells induced from MSCs as a source for auto-cell transplantation therapy in nerve injury. Serial treatment of monkey MSCs with reducing agents and cytokines induced their differentiation into cells with Schwann cell properties at a very high ratio. Expression of Schwann cell markers was confirmed by both immunocytochemistry and reverse transcription-polymerase chain reaction. Induced Schwann cells were used for auto-cell transplantation into the median nerve and followed-up for 1year. No abnormalities were observed in general conditions. Ki67-immunostaining revealed no sign of massive proliferation inside the grafted tube. Furthermore, (18)F-fluorodeoxygluocose-positron emission tomography scanning demonstrated no abnormal accumulation of radioactivity except in regions with expected physiologic accumulation. Restoration of the transplanted nerve was corroborated by behavior analysis, electrophysiology and histological evaluation. Our results suggest that auto-cell transplantation therapy using MSC-derived Schwann cells is safe and effective for accelerating the regeneration of transected axons and for functional recovery of injured nerves. The practical advantages of MSCs are expected to make this system applicable for spinal cord injury and other neurotrauma or myelin disorders where the acceleration of regeneration is expected to enhance functional recovery.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Facial Transplantation: An Anatomic and Surgical Analysis of the Periorbital Functional Unit. Plast Reconstr Surg 2010; 125:125-134. [DOI: 10.1097/prs.0b013e3181c2a5cc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
235
|
Yin ZS, Zhang H, Bo W, Gao W. Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol 2009; 31:509-15. [PMID: 20037135 DOI: 10.3174/ajnr.a1820] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE EPO has been shown to have beneficial effects in a variety of CNS injury models. The purpose of this study was to evaluate the effects of EPO on nerve regeneration and functional recovery in a rat model of peripheral nerve surgery. MATERIALS AND METHODS The sciatic nerve of the rat with a 10-mm defect was bridged with a silicone rubber tube. Forty adult male Sprague-Dawley rats were assigned to the control or experimental groups to receive an intraperitoneal injection of NGF (2000 U/kg daily for 2 weeks) or EPO (5000 U/kg daily for 2 weeks), respectively. Macroscopic, functional, electrophysiologic, ultraminiature, and histologic assessments of nerves were performed 4-8 weeks after surgery. RESULTS The results showed that in EPO-treated rats, there was a significant increase in the axon diameter, myelin thickness, and total number of nerve fibers as well as the degree of maturity of regenerated myelinated nerve fibers in comparison with those rats not treated with EPO. In addition, as measured by the SFI and MNCV, the motor function of the re-innervated hind limbs of rats with EPO treatment significantly improved at week 8, whereas there was no significant difference in the motor function between the 2 groups at 4 weeks. CONCLUSIONS Our results demonstrated that EPO is able to enhance nerve regeneration and promote functional recovery after peripheral nerve injury in the rat, suggesting the potential clinical application of EPO for the treatment of peripheral nerve injury in humans.
Collapse
Affiliation(s)
- Z-S Yin
- Department of Orthopaedics, First Affiliated Hospital, Anhui Medical University, Hefei, China.
| | | | | | | |
Collapse
|
236
|
Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 2009; 91:994-1005. [DOI: 10.1002/jbm.a.32329] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
237
|
Yamada Y, Nishiura Y, Saijilafu, Hara Y, Ichimura H, Yoshii Y, Ochiai N. Repair of peripheral nerve defect by direct gradual lengthening of the distal nerve stump in rats: Effect on nerve regeneration. ACTA ACUST UNITED AC 2009; 43:305-11. [DOI: 10.1080/02844310903052602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
238
|
Glutamatergic Reinnervation and Assembly of Glutamatergic Synapses in Adult Rat Skeletal Muscle Occurs at Cholinergic Endplates. J Neuropathol Exp Neurol 2009; 68:1103-15. [PMID: 19918122 DOI: 10.1097/nen.0b013e3181b7bfc8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
239
|
Lin H, Liu F, Zhang C, Zhang Z, Guo J, Ren C, Kong Z. Pluripotent hair follicle neural crest stem-cell-derived neurons and schwann cells functionally repair sciatic nerves in rats. Mol Neurobiol 2009; 40:216-23. [PMID: 19728182 DOI: 10.1007/s12035-009-8082-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 08/14/2009] [Indexed: 12/13/2022]
Abstract
In this paper, we constructed a novel acellular nerve xenograft (ANX) seeded with neurons and Schwann cells to bridge long-distance gaps in rat sciatic nerves. The neurons and Schwann cells were induced from Sprague Dawley (SD) rat hair follicle neural crest stem cells with sonic hedgehog/retinoic acid and neuregulin 1, respectively. Fifty male SD rats were randomly divided into two groups (n = 25): ANX + cells group and ANX group. A 4-cm-long sciatic nerve defect was created on the right hind limb and bridged with cell-seeded ANX in ANX + cells group or ANX alone in ANX group. We found that the implanted neurons and Schwann cells could survive by 4 weeks and as far as 52 weeks posttransplantation. In implanted grafts, chemical synaptic structures were also found under transmission electron microscope and confirmed with immunostaining of synapsin 1, a synaptic marker. The number of regenerated axons in ANX + cells group was higher than that in ANX group (P < 0.01). This novel implantation of neurons and Schwann cells via acellular nerve graft may provide an alternative way for repairing peripheral nerve defect.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Anatomy, Second Military Medical University, Yangpu District, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
240
|
An improved method for isolating Schwann cells from postnatal rat sciatic nerves. Cell Tissue Res 2009; 337:361-9. [PMID: 19639342 DOI: 10.1007/s00441-009-0836-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The major difficulty in Schwann cell (SC) purification is contamination by fibroblasts, which usually become the predominant cell type during SC enrichment in vitro. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. Our objectives have been to develop an efficient, easily applicable, rapid method to obtain highly purified SC from the sciatic nerve of newborn rats. The method involves two rounds of purification to eliminate fibroblasts with the novel combined use of cytosine-B-arabinoside hydrochloride (Ara-C) action and differential cell detachment. Cultured cells were first treated with Ara-C for 24 h. The medium was replaced with the growth medium containing 20 ng/ml human heregulin1-beta1 extracellular domain (HRG1-beta1 ECD). After another 48 h in culture, the cells were treated with 0.05% trypsin, following which SCs, but not fibroblasts, were easily detached from the dishes. The advantage of this method is that the two steps can eliminate the fibroblasts complementarily. Ara-C eliminates most of the fibroblasts growing among SCs, whereas the differential cell detachment technique removes the remainder growing under or interacting with the SC layer. A purity of more than 99% SCs has been obtained, as confirmed by cell morphology and immunostaining. The purified SCs have a spindle-shaped, bipolar, and sometimes tripolar morphology, align in fascicles, and express S-100. The whole procedure takes about 10 days from primary culture to the purified SCs growing to confluence (only half the time reported previously). This protocol provides an alternative method for investigating peripheral nerve regeneration and potentially could be used to produce enough SCs to construct artificial nerve scaffolds in vitro.
Collapse
|
241
|
Omura T, Sano M, Omura K, Hasegawa T, Nagano A. A MILD ACUTE COMPRESSION INDUCES NEURAPRAXIA IN RAT SCIATIC NERVE. Int J Neurosci 2009; 114:1561-72. [PMID: 15512839 DOI: 10.1080/00207450490509285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pressure that induces neurapraxia in rat remains unrevealed. To determine the appropriate force to induce neurapraxia, two types of clips were applied to the sciatic nerve and were evaluated with functional, electrophysiological, and histological examinations. With a compression of 60 g/mm2, walking track analysis showed complete sciatic nerve paralysis one day postoperatively, but became normal in 14 days. Electrophysiologically, complete conduction block occurred one day post operatively, whereas the motor conduction velocity (MCV) below the compression site remained normal. Histologically, only limited signs of Wallerian degeneration were seen. The model in this study exhibited the features of neurapraxia.
Collapse
Affiliation(s)
- Takao Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
242
|
Magnetic Resonance Imaging Monitoring of Peripheral Nerve Regeneration following Neurotmesis at 4.7 Tesla. Plast Reconstr Surg 2009; 123:1778-1788. [DOI: 10.1097/prs.0b013e3181a3f343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
243
|
Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M. Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 2009; 132:1449-62. [DOI: 10.1093/brain/awp128] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
244
|
Huang Y, Liu Y, Chen Y, Yu X, Yang J, Lu M, Lu Q, Ke Q, Shen A, Yan M. Peripheral nerve lesion induces an up-regulation of Spy1 in rat spinal cord. Cell Mol Neurobiol 2009; 29:403-11. [PMID: 19082704 PMCID: PMC11506200 DOI: 10.1007/s10571-008-9332-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Spy1, as a member of the Speedy/RINGO family and a novel activator of cyclin-dependent kinases, was shown to promote cell cycle progression and cell survival in response to DNA damage. While its expression and roles in nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Spy1 expression in lumbar spinal cord. Temporally, Spy1 expression was increased shortly after sciatic nerve crush and peaked at day 2. Spatially, Spy1 was widely expressed in the lumbar spinal cord including neurons and glial cells. While after injury, Spy1 expression was increased predominantly in astrocytes and microglia, which were largely proliferated. Moreover, there was a concomitant up-regulation of CDK2 activity and down-regulation of p27. Collectively, we hypothesized peripheral nerve injury induced an up-regulation of Spy1 in lumbar spinal cord, which was associated with glial proliferation.
Collapse
Affiliation(s)
- Ye Huang
- Orthopaedics of the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 226001 China
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, 226001 China
| | - Yonghua Liu
- Orthopaedics of the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 226001 China
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, 226001 China
- Department of Microbiology and Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, 226001 China
| | - Xiaowei Yu
- Orthopaedics of the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 226001 China
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, 226001 China
| | - Junling Yang
- Department of Microbiology and Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Mudan Lu
- Department of Microbiology and Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Qiuyan Lu
- Department of Microbiology and Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Qing Ke
- Department of Microbiology and Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Aiguo Shen
- Orthopaedics of the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 226001 China
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, 226001 China
| | - Meijuan Yan
- Orthopaedics of the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 226001 China
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, 226001 China
| |
Collapse
|
245
|
Sun XH, Che YQ, Tong XJ, Zhang LX, Feng Y, Xu AH, Tong L, Jia H, Zhang X. Improving nerve regeneration of acellular nerve allografts seeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol 2009; 29:347-53. [PMID: 18987968 PMCID: PMC11506121 DOI: 10.1007/s10571-008-9326-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/17/2008] [Indexed: 11/27/2022]
Abstract
The objective of the paper is to evaluate the effect of acellular nerve allografts (ANA) seeded with Schwann cells to promote nerve regeneration after bridging the sciatic nerve defects of rats and to discuss its acting mechanisms. Schwann cells were isolated from neonatal Wistar rats. In vitro Schwann cells were microinjected into acellular nerve allografts and co-cultured. Twenty-four Wistar rats weighing 180-220 g were randomly divided into three groups with eight rats in each group: ANA seeded with Schwann cells (ANA + SCs), ANA group and autografts group. All the grafts were, respectively, served for bridging a 10-mm long surgically created sciatic nerve gap. Examinations of regeneration nerve were performed after 12 weeks by transmission electron microscope (TEM), scanning electron microscope (SEM), and electrophysiological methods, and then analyzed statistically. The results obtained indicated that in vitro Schwann cells displayed the feature of bipolar morphology with oval nuclei. Compared with ANA group, the conduction velocity of ANA + SCs group and autograft group was faster after 12 weeks, latent period was shorter, and wave amplitude was higher (P < 0.05). The difference between ANA + SCs group and autograft group is not significant (P > 0.05). Regeneration nerve myelinated fiber number, myelin sheath thickness, and myelinated fibers/total nerves (%) in both ANA + SCs group and autograft group are higher than that in ANA group; the difference is significant (P < 0.05). The difference between the former two is not significant (P > 0.05). In conclusion, ANA seeded with SCs could improve nerve regeneration and functional recovery after bridging the sciatic nerve gap of rats, which offers a novel approach for the repair peripheral nerve defect.
Collapse
Affiliation(s)
- Xiao-Hong Sun
- Department of Neurology, The 4th Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Yu-Qin Che
- Department of Neurology, The 4th Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Xiao-Jie Tong
- China Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, 110001 China
| | - Li-Xin Zhang
- Department of Rehabilitation Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Yu Feng
- Department of Rehabilitation Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Ai-Hua Xu
- Department of Rehabilitation Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Lei Tong
- China Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, 110001 China
| | - Hua Jia
- China Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, 110001 China
| | - Xu Zhang
- China Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, 110001 China
| |
Collapse
|
246
|
Berbic M, Schulke L, Markham R, Tokushige N, Russell P, Fraser IS. Macrophage expression in endometrium of women with and without endometriosis. Hum Reprod 2009; 24:325-32. [DOI: 10.1093/humrep/den393] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
247
|
Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 2008; 13:122-35. [PMID: 18601657 DOI: 10.1111/j.1529-8027.2008.00168.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immature Schwann cells found in perinatal rodent nerves are generated from Schwann cell precursors (SCPs) that originate from the neural crest. Immature Schwann cells generate the myelinating and non-myelinating Schwann cells of adult nerves. When axons degenerate following injury, Schwann cells demyelinate, proliferate and dedifferentiate to assume a molecular phenotype similar to that of immature cells, a process essential for successful nerve regeneration. Increasing evidence indicates that Schwann cell dedifferentiation involves activation of specific receptors, intracellular signalling pathways and transcription factors in a manner analogous to myelination. We have investigated the roles of Notch and the transcription factor c-Jun in development and after nerve transection. In vivo, Notch signalling regulates the transition from SCP to Schwann cell, times Schwann cell generation, controls Schwann cell proliferation and acts as a brake on myelination. Notch is elevated in injured nerves where it accelerates the rate of dedifferentiation. Likewise, the transcription factor c-Jun is required for Schwann cell proliferation and death and is down-regulated by Krox-20 on myelination. Forced expression of c-Jun in Schwann cells prevents myelination, and in injured nerves, c-Jun is required for appropriate dedifferentiation, the re-emergence of the immature Schwann cell state and nerve regeneration. Thus, both Notch and c-Jun are negative regulators of myelination. The growing realisation that myelination is subject to negative as well as positive controls and progress in molecular identification of negative regulators is likely to impact on our understanding of demyelinating disease and mechanisms that control nerve repair.
Collapse
Affiliation(s)
- Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
248
|
Wang Y, Liu Y, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A. Peripheral nerve injury induces down-regulation of Foxo3a and p27kip1 in rat dorsal root ganglia. Neurochem Res 2008; 34:891-8. [PMID: 18802749 DOI: 10.1007/s11064-008-9849-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/03/2008] [Indexed: 01/11/2023]
Abstract
FOXO3a, as a forkhead transcription factor, can control cell cycle through transcriptionally down-regulating p27(kip1) level, which is a key regulator of the mammalian cell cycle and a good candidate to regulate multiple aspects of neurogenesis. To elucidate their expression and function in nervous system lesion and repair, we performed an acute sciatic nerve crush model and studied differential expressions of Foxo3a and p27(kip1) in lumbar dorsal root ganglia. Temporally, Foxo3a protein level was reduced 1 day after injury, and following Foxo3a down-regulation, p27(kip1) mRNA and protein levels were also decreased after injury. Spatially, decreased levels of Foxo3a and p27(kip1) were predominant in neurons and glial cells, which were regenerating axons and largely proliferated after injury, respectively. Together with previous reports, we hypothesized decreased levels of Foxo3a and p27(kip1) in lumbar dorsal root ganglia were implicated in axonal regeneration and the proliferation of glial cells after sciatic nerve injury.
Collapse
Affiliation(s)
- Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Grothe C, Jungnickel J, Haastert K. Physiological role of basic FGF in peripheral nerve development and regeneration: potential for reconstruction approaches. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to expression studies and functional analyses in mutant mice and in rats, FGF-2 appears to be specifically involved during development of peripheral nerves and in de-/re-generating processes at the lesion site and in spinal ganglia. In the absence of FGF receptor (FGFR)3, axonal and myelin diameters of peripheral nerves are significantly reduced, suggesting that FGFR3 physiologically regulates axonal development. The normally occurring neuronal cell death in spinal ganglia after peripheral nerve axotomy does not take place in FGF-2 and FGFR3-deleted mice, respectively, suggesting that injury-induced apoptosis is mediated via FGF-2 binding to FGFR3. According to a bimodal function of FGF-2, lesion-induced neuron death in rat spinal ganglia can be prevented by application of FGF-2 to the proximal nerve stump, which could be mediated via FGFR1/2. At the lesion site, FGF-2 appears to be involved in stimulating Schwann cell proliferation, promoting neurite outgrowth, especially of sensory nerve fibers, and regulating remyelination.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Julia Jungnickel
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Kirsten Haastert
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| |
Collapse
|
250
|
Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1256-69. [PMID: 18677518 DOI: 10.1007/s00586-008-0729-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research.
Collapse
|