201
|
Han X, Zhai Z, Yang X, Zhang D, Tang J, Zhu J, Zhu X, Ye Y. A FRET-based ratiometric fluorescent probe to detect cysteine metabolism in mitochondria. Org Biomol Chem 2020; 18:1487-1492. [PMID: 32026925 DOI: 10.1039/d0ob00002g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As an important biothiol in living cells, cysteine is closely related to oxidative damage in living organisms. Sulfite from cysteine metabolism in living cells plays a crucial role in maintaining homeostasis in an organism, and the unbalance of sulfite in vivo would lead to multiple diseases. Thus the development of a new fluorescent probe for cysteine metabolism is needed urgently in mitochondria which are the main place of cysteine metabolism. Herein we construct a novel targeting mitochondria fluorescent probe CP-K based on the FRET mechanism to visualize sulfite in living MCF-7 cells. Probe CP-K displays a large Stokes shift of 150 nm, a low detection limit (26.3 nM) and "naked eye" detection after the addition of HSO3-. Importantly, it is appropriate for imaging the endogenous sulfite from cysteine metabolism in living cells.
Collapse
Affiliation(s)
- Xiaojing Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhiyao Zhai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianming Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaofei Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. and Journal of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. and Journal of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
202
|
Zhou L, Li Y, Zhou A, Zhang G, Cheng ZQ, Ge YX, Liu SK, Azevedo RB, Zhang J, Jiang S, Jiang CS. A New Endoplasmic Reticulum (ER)-Targeting Fluorescent Probe for the Imaging of Cysteine in Living Cells. J Fluoresc 2020; 30:1357-1364. [PMID: 32870455 DOI: 10.1007/s10895-020-02615-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Cysteine (Cys) is an important endogenous amino acid and plays critical physiological roles in living systems. Herein, an endoplasmic reticulum (ER)-targeting fluorescent probe (FER-Cys) was designed and prepared for imaging of Cys in living cells. The probe FER-Cys consists of a fluorescein framework as the fluorescent platform, acrylate group as the response site for the selective recognition of Cys, and ER-specific p-toluenesulfonamide fragment. After the response of probe FER-Cys to Cys, a turn-on fluorescence signal at 546 nm could be detected obviously. The probe FER-Cys further shows desirable selectivity to Cys. Finally, the probe FER-Cys was proven to selectively detect Cys in live cells and successfully image the changes of Cys level in the cell models of H2O2-induced redox imbalance.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yunxia Li
- Laiyu Chemical Co., Itd, Laizhou, China
| | - Aiqin Zhou
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | | | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | | | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | | | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
203
|
Castro FLS, Kim Y, Xu H, Kim WK. The effect of total sulfur amino acid levels on growth performance and bone metabolism in pullets under heat stress. Poult Sci 2020; 99:5783-5791. [PMID: 33142496 PMCID: PMC7647794 DOI: 10.1016/j.psj.2020.06.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 11/02/2022] Open
Abstract
A study was conducted to investigate the effects of total sulfur amino acid (TSAA) levels on performance and bone metabolism in pullets under heat stress (HS). Hy-Line W36 day-old pullets (n = 216) were randomly distributed in 3 dietary treatments (70, 85, and 100% of TSAA), with 6 replicates of 12 birds. The treatments were defined as percentages of the TSAA level recommendation (100, 85, and 70%), and 85 and 100% of TSAA were obtained by adding L-Methionine to the basal deficient diet (70% of TSAA). The birds were raised under HS (35°C/7 h/D) from 1 to 18 wk. At 6, 12, and 18 wk, growth performance was measured. At 12 and 18 wk, bone weight, ash, collagenous (ColP), and noncollagenous proteins (NColP), tissue volume (TV), bone mineral content (BMC), and mineral density from total, cortical, and trabecular bones were evaluated. The means were subjected to ANOVA and, when significant (P ≤ 0.05), were compared by Dunnett's test. Regression analyses were performed to evaluate trends of TSAA dose response. Overall, birds fed 70% of TSAA showed poor growth and feed efficiency compared with other groups. Additionally, in at least 1 phase, birds fed 70% of TSAA showed lower bone ash, NColP, total BMC, and TV and higher ColP than the other treatments, whereas the cortical and trabecular TV and BMC were lower than 100% of TSAA (P < 0.04). Quadratic effects of TSAA levels on body weight gain (BWG) were found, and the level for maximum BWG was 95% of the TSAA recommendation (P < 0.03, R2 > 0.83). In conclusion, the use of a TSAA-deficient diet resulted in poor performance and delayed bone development. Additionally, the use of 100% of TSAA led to better initial structural bone development than 85% of TSAA. Therefore, the TSAA level recommended by the primary breeder guideline was enough to support growth and bone quality under HS, suggesting that HS does not alter TSAA requirement in pullets.
Collapse
Affiliation(s)
- F L S Castro
- Department of Poultry Science, University of Georgia, Athens, GA, 30602
| | - Y Kim
- CJ Corporation, Seoul, 100-400, South Korea
| | - H Xu
- CJ Corporation, Seoul, 100-400, South Korea
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602.
| |
Collapse
|
204
|
Hofmann P, Siegert W, Ahmadi H, Krieg J, Novotny M, Naranjo VD, Rodehutscord M. Interactive Effects of Glycine Equivalent, Cysteine, and Choline on Growth Performance, Nitrogen Excretion Characteristics, and Plasma Metabolites of Broiler Chickens Using Neural Networks Optimized with Genetic Algorithms. Animals (Basel) 2020; 10:ani10081392. [PMID: 32796582 PMCID: PMC7459920 DOI: 10.3390/ani10081392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The negative effects of nitrogen emissions caused by animal husbandry on the environment can be reduced by lowering the crude protein content in the diets of broiler chickens. The nonessential amino acids glycine and serine, investigated together as glycine equivalent, can limit the growth of broiler chickens fed diets that are low in crude protein. The response of broiler chickens to dietary glycine equivalent is not constant and is affected by endogenous precursors of glycine equivalent and metabolic processes that dissipate glycine equivalent. Choline can be converted to glycine, and glycine equivalent is required to form cysteine from methionine. The present study investigated interactive effects among dietary glycine equivalent, cysteine, and choline in broiler chickens. The results showed that the gain:feed ratio increased with dietary glycine equivalent supplementation. The extent of interactive effects among glycine equivalent, cysteine, and choline on the gain:feed ratio was hardly pronounced. Very high nitrogen-utilization efficiency with low variation among treatments was found. The findings indicate that small differences in nitrogen-utilization efficiency caused low glycine equivalent dissipation for nitrogen excretion, likely resulting in small interactive effects among dietary glycine equivalent, cysteine, and choline. These results contribute to further dietary crude protein reduction in feed for broiler chickens. Abstract Responses of broiler chickens to dietary glycine equivalent (Glyequi) are affected by dietary cysteine and choline. Hence, this study investigated interactive effects among dietary Glyequi, cysteine, and choline on the growth of broiler chickens. Male Ross 308 broiler chickens were maintained in 105 metabolism units (10 birds/unit) from days 7 to 22. Excreta were collected in 12-h intervals from days 18 to 21. Blood was sampled on day 22 (1 bird/unit). Five levels each of Glyequi (9–21 g/kg), cysteine (2–5 g/kg), and choline (0.5–1.7 g/kg) were tested under 15 diets in 7 replicates each following a fractional central composite design. Another diet was provided to five metabolism units (15 birds/unit) to measure prececal amino acid digestibility. Data were evaluated using neural networks. The gain:feed ratio (G:F) increased with digestible Glyequi intake. Differences between low and high digestible cysteine intake were low. Effects of choline intake on G:F were low. Nitrogen-utilization efficiency (NUE) was high (≥77%), with low variation among treatments. Plasma metabolites varied among treatments and indicated that metabolism of Glyequi, cysteine, and choline was influenced. These findings showed that interactive effects of dietary Glyequi, cysteine, and choline on growth were small, possibly because NUE was barely influenced.
Collapse
Affiliation(s)
- Philipp Hofmann
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (P.H.); (J.K.); (M.N.); (M.R.)
| | - Wolfgang Siegert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (P.H.); (J.K.); (M.N.); (M.R.)
- Correspondence: ; Tel.: +49-711-459-22420
| | - Hamed Ahmadi
- Bioscience and Agriculture Modeling Research Unit, Department of Poultry Science, Tarbiat Modares University, Tehran 14115-336, Iran;
| | - Jochen Krieg
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (P.H.); (J.K.); (M.N.); (M.R.)
| | - Moritz Novotny
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (P.H.); (J.K.); (M.N.); (M.R.)
| | | | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (P.H.); (J.K.); (M.N.); (M.R.)
| |
Collapse
|
205
|
Övey İS, Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. J Recept Signal Transduct Res 2020; 41:273-283. [DOI: 10.1080/10799893.2020.1806321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- İshak Suat Övey
- Department of Physiology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
206
|
Ali AS, Chen R, Raju R, Kshirsagar R, Gilbert A, Zang L, Karger BL, Ivanov AR. Multi-Omics Reveals Impact of Cysteine Feed Concentration and Resulting Redox Imbalance on Cellular Energy Metabolism and Specific Productivity in CHO Cell Bioprocessing. Biotechnol J 2020; 15:e1900565. [PMID: 32170810 PMCID: PMC7880547 DOI: 10.1002/biot.201900565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are currently the primary host cell lines used in biotherapeutic manufacturing of monoclonal antibodies (mAbs) and other biopharmaceuticals. Cellular energy metabolism and endoplasmic reticulum (ER) stress are known to greatly impact cell growth, viability, and specific productivity of a biotherapeutic; but the molecular mechanisms are not fully understood. The authors previously employed multi-omics profiling to investigate the impact of a reduction in cysteine (Cys) feed concentration in a fed-batch process and found that disruption of the redox balance led to a substantial decline in cell viability and titer. Here, the multi-omics findings are expanded, and the impact redox imbalance has on ER stress, mitochondrial homeostasis, and lipid metabolism is explored. The reduced Cys feed activates the amino acid response (AAR), increases mitochondrial stress, and initiates gluconeogenesis. Multi-omics analysis reveals that together, ER stress and AAR signaling shift the cellular energy metabolism to rely primarily on anaplerotic reactions, consuming amino acids and producing lactate, to maintain energy generation. Furthermore, the pathways are demonstrated in which this shift in metabolism leads to a substantial decline in specific productivity and altered mAb glycosylation. Through this work, meaningful bioprocess markers and targets for genetic engineering are identified.
Collapse
Affiliation(s)
- Amr S Ali
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Rachel Chen
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Ravali Raju
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | | | - Alan Gilbert
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Li Zang
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Barry L Karger
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
207
|
Yang BY, Shi TX, Luo YN, Liu XX, Zhao T, Bloom MS, Jiang HZ, Heinrich J, Fan SJ, Dong GH. Ambient air pollution and homocysteine: Current epidemiological evidence and a call for further research. ENVIRONMENTAL RESEARCH 2020; 187:109679. [PMID: 32454311 DOI: 10.1016/j.envres.2020.109679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Elevated blood homocysteine (Hcy) is an independent risk factor for cardiovascular disease. A growing number of studies have evaluated the link between air pollution and blood Hcy levels, but the results are inconsistent. To date, no systematic review of the published studies has been conducted yet. We aimed to provide a comprehensive overview of these studies. We systematically searched three international databases (PubMed, Web of Science, and Embase) and four Chinese databases (Wanfang, CNKI, CBM, and VIP) for peer-reviewed epidemiological studies investigating associations between ambient air pollutants and Hcy levels published before December 2019. We screened literature, extracted data, assessed methodological quality, and evaluated the risk of bias of the included studies. Of 1157 identified articles, 10 were finally included in this systematic review. Most were cross-sectional studies and were performed in developed countries. Particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) and/or 10 μm (PM10) were investigated in all of the included studies. Overall, the evidence generally supports a positive association between higher PM concentrations and elevated Hcy levels. However, high heterogeneity in terms of study participants, study design, exposure duration, and particle components and sources, low methodological quality and probable high risk of bias in some studies, and limited literature number precluded us from drawing a robust conclusion. Associations between Hcy and gaseous pollutants were explored in only one or two studies, and the results were inconclusive. Additional, well-designed studies remain required to validate the association between air pollution and Hcy.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong-Xing Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Ya-Na Luo
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrabe 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Michael S Bloom
- Department of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Hai-Zhan Jiang
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming, 525000, Guangdong, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrabe 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
208
|
Tang Z, Bai T, Zhou P. Sensing Mechanism of a Fluorescent Probe for Cysteine: Photoinduced Electron Transfer and Invalidity of Excited-State Intramolecular Proton Transfer. J Phys Chem A 2020; 124:6920-6927. [DOI: 10.1021/acs.jpca.0c06171] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Tianxin Bai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
| |
Collapse
|
209
|
Zhang T, Huang D, Hou J, Li J, Zhang Y, Tian M, Li Z, Tie T, Cheng Y, Su X, Man Z, Ma Y. High-concentration homocysteine inhibits mitochondrial respiration function and production of reactive oxygen species in neuron cells. J Stroke Cerebrovasc Dis 2020; 29:105109. [PMID: 32912537 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Homocysteine plays critical roles in cellular redox homeostasis, and hyperhomocysteinemia has been associated with multiple diseases, including neurological disorders involving reactive oxygen species-inducing and pro-inflammatory effects of homocysteine that are related to mitochondria. This study investigated the role of homocysteine in regulating mitochondria of neuron cell lines. METHODS Neuron cells were pre-treated with homocysteine, and then flow cytometry was used to detect reactive oxygen species production and mitochondrial membrane potential, while Seahorse XFp Mito stress assay was used to comprehensively analyze mitochondrial function. RESULTS The experimental results showed that high-concentration homocysteine diminished carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone-stimulated oxygen consumption rate and mitochondrial spare respiration capacity in a time- and concentration-dependent manner, and homocysteine also reduced reactive oxygen species in cultured neuron cell lines while no changes in mitochondrial membrane potential were observed. CONCLUSION These results indicate that homocysteine diminished mitochondrial respiration function in neuron cell lines mediated by its reactive oxygen species-reducing effects, which may underlie the association between hyperhomocysteinemia and human diseases.
Collapse
Affiliation(s)
- Tao Zhang
- Neurology Department, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000.
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Jianhua Li
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000; Qinghai Province Research Key Laboratory of Echinococcosis, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000.
| | - Zhiqin Li
- Department of Scientific Research Office, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Tingting Tie
- Neurology Department, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Yan Cheng
- Neurology Department, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Xiaoming Su
- Neurology Department, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Zhu Man
- Neurology Department, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000
| | - Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Xining, Qinghai Province, China, 810000.
| |
Collapse
|
210
|
Song Z, Yue Y, Feng S, Sun H, Li Y, Xu F, Zhang Q, Wang W. Cysteine dioxygenase catalyzed C F bond cleavage: An in silico approach. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
211
|
Lu J, Weil J, Cerrate S, Coon C. Developmental changes in physiological amino acids and hepatic methionine remethylation enzyme activities in E10-21 chick embryos and D1-49 broilers. J Anim Physiol Anim Nutr (Berl) 2020; 104:1727-1737. [PMID: 32592234 DOI: 10.1111/jpn.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
The remethylation of homocysteine to methionine is important for chick embryos to sustain the S-adenosylmethionine transmethylation reactions, which are essential for the rapid proliferation of cells. Developmental changes in hepatic 5-methyltetrahydrofolate-homocysteine methyltransferase (MFMT), betaine-homocysteine methyltransferase (BHMT) and hepatic serine hydroxymethyltransferase (SHMT) were determined in E10-21 Cobb 500 broiler chick embryos and hatched chicks from D1-49. Hepatic levels of free serine, glycine, putrescine, spermidine and spermine levels were also determined. Analyses showed hepatic MFMT-specific activity doubled from E10 to E12, with remaining embryo development experiencing small fluctuations in activity through E21. Hepatic MFMT doubled immediately after hatch, with peak activity occurring at D3. Afterwards, hepatic MFMT-specific activity steadily declined from D7-49. Hepatic BHMT activity was higher from E10 to E16 of embryogenesis, decreased rapidly at E17 and remained lower through E21 (p < .05). Hepatic BHMT-specific activity was also lower in chicks, with the exception of a peak in specific activity on D7. BHMT activity returned to lower levels by D21. Throughout embryogenesis, hepatic SHMT activity in chick embryos remained relatively constant except for a decrease at 13E, followed by an increase at 14E. Maximal activity of SHMT was found the first day post-hatch. Additionally, SHMT activity was significantly lower in growing chicks than that in embryos. Hepatic-free serine and glycine levels were negatively correlated with SHMT in hatched chicks. Hepatic polyamine, putrescine and spermidine shared a similar development pattern: peak level in the middle of incubation, low at late embryogenesis and lowest during the post-hatch period except an increase within one week after hatch. The sharp increase in hepatic concentrations of glycine, serine and putrescine, along with increased specific activities of MHMT, BHMT and SHMT from D1-7, suggests that methionine conservation (remethylation from homocysteine) and glycine/serine is critical for young chicks for organ growth, maturation, and development.
Collapse
Affiliation(s)
| | - Jordan Weil
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | | | - Craig Coon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
212
|
Swanepoel AC, Bester J, Emmerson O, Soma P, Beukes D, van Reenen M, Loots DT, du Preez I. Serum Metabolome Changes in Relation to Prothrombotic State Induced by Combined Oral Contraceptives with Drospirenone and Ethinylestradiol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:404-414. [PMID: 32471328 DOI: 10.1089/omi.2020.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The association between hypercoagulability and use of drospirenone (DRSP) and ethinylestradiol (EE) containing combined oral contraceptives (COCs) is an important clinical concern. We have previously reported that the two formulations of DRSP combined with EE (namely, DRSP/20EE and DRSP/30EE) bring about a prothrombotic state in hemostatic traits of female users. We report here the serum metabolomic changes in the same study cohort in relation to the attendant prothrombotic state induced by COC use, thus offering new insights on the underlying biochemical mechanisms contributing to the altered coagulatory profile with COC use. A total of 78 healthy women participated in this study and were grouped as follows: control group not using oral contraceptives (n = 25), DRSP/20EE group (n = 27), and DRSP/30EE group (n = 26). Untargeted metabolomics revealed changes in amino acid concentrations, particularly a decrease in glycine and an increase in both cysteine and lanthionine in the serum, accompanied by variations in oxidative stress markers in the COC users compared with the controls. Of importance, this study is the first to link specific amino acid variations, serum metabolites, and the oxidative metabolic profile with DRSP/EE use. These molecular changes could be linked to specific biophysical coagulatory alterations observed in the same individuals. These new findings lend evidence on the metabolomic substrates of the prothrombotic state associated with COC use in women and informs future personalized/precision medicine research. Moreover, we underscore the importance of an interdisciplinary approach to evaluate venous thrombotic risk associated with COC use.
Collapse
Affiliation(s)
- Albe Carina Swanepoel
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Odette Emmerson
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Prashilla Soma
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
213
|
Nutritional Deficiencies, Bariatric Surgery, and Serum Homocysteine Level: Review of Current Literature. Obes Surg 2020; 29:3735-3742. [PMID: 31471768 DOI: 10.1007/s11695-019-04100-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is currently one of the biggest global health problems. In the case of severe obesity, bariatric surgeries are considered to be the most important method of treatment. The 2 most commonly performed bariatric surgery procedures include Roux-en-Y gastric bypass and sleeve gastrectomy. However, these methods are not free from complications, and the most common ones (moderately long or long term) are micronutrient deficiencies. The deficiency of vitamins B6, B12, and folic acid as cofactors of the folate cycle contributes to the development of hyperhomocysteinemia. It seems that apart from nutritional factors, there are other aspects that have a significant influence on the concentration of homocysteine in blood, such as the type of conducted bariatric surgery, the post-surgical concentration of betaine and creatinine, and the clearance of methionine (i.e., the mutations of the gene that encodes the MTHFR reductase as well as other genes associated with the process of methylation, e.g., methionine synthase). Their presence might be one of the causes of the increased concentration of homocysteine after surgery despite the fact that patients take vitamin-mineral supplementation.
Collapse
|
214
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4+ Th17 cells over protective CD4+ Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D3 signaling from microglia to CD4+ T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate DRB1*1501 expression were observed in MS patient CD4+ T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of DRB1*1501 and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4+ T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.
Collapse
Affiliation(s)
- Colleen E. Hayes
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
215
|
Fustin JM, Ye S, Rakers C, Kaneko K, Fukumoto K, Yamano M, Versteven M, Grünewald E, Cargill SJ, Tamai TK, Xu Y, Jabbur ML, Kojima R, Lamberti ML, Yoshioka-Kobayashi K, Whitmore D, Tammam S, Howell PL, Kageyama R, Matsuo T, Stanewsky R, Golombek DA, Johnson CH, Kakeya H, van Ooijen G, Okamura H. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun Biol 2020; 3:211. [PMID: 32376902 PMCID: PMC7203018 DOI: 10.1038/s42003-020-0942-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan. .,The University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester, M13 9PL, UK.
| | - Shiqi Ye
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kensuke Kaneko
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Fukumoto
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Marijke Versteven
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - T Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Melisa L Lamberti
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, UK
| | - Stephanie Tammam
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Diego A Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Brain Science, Kyoto University, Kyoto, Japan. .,Kyoto University, Graduate School of Medicine, Department of Neuroscience, Division of Physiology and Neurobiology, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
216
|
Yuan Q, Chen LL, Zhu XH, Yuan ZH, Duan YT, Yang YS, Wang BZ, Wang XM, Zhu HL. An imidazo[1,5-α]pyridine-derivated fluorescence sensor for rapid and selective detection of sulfite. Talanta 2020; 217:121087. [PMID: 32498830 DOI: 10.1016/j.talanta.2020.121087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023]
Abstract
Sulfur-containing species are essential in the composition and the metabolism of the organisms, thus developing a full set of implements to cover all of them is still a favorable choice. Herein, we chose imidazo [1,5-α]pyridine moiety as the basic fluorophore for the detection of sulfite, and preliminarily completed the toolset since biothiols (GSH, Cys, Hcy), H2S, and PhSH could be detected by sensors based on the same backbone. The designed sensor, IPD-SFT, with structural novelty and large Stokes shift (130 nm), indicated the most attractive advantages of remarkably rapid response period (within 1 min) and high selectivity for sulfite from all the sulfur-containing species. Other practical properties included high sensitivity (LOD = 50 nM) and wide pH adaptability (5.0-11.0). Furthermore, IPD-SFT could monitor both exogenous and endogenous sulfite. It not only raised a potential tool for sulfite detection, but also preliminarily completed the toolset for all the sulfur-containing species. The development of such toolsets might reveal the sulfur-containing metabolism and corresponding physiology and pathological procedures.
Collapse
Affiliation(s)
- Qing Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
217
|
Rakhshandeh A, de Lange CFM, Htoo JK, Rakhshandeh AR. Immune system stimulation increases the irreversible loss of cysteine to taurine, but not sulfate, in starter pigs. J Anim Sci 2020; 98:5698019. [PMID: 31909792 DOI: 10.1093/jas/skaa001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/04/2020] [Indexed: 01/29/2023] Open
Abstract
An isotope tracer study was conducted to evaluate the effects of immune system stimulation (ISS) on the irreversible loss of cysteine (Cys) to taurine (Tau) and sulfate (SO4), as well as glutathione (GSH) synthesis, during the fed state in pigs. We previously have reported that ISS increases plasma Cys flux and the GSH synthesis rate at the tissue and whole-body levels in growing pigs. Thus, the current article presents the data on the irreversible loss of Cys during ISS in pigs. Ten gilts (BW: 7.0 ± 0.12 kg) were feed restricted a sulfur amino acids (SAA) limiting diet and injected twice with either saline (n = 4) or increasing amounts of E. coli lipopolysaccharide (n = 6). The day after the second injection, a 5-h primed continuous intravenous infusion of 35S-Cys was conducted. ISS reduced plasma Cys and total SAA concentrations (16% and 21%, respectively; P < 0.05). However, ISS had no effect on the plasma concentrations of Tau and SO4, nor did it affect the appearance of 35S in plasma Tau, plasma SO4, urinary Tau, or urinary SO4 (P > 0.19). On a whole-body basis and including urinary excretion, ISS increased the appearance of 35S in Tau by 67% (P < 0.05), but tended to decrease the appearance of 35S in SO4 by 22% (P < 0.09). Overall, the current findings indicate that during ISS, decreased plasma SAA concentrations and increased plasma Cys flux are attributed in part to increased rates of Cys conversion to Tau, but not Cys catabolism to SO4. Thus, increased utilization of Cys for the synthesis of immune system metabolites, such as GSH and Tau, is likely the main contributor to increased Cys flux during ISS in pigs. In addition, the irreversible loss of Cys during ISS is small and has a minimal impact on the daily SAA requirements of starter pigs.
Collapse
Affiliation(s)
- Anoosh Rakhshandeh
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - John K Htoo
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee, Hanau, Germany
| | | |
Collapse
|
218
|
Kaczor-Kamińska M, Sura P, Wróbel M. Multidirectional Changes in Parameters related to Sulfur Metabolism in Frog Tissues exposed to Heavy Metal-related Stress. Biomolecules 2020; 10:biom10040574. [PMID: 32283689 PMCID: PMC7226484 DOI: 10.3390/biom10040574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
The investigations showed changes of the cystathionine γ-lyase (CTH), 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese (TST) activity and gene expression in the brain, heart, liver, kidney, skeletal muscles and testes in frogs Pelophylax ridibundus, Xenopus laevis and Xenopus tropicalis in response to Pb2+, Hg2+ and Cd2+ stress. The results were analyzed jointly with changes in the expression of selected antioxidant enzymes (cytoplasmic and mitochondrial superoxide dismutase, glutathione peroxidase, catalase and thioredoxin reducatase) and with the level of malondialdehyde (a product of lipid peroxidation). The obtained results allowed for confirming the role of sulfurtransferases in the antioxidant protection of tissues exposed to heavy metal ions. Our results revealed different transcriptional responses of the investigated tissues to each of the examined heavy metals. The CTH, MPST and TST genes might be regarded as heavy metal stress-responsive. The CTH gene expression up-regulation was confirmed in the liver (Pb2+, Hg2+, Cd2+) and skeletal muscle (Hg2+), MPST in the brain (Pb2+, Hg2+), kidney (Pb2+, Cd2+), skeletal muscle (Pb2+, Hg2+,Cd2+) and TST in the brain (Pb2+) and kidney (Pb2+, Hg2+, Cd2+). Lead, mercury and cadmium toxicity was demonstrated to affect the glutathione (GSH) and cysteine levels, the concentration ratio of reduced to oxidized glutathione ([GSH]/[GSSG]) and the level of sulfane sulfur-containing compounds, which in case of enhanced reactive oxygen species generation can reveal their antioxidative properties. The present report is the first to widely describe the role of the sulfane sulfur/H2S generating enzymes and the cysteine/glutathione system in Pb2+, Hg2+ and Cd2+ stress in various frog tissues, and to explore the mechanisms mediating heavy metal-related stress.
Collapse
Affiliation(s)
- Marta Kaczor-Kamińska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Piotr Sura
- Jagiellonian University Medical College, Faculty of Health Sciences, Chair of Medical Biology, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Maria Wróbel
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 7 Kopernika St., 31-034 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
219
|
Methionine Dependence of Cancer. Biomolecules 2020; 10:biom10040568. [PMID: 32276408 PMCID: PMC7226524 DOI: 10.3390/biom10040568] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Tumorigenesis is accompanied by the reprogramming of cellular metabolism. The shift from oxidative phosphorylation to predominantly glycolytic pathways to support rapid growth is well known and is often referred to as the Warburg effect. However, other metabolic changes and acquired needs that distinguish cancer cells from normal cells have also been discovered. The dependence of cancer cells on exogenous methionine is one of them and is known as methionine dependence or the Hoffman effect. This phenomenon describes the inability of cancer cells to proliferate when methionine is replaced with its metabolic precursor, homocysteine, while proliferation of non-tumor cells is unaffected by these conditions. Surprisingly, cancer cells can readily synthesize methionine from homocysteine, so their dependency on exogenous methionine reflects a general need for altered metabolic flux through pathways linked to methionine. In this review, an overview of the field will be provided and recent discoveries will be discussed.
Collapse
|
220
|
Liu X, Olszewski K, Zhang Y, Lim EW, Shi J, Zhang X, Zhang J, Lee H, Koppula P, Lei G, Zhuang L, You MJ, Fang B, Li W, Metallo CM, Poyurovsky MV, Gan B. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 2020; 22:476-486. [PMID: 32231310 PMCID: PMC7194135 DOI: 10.1038/s41556-020-0496-x] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
SLC7A11-mediated cystine uptake is critical for maintaining redox balance and cell survival. Here we show that this comes at a significant cost for cancer cells with high levels of SLC7A11. Actively importing cystine is potentially toxic due to its low solubility, forcing cancer cells with high levels of SLC7A11 (SLC7A11high) to constitutively reduce cystine to the more soluble cysteine. This presents a significant drain on the cellular NADPH pool and renders such cells dependent on the pentose phosphate pathway. Limiting glucose supply to SLC7A11high cancer cells results in marked accumulation of intracellular cystine, redox system collapse and rapid cell death, which can be rescued by treatments that prevent disulfide accumulation. We further show that inhibitors of glucose transporters selectively kill SLC7A11high cancer cells and suppress SLC7A11high tumour growth. Our results identify a coupling between SLC7A11-associated cystine metabolism and the pentose phosphate pathway, and uncover an accompanying metabolic vulnerability for therapeutic targeting in SLC7A11high cancers.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jiejun Shi
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
221
|
Structure-activity relationships study of isothiocyanates for H 2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. J Adv Res 2020; 27:41-53. [PMID: 33318865 PMCID: PMC7728584 DOI: 10.1016/j.jare.2020.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction The gasotransmitter hydrogen sulphide (H2S), an endogenous ubiquitous signalling molecule, is known for its beneficial effects on different mammalian systems. H2S exhibits cardioprotective activity against ischemia/reperfusion (I/R) or hypoxic injury. Methods A library of forty-five isothiocyanates, selected for their different chemical properties, has been evaluated for its hydrogen sulfide (H2S) releasing capacity. The obtained results allowed to correlate several factors such as steric hindrance, electronic effects and position of the substituents to the observed H2S production. Moreover, the chemical-physical profiles of the selected compounds have been studied by an in silico approach and from a combination of the obtained results, 3-pyridyl-isothiocyanate (25) has been selected as the most promising one. A detailed pharmacological characterization of its cardioprotective action has been performed. Results The results herein obtained strongly indicate 3-pyridyl-isothiocyanate (25) as a suitable pharmacological option in anti-ischemic therapy. The cardioprotective effects of compound 25 were tested in vivo and found to exhibit a positive effect. Conclusion Results strongly suggest that isothiocyanate-based H2S-releasing drugs, such as compound 25, can trigger a ‘‘pharmacological pre-conditioning” and could represent a suitable pharmacological option in antiischemic therapy.
Collapse
|
222
|
Miousse IR, Ewing LE, Skinner CM, Pathak R, Garg S, Kutanzi KR, Melnyk S, Hauer-Jensen M, Koturbash I. Methionine dietary supplementation potentiates ionizing radiation-induced gastrointestinal syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 318:G439-G450. [PMID: 31961718 PMCID: PMC7099489 DOI: 10.1152/ajpgi.00351.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M. Skinner
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stepan Melnyk
- 6Arkansas Children’s Research Institute, Little Rock, Arknsas
| | - Martin Hauer-Jensen
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
223
|
Short-term determination and long-term evaluation of the dietary methionine requirement in adult dogs. Br J Nutr 2020; 123:1333-1344. [PMID: 32100649 DOI: 10.1017/s0007114520000690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methionine, an essential sulphur-containing amino acid (SAA), plays an integral role in many metabolic processes. Evidence for the methionine requirements of adult dogs is limited, and we employed the indicator amino acid oxidation (IAAO) method to estimate dietary methionine requirements in Labrador retrievers (n 21). Using semi-purified diets, the mean requirement was 0·55 (95 % CI 0·41, 0·71) g/4184 kJ. In a subsequent parallel design study, three groups of adult Labrador retrievers (n 52) were fed semi-purified diets with 0·55 g/4184 kJ (test diet 1), 0·71 g/4184 kJ (test diet 2) or 1·37 g/4184 kJ (control diet) of methionine for 32 weeks to assess the long-term consequences of feeding. The total SAA content (2·68 g/4184 kJ) was maintained through dietary supplementation of cystine. Plasma methionine did not decrease in test group and increased significantly on test diet 1 in weeks 8 and 16 compared with control. Reducing dietary methionine did not have a significant effect on whole blood, plasma or urinary taurine or plasma N-terminal pro B-type natriuretic peptide. Significant effects in both test diets were observed for cholesterol, betaine and dimethylglycine. In conclusion, feeding methionine at the IAAO-estimated mean was sufficient to maintain plasma methionine over 32 weeks when total SAA was maintained. However, choline oxidation may have increased to support plasma methionine and have additional consequences for lipid metabolism. While the IAAO can be employed to assess essential amino acid requirements, such as methionine in the dog using semi-purified diets, further work is required to establish safe levels for commercial diet formats.
Collapse
|
224
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
225
|
Wang L, Gennari M, Cantú Reinhard FG, Padamati SK, Philouze C, Flot D, Demeshko S, Browne WR, Meyer F, de Visser SP, Duboc C. O2 Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorg Chem 2020; 59:3249-3259. [DOI: 10.1021/acs.inorgchem.9b03633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sandeep K. Padamati
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | - David Flot
- ESRF European Synchrotron 71, Ave Martyrs Grenoble, 38000 Grenoble, France
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
226
|
Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 2020; 180:296-310.e18. [PMID: 31978346 PMCID: PMC7164368 DOI: 10.1016/j.cell.2019.12.035] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and lysosomes are functionally linked, and their interdependent decline is a hallmark of aging and disease. Despite the long-standing connection between these organelles, the function(s) of lysosomes required to sustain mitochondrial health remains unclear. Here, working in yeast, we show that the lysosome-like vacuole maintains mitochondrial respiration by spatially compartmentalizing amino acids. Defects in vacuole function result in a breakdown in intracellular amino acid homeostasis, which drives age-related mitochondrial decline. Among amino acids, we find that cysteine is most toxic for mitochondria and show that elevated non-vacuolar cysteine impairs mitochondrial respiration by limiting intracellular iron availability through an oxidant-based mechanism. Cysteine depletion or iron supplementation restores mitochondrial health in vacuole-impaired cells and prevents mitochondrial decline during aging. These results demonstrate that cysteine toxicity is a major driver of age-related mitochondrial deterioration and identify vacuolar amino acid compartmentation as a cellular strategy to minimize amino acid toxicity.
Collapse
Affiliation(s)
- Casey E Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Troy K Coody
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mi-Young Jeong
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis R Winge
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
227
|
Li S, Song D, Huang W, Li Z, Liu Z. In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe. Anal Chem 2020; 92:2802-2808. [DOI: 10.1021/acs.analchem.9b05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Songjiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Weijing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
228
|
Fagundes NS, Milfort MC, Williams SM, Da Costa MJ, Fuller AL, Menten JF, Rekaya R, Aggrey SE. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult Sci 2020; 99:67-75. [PMID: 32416854 PMCID: PMC7587823 DOI: 10.3382/ps/pez588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Imbalance in nutrients can affect digestibility of amino acids by altering gene expression of amino acid transporters. We investigated digestibility and molecular transporters of essential amino acids in chickens fed a methionine-deficient diet. A total of 40 chicks (23 D old) were randomly assigned to either a control (0.49% methionine) or a deficient (0.28%) diet until 41 D when they were sampled for Pectoralis (P.) major, kidney, ileum, and hypothalamus for mRNA expression analysis. The ileal content was collected for apparent ileal digestibility (AID) analysis. Birds fed the deficient diet had reduced growth and worse feed efficiency compared to control. The AID of methionine was similar between both groups. The AID of other essential amino acids was higher in the deficient group than control. mRNA expression of b0,+ AT and LAT4 were upregulated in the ileum and kidney but LAT1 was downregulated only in kidney of the deficient group compared to control. In the P. major, SNAT1, SNAT2, and CAT1 were upregulated in the deficient group compared to control. A diet deficiency in methionine affects digestibility of essential amino acids and cysteine, but not the digestibility of methionine. The change in digestibility is reflected in the mRNA expression of amino acid transporters across different tissues.
Collapse
Affiliation(s)
- Naiara S Fagundes
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602; Department of Animal Science, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Marie C Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Susan M Williams
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Manuel J Da Costa
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Alberta L Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - José F Menten
- Department of Animal Science, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Samuel E Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
229
|
Sardar S, Weitz A, Hendrich MP, Pierce BS. Outer-Sphere Tyrosine 159 within the 3-Mercaptopropionic Acid Dioxygenase S-H-Y Motif Gates Substrate-Coordination Denticity at the Non-Heme Iron Active Site. Biochemistry 2019; 58:5135-5150. [PMID: 31750652 PMCID: PMC10071547 DOI: 10.1021/acs.biochem.9b00674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Regardless of the phylogenic domain, the active site for this enzyme class is typically comprised of two major features: (1) a mononuclear ferrous iron coordinated by three protein-derived histidines and (2) a conserved sequence of outer Fe-coordination-sphere amino acids (Ser-His-Tyr) spatially adjacent to the iron site (∼3 Å). Here, we utilize a promiscuous 3-mercaptopropionic acid dioxygenase cloned from Azotobacter vinelandii (Av MDO) to explore the function of the conserved S-H-Y motif. This enzyme exhibits activity with 3-mercaptopropionic acid (3mpa), l-cysteine (cys), as well as several other thiol-bearing substrates, thus making it an ideal system to study the influence of residues within the highly conserved S-H-Y motif (H157 and Y159) on substrate specificity and reactivity. The pKa values for these residues were determined by pH-dependent steady-state kinetics, and their assignments verified by comparison to H157N and Y159F variants. Complementary electron paramagnetic resonance and Mössbauer studies demonstrate a network of hydrogen bonds connecting H157-Y159 and Fe-bound ligands within the enzymatic Fe site. Crucially, these experiments suggest that the hydroxyl group of Y159 hydrogen bonds to Fe-bound NO and, by extension, Fe-bound oxygen during native catalysis. This interaction alters both the NO binding affinity and rhombicity of the 3mpa-bound iron-nitrosyl site. In addition, Fe coordination of cys is switched from thiolate only to bidentate (thiolate/amine) for the Y159F variant, indicating that perturbations within the S-H-Y proton relay network also influence cys Fe binding denticity.
Collapse
Affiliation(s)
- Sinjinee Sardar
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States
| | - Andrew Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Brad S Pierce
- Department of Chemistry and Biochemistry , University of Alabama , 250 Hackberry Lane , Tuscaloosa , Alabama 35487 , United States
| |
Collapse
|
230
|
Marcelino H, Nogueira VC, Santos CRA, Quelhas P, Carvalho TMA, Fonseca-Gomes J, Tomás J, Diógenes MJ, Sebastião AM, Cascalheira JF. Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. J Neurochem 2019; 153:455-467. [PMID: 31811731 DOI: 10.1111/jnc.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase release and by western blot analysis of αII-Spectrin cleavage. 30 µM-Adenosine caused a 40% ± 3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100 µM-Homocysteine alone caused 16% ± 3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76% ± 4%, an effect higher (p < .05) than the sum of the effects of adenosine and homocysteine alone (56% ± 5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100 µM) or SAM (50-100 µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Vanda C Nogueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Cecília R A Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Quelhas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João Fonseca-Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria J Diógenes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
231
|
Castro FLS, Kim HY, Hong YG, Kim WK. The effect of total sulfur amino acid levels on growth performance, egg quality, and bone metabolism in laying hens subjected to high environmental temperature. Poult Sci 2019; 98:4982-4993. [PMID: 31152669 DOI: 10.3382/ps/pez275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the effects of total sulfur amino acid (TSAA) levels on performance, egg quality, and bone metabolism in laying hens subjected or not to high environmental temperature (HT). HyLine W36 layers (n = 144) were randomly distributed in a 2 × 3 factorial arrangement. Room temperature (control, CR: 21°C/24 h; and high temperature, HR: 32°C/8 h) and diets (70, 85, or 100% of TSAA) were the main factors, with 4 replicates of 6 birds (19 to 45 wk). The TSAA levels were obtained by adding L-Methionine (L-Met) to the basal diet (70% of TSAA) until 85 and 100% of TSAA were reached. At weeks 21, 34, and 45, growth performance, egg production, and egg quality traits were evaluated. At 45 wk, bones were evaluated for collagenous and non-collagenous proteins, bone volume, mineral content, and mineral density from total, cortical, trabecular, and medullary portions. When interactions were found, the increase of TSAA levels (85 and 100%) was able to counteract the negative effects of HT. In general, HT reduced egg production (P < 0.05) and did not significantly affect bone quality. The birds fed 70% of TSAA showed higher feed conversion, lower body weight, egg weight, and egg mass than birds fed 85 and 100% of TSAA in at least one phase. The birds fed 100% of TSAA showed higher egg production and egg mass than the other treatments at 21 wk of age. The cortical and trabecular bone mineral densities were higher for birds fed 100 than 70% of TSAA, whereas the medullary bone mineral content and density were higher for birds fed 70 than 100% of TSAA. In conclusion, HT had negative impact on performance, egg quality and no effect on bone development. The supplementation of L-Met until either 85 or 100% of TSAA levels were reached was enough to assure good performance, egg quality, and bone development in laying hens subjected or not to HT.
Collapse
Affiliation(s)
- F L S Castro
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - H Y Kim
- CJ Corporation, 330 Dongho-ro, Jung-gu, Seoul 100-400, South Korea
| | - Y G Hong
- CJ Corporation, 330 Dongho-ro, Jung-gu, Seoul 100-400, South Korea
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
232
|
Fischer AA, Miller JR, Jodts RJ, Ekanayake DM, Lindeman SV, Brunold TC, Fiedler AT. Spectroscopic and Computational Comparisons of Thiolate-Ligated Ferric Nonheme Complexes to Cysteine Dioxygenase: Second-Sphere Effects on Substrate (Analogue) Positioning. Inorg Chem 2019; 58:16487-16499. [PMID: 31789510 DOI: 10.1021/acs.inorgchem.9b02432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parallel spectroscopic and computational studies of iron(III) cysteine dioxygenase (CDO) and synthetic models are presented. The synthetic complexes utilize the ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP), which mimics the facial three-histidine triad of CDO and other thiol dioxygenases. In addition to the previously reported [FeII(CysOEt)(Ph2TIP)]BPh4 (1; CysOEt is the ethyl ester of anionic l-cysteine), the formation and crystallographic characterization of [FeII(2-MTS)(Ph2TIP)]BPh4 (2) is reported, where the methyl 2-thiosalicylate anion (2-MTS) resembles the substrate of 3-mercaptopropionate dioxygenase (MDO). One-electron chemical oxidation of 1 and 2 yields ferric species that bind cyanide and azide anions, which have been used as spectroscopic probes of O2 binding in prior studies of FeIII-CDO. The six-coordinate FeIII-CN and FeIII-N3 adducts are examined with UV-vis absorption, electron paramagnetic resonance (EPR), and resonance Raman (rRaman) spectroscopies. In addition, UV-vis and rRaman studies of cysteine- and cyanide-bound FeIII-CDO are reported for both the wild-type (WT) enzyme and C93G variant, which lacks the Cys-Tyr cross-link that is present in the second coordination sphere of the WT active site. Density functional theory (DFT) and ab initio calculations are employed to provide geometric and electronic structure descriptions of the synthetic and enzymatic FeIII adducts. In particular, it is shown that the complete active space self-consistent field (CASSCF) method, in tandem with n-electron valence state second-order perturbation theory (NEVPT2), is capable of elucidating the structural basis of subtle shifts in EPR g values for low-spin FeIII species.
Collapse
Affiliation(s)
- Anne A Fischer
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Joshua R Miller
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Richard J Jodts
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Danushka M Ekanayake
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Sergey V Lindeman
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Thomas C Brunold
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Adam T Fiedler
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| |
Collapse
|
233
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
234
|
Mujica-Coopman MF, Tan A, Schroder TH, Sinclair G, Vallance HD, Lamers Y. Serum Betaine and Dimethylglycine Are Higher in South Asian Compared with European Pregnant Women in Canada, with Betaine and Total Homocysteine Inversely Associated in Early and Midpregnancy, Independent of Ethnicity. J Nutr 2019; 149:2145-2155. [PMID: 31504713 DOI: 10.1093/jn/nxz178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/11/2019] [Accepted: 07/08/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As a methyl donor required in the folate-vitamin B-12 independent remethylation of total homocysteine (tHcy) to methionine, betaine is critical for fetal development. Pregnant South Asian women living in Canada had a higher reported prevalence of low vitamin B-12 status compared with Europeans; betaine concentrations in this population are unknown. OBJECTIVES We aimed to compare serum betaine concentrations between South Asian and European pregnant women, and to determine the relation between betaine and tHcy concentrations in early pregnancy. METHODS A retrospective cohort study was conducted using biobanked serum samples of 723 apparently healthy pregnant women of South Asian (50%) and European ethnicity residing in British Columbia, Canada. Betaine, dimethylglycine (DMG), tHcy, and related metabolites were quantified in samples collected in the first (8-13 weeks of gestation) and second (14-20 weeks of gestation) trimesters. The relation between betaine and tHcy concentrations was assessed using a generalized regression model adjusted for weeks of gestation, ethnicity, prepregnancy BMI, maternal age, neonatal sex, parity, total vitamin B-12, folate, pyridoxal 5'-phosphate, and methionine concentrations. RESULTS Median serum concentrations of betaine and its metabolite DMG were higher in South Asian women in the first (19.8 [IQR: 16.3-25.0] and 1.55 [IQR: 1.30-1.96] $\mu {\rm mol/L} $, respectively) and second trimesters (16.1 [IQR: 12.9-19.8] and 1.42 [IQR: 1.14-1.81] $\mu {\rm mol/L} $, respectively) compared with European women (17.6 [IQR: 13.7-22.6] and 1.38 [IQR: 1.12-1.77] $\mu {\rm mol/L} $, respectively) and (12.9 [IQR: 10.6-16.7] and 1.19 [IQR: 0.97-1.52] $\mu {\rm mol/L} $, respectively; all P values < 0.0001). Betaine was inversely associated with tHcy concentration (β = -0.0208; 95% CI: -0.0341, -0.00742; P = 0.002). Additionally, total vitamin B-12 was associated with tHcy concentration (β = -0.0312; 95% CI: -0.0401, -0.0224), after adjusting for confounding factors. CONCLUSIONS Pregnant South Asian women residing in Canada had higher betaine and DMG concentrations, compared with women of European ethnicity, while betaine and total vitamin B-12 predicted tHcy independent of ethnicity. Our results emphasize the role of betaine, as methyl donor, in the remethylation of tHcy in a folate-replete population.
Collapse
Affiliation(s)
- Maria F Mujica-Coopman
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amy Tan
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Theresa H Schroder
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Graham Sinclair
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary D Vallance
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
235
|
Yang B, Xu J, Zhu HL. Recent progress in the small-molecule fluorescent probes for the detection of sulfur dioxide derivatives (HSO 3-/SO 32-). Free Radic Biol Med 2019; 145:42-60. [PMID: 31525454 DOI: 10.1016/j.freeradbiomed.2019.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Sulfur dioxide (SO2) had been recognized as an environmental pollutant produced from industrial processes. SO2 is water soluble and forms hydrated SO2 (SO2·H2O), bisulfite ion (HSO3-), and sulfite ion (SO32-) upon dissolution in water. SO2 could be also produced endogenously from sulfur-containing amino acids l-cysteine in mammals. Endogenous SO2 can maintain the balance of biological sulfur and redox equilibrium in vivo, regulate blood insulin levels and reduce blood pressure. Excess intake of exogenous SO2 can result in respiratory diseases, cardiovascular diseases and neurological disorders. As a result, fluorescent probes to detect HSO3-/SO32- have attracted great attention in recent years. Herein, a general overview was provided with the aim to highlight the typical examples of the HSO3-/SO32- fluorescent probes reported since 2010, especially those in the past five years. We have classified HSO3-/SO32- fluorescent probes through different chemical reaction mechanisms and wish this review will give some help to the researchers in this field.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China; School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Jing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
236
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
237
|
Górny M, Wnuk A, Kamińska A, Kamińska K, Chwatko G, Bilska-Wilkosz A, Iciek M, Kajta M, Rogóż Z, Lorenc-Koci E. Glutathione Deficiency and Alterations in the Sulfur Amino Acid Homeostasis during Early Postnatal Development as Potential Triggering Factors for Schizophrenia-Like Behavior in Adult Rats. Molecules 2019; 24:molecules24234253. [PMID: 31766654 PMCID: PMC6930621 DOI: 10.3390/molecules24234253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Impaired glutathione (GSH) synthesis and dopaminergic transmission are important factors in the pathophysiology of schizophrenia. Our research aimed to assess the effects of l-buthionine-(S,R)-sulfoximine (BSO), a GSH synthesis inhibitor, and GBR 12909, a dopamine reuptake inhibitor, administered alone or in combination, to Sprague–Dawley rats during early postnatal development (p5–p16), on the levels of GSH, sulfur amino acids, global DNA methylation, and schizophrenia-like behavior. GSH, methionine (Met), homocysteine (Hcy), and cysteine (Cys) contents were determined in the liver, kidney, and in the prefrontal cortex (PFC) and hippocampus (HIP) of 16-day-old rats. DNA methylation in the PFC and HIP and schizophrenia-like behavior were assessed in adulthood (p90–p93). BSO caused the tissue-dependent decreases in GSH content and alterations in Met, Hcy, and Cys levels in the peripheral tissues and in the PFC and HIP. The changes in these parameters were accompanied by alterations in the global DNA methylation in the studied brain structures. Parallel to changes in the global DNA methylation, deficits in the social behaviors and cognitive functions were observed in adulthood. Only BSO + GBR 12909-treated rats exhibited behavioral alterations resembling positive symptoms in schizophrenia patients. Our results suggest the usefulness of this neurodevelopmental model for research on the pathomechanism of schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Adrianna Kamińska
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland; (A.K.); (G.C.)
| | - Kinga Kamińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland; (A.K.); (G.C.)
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
238
|
Effects of the Methionine Hydroxyl Analogue Chelate Zinc on Antioxidant Capacity and Liver Metabolism Using 1H-NMR-Based Metabolomics in Aged Laying Hens. Animals (Basel) 2019; 9:ani9110898. [PMID: 31683848 PMCID: PMC6912617 DOI: 10.3390/ani9110898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Zinc, an essential trace element for laying hens, plays an important role in biological processes, such as growth, tissue growth and repairment, skeletal development, and immune competence, which also has better effects on growth performance, biochemical indexes, and antioxidant capacity. Our previous work has shown that methionine hydroxyl analogue chelated zinc (MHA-Zn) has better effects on eggshell quality, the apparent retention of minerals and nutrients, trace element deposit, and metallothionein (MT) mRNA expression. The objective of the current study was to investigate the effects of different levels of MHA-Zn on antioxidant capacity and liver metabolism of aged laying hens. The results suggest that dietary supplementation of MHA-Zn levels at 80 mg/kg has better effects on antioxidant capacity and liver metabolism, as well as homeostasis of the body. Abstract This study aimed to investigate the effects of different levels of methionine hydroxyl analogue chelated zinc (MHA-Zn) on antioxidant capacity and liver metabolism of aged laying hens. A total of 960 57-week-old layers were fed a basal diet (Zn: 35.08 mg/kg) without extra zinc for two weeks, and then allocated to four treatments consisting of eight replicates of 30 birds each for 14 weeks. Four levels of Zn (zinc sulfate (ZnSO4): 80 mg/kg; MHA-Zn: 20, 40, 80 mg/kg) were added to the diet. The results indicated that compared with inorganic zinc, organic zinc of 80 mg/kg has a significant advantage in improving the antioxidant capacity of aged hens, which increased the level of Cu/Zn-superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC) in the serum and liver, and reduced the concentration of malondialdehyde (MDA) of laying hens. The serum albumen composition was significantly modified, meanwhile, the level of total protein, globulin, and urea increased remarkably, whereas serum glutamic-oxaloacetic transaminase decreased notably in 80 mg/kg MHA-Zn groups. Compared with the 20 mg/kg MHA-Zn group, the metabolic profile of 40 and 80 mg/kg MHA-Zn groups was higher than that of the inorganic zinc group. Furthermore, integrated key metabolic pathway analysis showed that 40 and 80 mg/kg MHA-Zn groups participated in the regulation of glutathione metabolism, glycine, serine, and threonine metabolism. Therefore, this study suggests that 40 and 80 mg/kg supplementation of MHA-Zn can increase the activity of Cu/Zn-SOD and T-AOC and decrease MDA; additionally the 80 mg/kg MHA-Zn group has better antioxidant capacity. Meanwhile, the enhanced MHA-Zn promoted methionine (Met) synthesis and protein metabolism.
Collapse
|
239
|
Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2019; 2:379. [PMID: 31633070 PMCID: PMC6795801 DOI: 10.1038/s42003-019-0616-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022] Open
Abstract
Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photosynthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2, O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
- Present Address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
240
|
Chu Y, Xie Z, Zhuang D, Yue Y, Yue Y, Shi W, Feng S. An Intramolecular Charge Transfer and Aggregation Induced Emission Enhancement Fluorescent Probe Based on 2‐Phenyl‐1,2,3‐triazole for Highly Selective and Sensitive Detection of Homocysteine and Its Application in Living Cells. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yicheng Chu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University 8 Xindu Road, Xindu Chengdu Sichuan 610500 China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University 8 Xindu Road, Xindu Chengdu Sichuan 610500 China
| | - Daijiao Zhuang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University 8 Xindu Road, Xindu Chengdu Sichuan 610500 China
| | - Yongshuang Yue
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University 8 Xindu Road, Xindu Chengdu Sichuan 610500 China
| | - Yuhua Yue
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University 8 Xindu Road, Xindu Chengdu Sichuan 610500 China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| |
Collapse
|
241
|
Zang J, Chen Y, Zhu W, Lin S. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Biochemistry 2019; 59:132-138. [PMID: 31592657 DOI: 10.1021/acs.biochem.9b00789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methionine is one of the most hydrophobic, redox-sensitive, and one of the only two sulfur-containing amino acids on protein. Because of these biochemical properties, the methionine residue plays a central role in a variety of biological processes, such as metal coordination, antioxidant stress, and aging. However, studies on the molecular functions of methionine are much less common than the other primary sulfur-containing amino acid, cysteine. The limited number of publications on methionine-related studies is partially due to the lack of tools for methionine modification. Methionine bioconjugation offers a new strategy to decipher the biological function of methionine and expands the toolbox for protein functionalization in the context of the application, such as synthesizing proteins with novel properties and producing new biomaterials. The purpose of this Perspective is to highlight the biochemical properties and functions of methionine, list recent progress in the development of methionine bioconjugation reagents, and briefly demonstrate the application of these reagents on polypeptides, proteins, and proteomes.
Collapse
Affiliation(s)
- Jia Zang
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Yulin Chen
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Wenxuan Zhu
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Shixian Lin
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
242
|
Srivastava AC, Thompson YG, Singhal J, Stellern J, Srivastava A, Du J, O'Connor TR, Riggs AD. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells. FASEB J 2019; 33:13747-13761. [PMID: 31585510 DOI: 10.1096/fj.201901721r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folates are vital cofactors for the regeneration of S-adenosyl methionine, which is the methyl source for DNA methylation, protein methylation, and other aspects of one-carbon (C1) metabolism. Thus, folates are critical for establishing and preserving epigenetic programming. Folypolyglutamate synthetase (FPGS) is known to play a crucial role in the maintenance of intracellular folate levels. Therefore, any modulation in FPGS is expected to alter DNA methylation and numerous other metabolic pathways. To explore the role of polyglutamylation of folate, we eliminated both isoforms of FPGS in human cells (293T), producing FPGS knockout (FPGSko) cells. The elimination of FPGS significantly decreased cell proliferation, with a major effect on oxidative phosphorylation and a lesser effect on glycolysis. We found a substantial reduction in global DNA methylation and noteworthy changes in gene expression related to C1 metabolism, cell division, DNA methylation, pluripotency, Glu metabolism, neurogenesis, and cardiogenesis. The expression levels of NANOG, octamer-binding transcription factor 4, and sex-determining region Y-box 2 levels were increased in the mutant, consistent with the transition to a stem cell-like state. Gene expression and metabolite data also indicate a major change in Glu and GABA metabolism. In the appropriate medium, FPGSko cells can differentiate to produce mainly cells with characteristics of either neural stem cells or cardiomyocytes.-Srivastava, A. C., Thompson, Y. G., Singhal, J., Stellern, J., Srivastava, A., Du, J., O'Connor, T. R., Riggs, A. D. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells.
Collapse
Affiliation(s)
- Avinash C Srivastava
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | | | - Jyotsana Singhal
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | - Jordan Stellern
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Anviksha Srivastava
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Juan Du
- Integrative Genomics Core Facility, City of Hope National Medical Center, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
243
|
Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933909000300] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
244
|
Rakhshandeh A, de Lange CFM, Htoo JK, Gheisari A, Rakhshandeh AR. Immune system stimulation increases the plasma cysteine flux and whole-body glutathione synthesis rate in starter pigs1. J Anim Sci 2019; 97:3871-3881. [PMID: 31251357 PMCID: PMC6736144 DOI: 10.1093/jas/skz211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 01/21/2023] Open
Abstract
Glutathione (GSH) is the major intracellular thiol that plays a role in numerous detoxification, bio-reduction, and conjugation reactions. The availability of Cys is thought to be the rate-limiting factor for the synthesis of GSH. The effects of immune system stimulation (ISS) on GSH levels and the GSH synthesis rate in various tissues, as well as the plasma flux of Cys, were measured in starter pigs fed a sulfur AA (SAA; Met + Cys) limiting diet. Ten feed-restricted gilts with initial body weight (BW) of 7.0 ± 0.12 kg were injected i.m. twice at 48-h intervals with either sterile saline (n = 4; ISS-) or increasing amounts of Escherichia coli lipopolysaccharide (n = 6; ISS+). The day after the second injection, pigs received a primed constant infusion of 35S-Cys (9,300 kBq/pig/h) for 5 h via a jugular catheter. Blood and tissue free Cys and reduced GSH were isolated and quantified as the monobromobimane derivatives by HPLC. The rate of GSH synthesis was determined by measurement of the specific radioactivity of GSH and tissue free Cys at the end of the infusion period. Plasma Cys and total SAA levels were reduced (16% and 21%, respectively), but plasma Cys flux was increased (26%) by ISS (P < 0.05). Immune system stimulation increased GSH levels in the plasma (48%; P < 0.05), but had no effect on GSH levels in the liver, small and large intestines, heart, muscle, spleen, kidney, lung, and erythrocytes. The fractional synthesis rate (FSR) of GSH was higher (P < 0.05) in the liver (34%), small intestine (78%), large intestine (72%), heart (129%), muscle (37%), and erythrocytes (47%) of ISS+ pigs compared to ISS- pigs. The FSR of GSH tended (P = 0.08) to be higher in the lungs (45%) of ISS+ pigs than in ISS- pigs. The absolute rate of GSH synthesis was increased by ISS (mmol/kg wet tissue/d ± SE, ISS- vs. ISS+; P < 0.05) in the liver (5.22 ± 0.22 vs. 7.20 ± 0.59), small intestine (2.54 ± 0.25 vs. 4.52 ± 0.56), large intestine (0.61 ± 0.06 vs. 1.06 ± 0.16), heart (0.21 ± 0.03 vs. 0.48 ± 0.08), lungs (1.50 ± 0.10 vs. 2.90 ± 0.21), and muscle (0.21 ± 0.03 vs. 0.34 ± 0.04), but it remained unchanged in erythrocytes, the kidney, and the spleen (P > 0.80). The current findings suggest that GSH synthesis is increased during ISS, contributing to enhanced maintenance sulfur amino acid requirements in starter pigs during ISS.
Collapse
Affiliation(s)
- Anoosh Rakhshandeh
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - John K Htoo
- Health and Nutrition, Evonik Nutrition & Care GmbH, Rodenbacher Chaussee, Hanau, Germany
| | - Abbasali Gheisari
- Health and Nutrition, Evonik Nutrition & Care GmbH, Rodenbacher Chaussee, Hanau, Germany
| | | |
Collapse
|
245
|
Wang YS, Ye J, Yang X, Zhang GP, Cao YH, Zhang R, Dai W, Zhang Q. Association of retinol binding protein-4, cystatin C, homocysteine and high-sensitivity C-reactive protein levels in patients with newly diagnosed type 2 diabetes mellitus. Arch Med Sci 2019; 15:1203-1216. [PMID: 31572465 PMCID: PMC6764307 DOI: 10.5114/aoms.2018.79565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/30/2018] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION To investigate the serum retinol binding protein (RBP)-4, cystatin C (Cys C), homocysteine (HCY) and high-sensitivity C-reactive protein (hs-CRP) levels in newly diagnosed type 2 diabetes mellitus (NT2DM) patients, prediabetes mellitus (PDM) subjects and normal controls, as well as their correlation with clinical and laboratory indexes, such as blood pressure and lipoprotein. MATERIAL AND METHODS A total of 242 subjects, including 141 NT2DM patients, 48 PDM subjects and 53 healthy controls, were recruited in the present study. Serum RBP-4, Cys C and hs-CRP concentrations were measured by enzyme-linked immunosorbent assay (ELISA). HCY concentration was determined by the chemical luminescence method. RESULTS There were significant differences in Cys C and hs-CRP among NT2DM patients, PDM subjects and normal controls. In comparison to controls, there were significantly elevated Cys C and hs-CRP levels in PDM (both p < 0.001), and a significantly increased Cys C level in NT2DM (p < 0.001); however, there were no significant differences in Cys C and hs-CRP levels between NT2DM and PDM, and no significant differences of hs-CRP levels between NT2DM and normal controls. No significant differences of RBP-4 and HCY levels among NT2DM, PDM and normal control groups were observed. CONCLUSIONS Aberrant Cys C expression and its clinical associations in NT2DM suggest their important role in this disease.
Collapse
Affiliation(s)
- Yun-Sheng Wang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Endocrinology, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Jun Ye
- Department of Endocrinology, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Xiao Yang
- Department of Ultrasonography, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Gui-Ping Zhang
- Department of Ultrasonography, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Yong-Hong Cao
- Department of Endocrinology, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Rong Zhang
- Department of Endocrinology, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Wu Dai
- Department of Endocrinology, the Second Hospital of Hefei City, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
246
|
Alharthi AS, Coleman DN, Liang Y, Batistel F, Elolimy AA, Yambao RC, Abdel-Hamied E, Pan YX, Parys C, Alhidary IA, Abdelrahman MM, Loor JJ. Hepatic 1-carbon metabolism enzyme activity, intermediate metabolites, and growth in neonatal Holstein dairy calves are altered by maternal supply of methionine during late pregnancy. J Dairy Sci 2019; 102:10291-10303. [PMID: 31477291 DOI: 10.3168/jds.2019-16562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
Maternal supply of methyl donors such as methionine (Met) during late pregnancy can affect offspring growth and development. The objective was to investigate the effect of postruminal Met supply during late pregnancy on 1-carbon, Met cycle, and transsulfuration pathways in the calf liver. During the last 28 d of pregnancy, cows were individually fed a control diet or the control diet plus rumen-protected dl-Met (MET; 0.09% dry matter intake). Liver samples obtained from calves (n = 14/group) at 4, 14, 28, and 50 d of age were used for metabolomics, real-time PCR, and enzyme activity analyses. Genes associated with 1-carbon metabolism, DNA methylation, and the cytidine 5'-diphosphocholine-choline pathway were analyzed via real-time PCR. Activity of betaine homocysteine methyltransferase, cystathionine β-synthase, and 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) was analyzed using 14C isotopes. Data were analyzed using a mixed model that included the fixed effects of maternal treatment, day, and their interaction, and the random effect was calf within maternal diet. Calves born to dams offered MET tended to have greater birth body weight and had overall greater body weight during the first 9 wk of life. However, no differences were detected for daily feed intake and average daily gain between groups. Concentrations of betaine and choline, reflecting Met cycle activity, at d 14 through 28 were greater in MET calves. Transsulfuration pathway intermediates also were altered in MET calves, with concentrations of cysteine sulfinic acid and hypotaurine (d 4 and 14) and taurine being greater (d 4, 14, 28, and 50). Despite the lack of differences in daily feed intake, the greater concentrations of the tricarboxylic acid cycle intermediates fumarate and glutamate along with NAD/NADH in MET calves indicated enhanced rates of energy metabolism. Although activity of betaine homocysteine methyltransferase was greater in MET calves at d 14, cystathionine β-synthase was lower and increased at d 14 and 28, where it was greater compared with the control diet. Activity of MTR was lower at d 4 and 50 in MET calves. Among gene targets measured, MET calves had greater overall expression of MTR, phosphatidylethanolamine N-methyltransferase, and choline kinase α and β. An interaction of maternal diet by time was detected for mRNA abundance of DNA methyltransferase 3α (involved in de novo methylation) due to greater values at d 4 and 14 in MET calves. Overall, the data indicate that enhanced postruminal supply of Met to cows during late pregnancy may program hepatic metabolism of the calf in the context of maintaining Met homeostasis, phosphatidylcholine and taurine synthesis, DNA methylation, and energy metabolism. These alterations potentially result in better efficiency of nutrient use, hence conferring the calf a physiologic advantage during a period of rapid growth and development. The precise biologic mechanisms remain to be established.
Collapse
Affiliation(s)
- A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322-4815
| | - A A Elolimy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R C Yambao
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Abdel-Hamied
- Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt 62511
| | - Y-X Pan
- Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany 63457
| | - I A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
247
|
Wei H, Zhao X, Xia M, Tan C, Gao J, Htoo JK, Xu C, Peng J. Different dietary methionine to lysine ratios in the lactation diet: effects on the performance of sows and their offspring and methionine metabolism in lactating sows. J Anim Sci Biotechnol 2019; 10:76. [PMID: 31440375 PMCID: PMC6704691 DOI: 10.1186/s40104-019-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Over the last decade, the nutritional requirements of lactating modern genotype sows have increased. The current nutritional recommendations might be unable to meet the needs of increased litter size and milk production, and thus the nutritional requirements need to be re-evaluated. The current study was conducted to investigate the effects of dietary methionine to lysine (Met:Lys) ratios on the performance of and methionine metabolism in lactating sows. Results During the 1st week of lactation, piglets reared on sows in the 0.37 to 0.57 Met:Lys ratio groups grew faster than those reared on sows in the control group (0.27) (P < 0.01). The 0.37-ratio group showed increased levels of GSH-Px in plasma during lactation (P < 0.01) and decreased concentrations of urea nitrogen in the plasma of sows (P < 0.05). Compared with the 0.27-ratio group, the levels of T-AOC and GSH-Px in the plasma and homocysteine in the milk of lactating sows were significantly increased in sows in the 0.47-ratio group (P < 0.01). In sows fed a 0.57-ratio diet, the levels of glutathione and taurine in the plasma and milk were improved significantly during lactation. However, the content of TBARS in the blood (P < 0.05 at day 7 and P = 0.06 at weaning day) was increased (P < 0.01). Moreover, there were linear increases in the levels of homocysteine in the blood and milk of sows during the lactation period (P < 0.01) with increased dietary Met:Lys ratios in the lactation diet. Conclusions The current study indicated that increasing the dietary Met:Lys ratio (0.37~0.57) in the lactation diet had no significant effect on the overall performance of sows or the colostrum and milk composition, but it increased piglet mean BW and piglet ADG during the first week of lactation. Increasing dietary methionine levels had no significant effect on antioxidant function in lactation sows, even though it increased levels of GSH and GSH-Px in the plasma of sows during lactation. However, the content of homocysteine in the plasma and milk increased during lactation due to a high level of dietary methionine.
Collapse
Affiliation(s)
- Hongkui Wei
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xichen Zhao
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.,2Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mao Xia
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chengquan Tan
- 2Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jun Gao
- Evonik Degussa (China) Co., Ltd, Beijing, People's Republic of China
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Essen, Germany
| | - Chuanhui Xu
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Peng
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
248
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
249
|
Chan KX, Phua SY, Van Breusegem F. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4237-4250. [PMID: 30868163 DOI: 10.1093/jxb/erz119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
The sulfur metabolism pathway in plants produces a variety of compounds that are central to the acclimation response to oxidative stresses such as drought and high light. Primary sulfur assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as a corresponding by-product 3'-phosphoadenosine 5'-phosphate (PAP). Emerging evidence over the past decade has shown that secondary sulfur metabolism also has a crucial engagement during oxidative stress. This occurs across various cellular, tissue, and organismal levels including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of hormonal signalling by sulfated compounds and PAP, control of physiological responses such as stomatal closure, and potential regulation of plant growth. In this review, we examine the contribution of the different components of plant secondary metabolism to oxidative stress homeostasis, and how this pathway is metabolically regulated. We further outline the key outstanding questions in the field that are necessary to understand how and why this 'specialized' metabolic pathway plays significant roles in plant oxidative stress tolerance.
Collapse
Affiliation(s)
- Kai Xun Chan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Su Yin Phua
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| |
Collapse
|
250
|
Siva Subramaniam N, Bawden C, Rudiger S, Yazbeck R, Faull R, Snell R, Howarth G. Development of a novel 13C-labelled methionine breath test protocol for potential assessment of hepatic mitochondrial function in sheep using isotope-ratio mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 442:102-108. [DOI: 10.1016/j.ijms.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|