201
|
Alpinate Oxyphyllae
extracts enhance the longevity and homing of mesenchymal stem cells and augment their protection against senescence in H9c2 cells. J Cell Physiol 2018; 234:12042-12050. [DOI: 10.1002/jcp.27867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
|
202
|
Wu ZY, Li H, Tang YJ. Effect of simvastatin on the SIRT2/NF-κB pathway in rats with acute pulmonary embolism. PHARMACEUTICAL BIOLOGY 2018; 56:511-518. [PMID: 31070532 PMCID: PMC6282435 DOI: 10.1080/13880209.2018.1508239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Statins have been widely used in acute pulmonary embolism (APE), while simvastatin has been well-established for the prevention of pulmonary hypertension, which was supposed to be an attractive recommendation for APE treatment. OBJECTIVE The current article studies the effect of simvastatin on the SIRT2/NF-κB pathway in rats with APE. MATERIALS AND METHODS Sprague-Dawley rats were divided into four groups (n = 24 per group): control group, rats were treated with saline once daily for 14 days before administration of saline (sham group) or a suspension of autologous emboli (APE group), or rats were treated with simvastatin (10 mg/kg) for 14 days before administration of autologous emboli (APE + simvastatin) group. The RVSP, mPAP and the arterial blood gas was analyzed. Besides, plasma inflammatory cytokines and MMPs levels, as well as the expression of SIRT2/NF-κB pathway were determined. RESULTS Compared with the control and sham groups, the levels of mPAP (31.06 ± 3.47 mmHg), RVSP (35.12 ± 6.02 mmHg), A-aDO2 (33.14 ± 6.16 mmHg) and MMP-9 (6.89 ± 0.84 ng/mL) activity were significantly elevated, but PaO2 (66.87 ± 7.85 mmHg) was highly decreased in rats from APE group at 24 h after APE. Meanwhile, the inflammatory changes were aggravated by the enhanced levels of TNF-α (138.85 ± 22.69 pg/mL), IL-1β (128.47 ± 22.14 pg/mL), IL-6 (103.16 ± 13.58 pg/mL) and IL-8 (179.28 ± 25.79 pg/mL), as well as increased NF-κB (5.29 ± 0.47 fold), but reduced SIRT2 (59 ± 6% reduction), and eNOS (61 ± 5% reduction) mRNA in APE rats. APE rats treated with simvastatin led to a significant opposite trend of the above indexes. CONCLUSIONS Simvastatin protects against APE-induced pulmonary artery pressure, hypoxemia and inflammatory changes probably due to the regulation of SIRT2/NF-κB signalling pathway, which suggest that simvastatin may have promising protective effects in patients with APE.
Collapse
Affiliation(s)
- Zhi-Yao Wu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Jun Tang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
203
|
Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med 2018; 43:839-849. [PMID: 30483753 PMCID: PMC6317688 DOI: 10.3892/ijmm.2018.3996] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
In the present study, the function of microRNA (miR)-140-5p on oxidative stress in mice with atherosclerosis was investigated. A reverse transcription-quantitative polymerase chain reaction assay was used to determine the expression of miR-140-5p. Oxidative stress kits and reactive oxygen species (ROS) kits were used to analyze alterations in oxidative stress and ROS levels. The alterations in protein expression were determined using western blot analysis and an immunofluorescence assay. miR-140-5p expression was increased in mice with atherosclerosis with hypertension. Consistently, miR-140-5p expression was also increased in mice with atherosclerosis. Upregulation of miR-140-5p increased oxidative stress and ROS levels by suppressing the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuin 2 (Sirt2), Kelch-like enoyl-CoA hydratase-associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in vitro. By contrast, downregulation of miR-140-5p decreased oxidative stress and ROS levels by activating the protein expression of Nrf2, Sirt2, Keap1 and HO-1 in vitro. Sirt2 agonist or Nrf2 agonist inhibited the effects of miR-140-5p on oxidative stress in vitro. Collectively, these results suggested that miR-140-5p aggravated hypertension and oxidative stress of mice with atherosclerosis by targeting Nrf2 and Sirt2.
Collapse
Affiliation(s)
- Qing-Quan Liu
- Department of General Surgery II, Central Hospital of Luohe, Luohe, Henan 462000, P.R. China
| | - Ke Ren
- Department of General Surgery II, Central Hospital of Luohe, Luohe, Henan 462000, P.R. China
| | - Su-Hong Liu
- Department of General Surgery II, Central Hospital of Luohe, Luohe, Henan 462000, P.R. China
| | - Wei-Min Li
- Department of Vascular Surgery, The Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Chang-Jun Huang
- Department of General Surgery II, Central Hospital of Luohe, Luohe, Henan 462000, P.R. China
| | - Xiu-Hui Yang
- Department of General Surgery II, Central Hospital of Luohe, Luohe, Henan 462000, P.R. China
| |
Collapse
|
204
|
Satoh K, Shimokawa H. Sirtuin 5 promotes ischemia/reperfusion-induced blood-brain barrier damage after stroke. Int J Cardiol 2018; 284:77-78. [PMID: 30448019 DOI: 10.1016/j.ijcard.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
205
|
Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG. Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 2018; 113:46. [PMID: 30353243 PMCID: PMC6314032 DOI: 10.1007/s00395-018-0703-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.
Collapse
Affiliation(s)
- Parul Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yiru Guo
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yibing Nong
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Qianhong Li
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - James A Bradley
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Bradford G Hill
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA.
| |
Collapse
|
206
|
Mongelli A, Gaetano C. Controversial Impact of Sirtuins in Chronic Non-Transmissible Diseases and Rehabilitation Medicine. Int J Mol Sci 2018; 19:ijms19103080. [PMID: 30304806 PMCID: PMC6213918 DOI: 10.3390/ijms19103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration or complete healing. The molecular basis of this exciting outcome—however, remain largely obscure. Epigenetics, exploring at the interface between environmental signals and the remodeling of chromatin structure, promises to shed light on this intriguing matter possibly contributing to the identification of novel therapeutic targets. In this review, we shall focalize on the role of sirtuins (Sirts) a class III histone deacetylases (HDACs), which function has been frequently associated, often with a controversial role, to the pathogenesis of aging-associated pathophysiological conditions, including cancer, cardiovascular, muscular, neurodegenerative, bones and respiratory diseases. Numerous studies, in fact, demonstrate that Sirt-dependent pathways are activated upon physical and cognitive exercises linking mitochondrial function, DNA structure remodeling and gene expression regulation to designed medical therapies leading to tangible beneficial outcomes. However, in similar conditions, other studies assign to sirtuins a negative pathophysiological role. In spite of this controversial effect, it is doubtless that studying sirtuins in chronic diseases might lead to an unprecedented improvement of life quality in the elderly.
Collapse
Affiliation(s)
| | - Carlo Gaetano
- ICS Maugeri S.p.A., SB, via Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
207
|
Chen L, Wang H, Gao F, Zhang J, Zhang Y, Ma R, Pang S, Cui Y, Yang J, Yan B. Functional genetic variants in the SIRT5 gene promoter in acute myocardial infarction. Gene 2018; 675:233-239. [DOI: 10.1016/j.gene.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 01/03/2023]
|
208
|
Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway, and oxidative stress status in Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:911-919. [PMID: 30524691 PMCID: PMC6272071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. MATERIALS AND METHODS Forty wistar rats, including young rats (n=10, 4 month-old) and middle-aged rats (n=30, 13-15 months-old) were enrolled in this experimental study. The all young and 10 middle-aged rats were sacrificed (randomly) under deep anesthesia without any exercise training as normal young control and normal middle-aged control respectively. The remaining 20 middle-aged rats participated in 4 (n=10) or 8-week (n=10) aerobic exercise training. RESULTS There were significant differences in the plasmatic Klotho levels and the heart tissue levels of phosphorylated-ERK1/2 (p-ERK1/2), P-P38 and H2O2, LVWT, LVID and fibrosis between young and middle-aged rats (P=0.01). Plasmatic Klotho level was significantly increased after eight weeks training (P=0.011). Also, p-ERK1/2 was significantly decreased after eight weeks and p-P38 was significantly decreased in the fourth (P=0.01) and eight weeks of training (P=0.01). A similar decrease was reported for aging-induced H2O2 in the fourth (P=0.016) and eighth weeks (P=0.001). LVID was significantly increased in eight weeks, but LVWT and fibrosis was significantly reduced in the eighth week (P=0.011, P=0.028, P=0.001 respectively). CONCLUSION Moderate aerobic training attenuates aging-induced pathological cardiac hypertrophy at least partially by restoring the Klotho levels, attenuating oxidative stress, and reduction in the phosphorylation of ERK1/2, P38 and fibrosis.
Collapse
|
209
|
He X, Zeng H, Roman RJ, Chen JX. Inhibition of prolyl hydroxylases alters cell metabolism and reverses pre-existing diastolic dysfunction in mice. Int J Cardiol 2018; 272:281-287. [PMID: 30177233 DOI: 10.1016/j.ijcard.2018.08.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Diastolic dysfunction is emerging as a leading cause of heart failure in aging population. Induction of hypoxia tolerance and reprogrammed cell metabolism have emerged as novel therapeutic strategies for the treatment of cardiovascular diseases. METHODS AND RESULTS In the present study, we showed that deletion of sirtuin 3 (SIRT3) resulted in a diastolic dysfunction together with a significant increase in the expression of prolyl hydroxylases (PHD) 1 and 2. We further investigated the involvement of PHD in the development of diastolic dysfunction by treating the 12-14 months old mice with a PHD inhibitor, dimethyloxalylglycine (DMOG) for 2 weeks. DMOG treatment increased the expression of hypoxia-inducible factor (HIF)-1α in the endothelium of coronary arteries. This was accompanied by a significant improvement of coronary flow reserve and diastolic function. Inhibition of PHD altered endothelial metabolism by increasing glycolysis and reducing oxygen consumption. Most importantly, treatment with DMOG completely reversed the pre-existing diastolic dysfunction in the endothelial-specific SIRT3 deficient mice. CONCLUSIONS Our findings demonstrate that inhibition of PHD and reprogrammed cell metabolism can reverse the pre-existed diastolic dysfunction in SIRT3 deficient mice. Our study provides a potential therapeutic strategy of induction of hypoxia tolerance for patients with diastolic dysfunction associated with coronary microvascular dysfunction, especially in the aging population with reduced SIRT3.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
210
|
Sardu C, Pieretti G, D'Onofrio N, Ciccarelli F, Paolisso P, Passavanti MB, Marfella R, Cioffi M, Mone P, Dalise AM, Ferraraccio F, Panarese I, Gambardella A, Passariello N, Rizzo MR, Balestrieri ML, Nicoletti G, Barbieri M. Inflammatory Cytokines and SIRT1 Levels in Subcutaneous Abdominal Fat: Relationship With Cardiac Performance in Overweight Pre-diabetics Patients. Front Physiol 2018; 9:1030. [PMID: 30246793 PMCID: PMC6111758 DOI: 10.3389/fphys.2018.01030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 01/05/2023] Open
Abstract
Objectives: In obese patients the superficial adipose tissue expresses cytokines, and sirtuins, that may affect myocardial function. In this study, we investigated the effect of metformin therapy added to a hypocaloric diet on the inflammatory pattern and cardiac performance (MPI) in obese patients with pre-diabetic condition. Materials and Methods: Fifty-eight obese patients that were enrolled for abdominoplastic surgery were divided into patients with pre-diabetic condition (n 40) and normo-glycemic patients (n18). Patients with pre-diabetic condition were randomly assigned to metformin therapy added to a hypocaloric diet (group 1, n 20) or to a hypocaloric diet therapy alone (group 2, n20). Patients with normo-glycemic condition were assigned to a hypocaloric diet therapy. Results: During enrollment, obese patients with a pre-diabetic condition (group 1 and 2) presented higher glucose values, lower values of insulin, and higher values of the homeostasis model for the assessment of insulin resistance (HOMA-IR) than obese patients with normo-glycemic condition(group 3). In addition, they had higher values of C Reactive protein (CRP), interleukin 6 (IL6), and lower values of sirtuin 1(SIRT1). In the 12th month of the follow-up, metformin therapy induced in patients with pre-diabetic condition (group 1) a significant reduction of glucose values, HOMA-IR, and inflammatory markers such as CRP (1.04 ± 0.48 vs. 0.49 ± 0.02 mmol/L, p < 0.05), IL6 (4.22 ± 0.45 vs. 3.33 ± 0.34 pg/ml, p < 0.05), TNFα (6.95 ± 0.59 vs. 5.15 ± 0.44 pg/ml, p < 0.05), and Nitrotyrosine (5,214 ± 0,702 vs. 2,151 ± 0,351 nmol/l, p < 0.05). This was associated with a significant reduction of Intima-media thickness (1.01 ± 0.15 vs. 0.86 ± 0.15 mm, p < 0.05), Septum (14 ± 2.5 vs. 10.5 ± 2 mm, p < 0.05), Posterior wall (11 ± 1.5 vs. 8 ± 1 mm, p < 0.05), LV mass (192.5 ± 49.5 vs. 133.2 ± 37.6 g, p < 0.05) and of MPI (0.58 ± 0.03 vs. 0.38 ± 0.02, p < 0.05). At 12 months of follow-up, group 2 experienced only a reduction of cholesterol (4.15 ± 0.94 vs. 4.51 ± 0.88 mmol/L, p < 0.05) and triglycerides (1.71 ± 1.18 vs. 1.83 ± 0.54 mmol/L, p < 0.05). At 12 months of follow-up, group 3 experienced a significant reduction of inflammatory markers, and also of echographic parameters, associated with amelioration of myocardial performance. To date, IL6 expression was related to higher values of left ventricle mass (R-value 0.272, p-value 0.039), and to higher IMT (R-value 0.272, p-value 0.039), such as those observed for CRP (R-value 0.308, p-value 0.021), for glucose blood values (R-value 0.449, p-value 0.001), and for HOMA-IR (R-value 0.366, p-value 0.005). An inverse correlation was found between subcutaneous fat expression of SIRT1 and myocardial performance index (R-value-0.236, p-value 0.002). Conclusion: In obese patients with pre-diabetic condition a metformin therapy may reduce inflammation and oxidative stress, and this may be associated with the amelioration of the cardiac performance. Clinical research trial number: NCT03439592.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Feliciano Ciccarelli
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria B. Passavanti
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michele Cioffi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Mone
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anna M. Dalise
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Franca Ferraraccio
- Department of Clinical, Public and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Iacopo Panarese
- Department of Clinical, Public and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonio Gambardella
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Nicola Passariello
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria R. Rizzo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria L. Balestrieri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gianfranco Nicoletti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michelangela Barbieri
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
211
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
212
|
Hong G, Zheng D, Zhang L, Ni R, Wang G, Fan GC, Lu Z, Peng T. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic Biol Med 2018; 123:125-137. [PMID: 29803807 PMCID: PMC6236680 DOI: 10.1016/j.freeradbiomed.2018.05.073] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/01/2018] [Accepted: 05/19/2018] [Indexed: 01/11/2023]
Abstract
AIMS Sepsis-caused multiple organ failure remains the major cause of morbidity and mortality in intensive care units. Nicotinamide riboside (NR) is a precursor of nicotinamide adenine dinucleotide (NAD+), which is important in regulating oxidative stress. This study investigated whether administration of NR prevented oxidative stress and organ injury in sepsis. METHODS Mouse sepsis models were induced by injection of lipopolysaccharides (LPS) or feces-injection-in-peritoneum. NR was given before sepsis onset. Cultured macrophages and endothelial cells were incubated with various agents. RESULTS Administration of NR elevated the NAD+ levels, and elicited a reduction of oxidative stress, inflammation and caspase-3 activity in lung and heart tissues, which correlated with attenuation of pulmonary microvascular permeability and myocardial dysfunction, leading to less mortality in sepsis models. These protective effects of NR were associated with decreased levels of plasma high mobility group box-1 (HMGB1) in septic mice. Consistently, pre-treatment of macrophages with NR increased NAD+ content and reduced HMGB1 release upon LPS stimulation. NR also prevented reactive oxygen species (ROS) production and apoptosis in endothelial cells induced by a conditioned-medium collected from LPS-treated macrophages. Furthermore, inhibition of SIRT1 by EX527 offset the negative effects of NR on HMGB1 release in macrophages, and ROS and apoptosis in endothelial cells. CONCLUSIONS Administration of NR prevents lung and heart injury, and improves the survival in sepsis, likely by inhibiting HMGB1 release and oxidative stress via the NAD+/SIRT1 signaling. Given NR has been used as a health supplement, it may be a useful agent to prevent organ injury in sepsis.
Collapse
Affiliation(s)
- Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5
| | - Dong Zheng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5; Department of Medicine, Western University, London, Ontario, Canada N6A 4G5; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lulu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5; Department of Medicine, Western University, London, Ontario, Canada N6A 4G5; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
213
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
214
|
Nirwane A, Majumdar A. Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem 2018; 124:194-206. [PMID: 29072101 DOI: 10.1080/13813455.2017.1391847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.
Collapse
Affiliation(s)
- Abhijit Nirwane
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Anuradha Majumdar
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
| |
Collapse
|
215
|
Jin Y, Yang Q, Gao J, Tang Q, Duan B, Yu T, Qi X, Liu J, Wang R, Dang R, Lei C, Chen H, Lan X. Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle. Biochem Genet 2018; 56:663-676. [PMID: 29869077 DOI: 10.1007/s10528-018-9868-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
Growth traits are complex quantitative traits controlled by numerous candidate genes, and they can be well-evaluated using body measurement traits. As the members of the nicotinamide adenine dinucleotide-dependent family of histone deacetylases, class I sirtuin genes (including SIRT1, SIRT2 and SIRT3) play crucial roles in regulating lipid metabolism, cellular growth and metabolism, suggesting that they are potential candidate genes affecting body measurement traits in animals. Hence, the objective of this work aimed to detect novel insertions/deletions (indels) of SIRT1, SIRT2 and SIRT3 genes in 955 cattle belonging to five breeds, as well as to evaluate their effects on body measurement traits. Herein, the novel 12-bp indel of SIRT1 gene, the 7-bp indel of SIRT2 gene and the 26-bp indel of SIRT3 gene were firstly reported, respectively. The association analysis indicated that the indels within SIRT1 and SIRT2 genes were significantly associated with body measurement traits such as body weight, chest circumference, height at hip cross, hip width, body height, etc. (P < 0.05 or P < 0.01). Therefore, based on these findings, the two novel indel variants within bovine SIRT1 and SIRT2 genes could be considered as potential molecular markers for growth traits in cattle selection practices and breeding.
Collapse
Affiliation(s)
- Yunyun Jin
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qing Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiayang Gao
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qi Tang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Bo Duan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ting Yu
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinglei Qi
- Xianan Cattle Technology Development Company, Biyang, 463700, Henan, People's Republic of China
- Bureau of Animal Husbandry, Biyang, 463700, Henan, People's Republic of China
| | - Jiming Liu
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Rongmin Wang
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Ruihua Dang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
216
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026 10.1016/j.redox.2019.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
217
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16:189-198. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
218
|
Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 2018; 15:284-296. [PMID: 29304479 PMCID: PMC5975069 DOI: 10.1016/j.redox.2017.12.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Clinical application of doxorubicin (DOX), an anthracycline antibiotic with potent anti- tumor effects, is limited because of its cardiotoxicity. However, its pathogenesis is still not entirely understood. The aim of this paper was to explore the mechanisms and new drug targets to treat DOX-induced cardiotoxicity. The in vitro model on H9C2 cells and the in vivo models on rats and mice were developed. The results showed that DOX markedly decreased H9C2 cell viability, increased the levels of CK, LDH, caused histopathological and ECG changes in rats and mice, and triggered myocardial oxidative damage via adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px. Total of 18 differentially expressed microRNAs in rat heart tissue caused by DOX were screened out using microRNA microarray assay, especially showing that miR-140-5p was significantly increased by DOX which was selected as the target miRNA. Double-luciferase reporter assay showed that miR-140-5p directly targeted Nrf2 and Sirt2, as a result of affecting the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a, and thereby increasing DOX-caused myocardial oxidative damage. In addition, the levels of intracellular ROS were significantly increased or decreased in H9C2 cells treated with DOX after miR-140-5p mimic or miR-140-5p inhibitor transfection, respectively, as well as the changed expression levels of Nrf2 and Sirt2. Furthermore, DOX- induced myocardial oxidative damage was worsened in mice treated with miR-140-5p agomir, and however the injury was alleviated in the mice administrated with miR-140-5p antagomir. Therefore, miR-140-5p plays an important role in DOX-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Our data provide novel insights for investigating DOX-induced heart injury. In addition, miR-140-5p/ Nrf2 and miR-140-5p/Sirt2 may be the new targets to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
219
|
Hofmann R, Tornvall P, Witt N, Alfredsson J, Svensson L, Jonasson L, Nilsson L. Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction. J Intern Med 2018; 283:334-345. [PMID: 29226465 DOI: 10.1111/joim.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxygen therapy has been used routinely in normoxemic patients with suspected acute myocardial infarction (AMI) despite limited evidence supporting a beneficial effect. AMI is associated with a systemic inflammation. Here, we hypothesized that the inflammatory response to AMI is potentiated by oxygen therapy. METHODS The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) multicentre trial randomized patients with suspected AMI to receive oxygen at 6 L min-1 for 6-12 h or ambient air. For this prespecified subgroup analysis, we recruited patients with confirmed AMI from two sites for evaluation of inflammatory biomarkers at randomization and 5-7 h later. Ninety-two inflammatory biomarkers were analysed using proximity extension assay technology, to evaluate the effect of oxygen on the systemic inflammatory response to AMI. RESULTS Plasma from 144 AMI patients was analysed whereof 76 (53%) were randomized to oxygen and 68 (47%) to air. Eight biomarkers showed a significant increase, whereas 13 were decreased 5-7 h after randomization. The inflammatory response did not differ between the two treatment groups neither did plasma troponin T levels. After adjustment for increase in troponin T over time, age and sex, the release of inflammation-related biomarkers was still similar in the groups. CONCLUSIONS In a randomized controlled setting of normoxemic patients with AMI, the use of supplemental oxygen did not have any significant impact on the early release of systemic inflammatory markers.
Collapse
Affiliation(s)
- R Hofmann
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - P Tornvall
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - N Witt
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - J Alfredsson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - L Svensson
- Department of Medicine, Solna and Centre for Resuscitation Science, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - L Jonasson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - L Nilsson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
220
|
Jiang H, Xin S, Yan Y, Lun Y, Yang X, Zhang J. Abnormal acetylation of FOXP3 regulated by SIRT-1 induces Treg functional deficiency in patients with abdominal aortic aneurysms. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
221
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
222
|
Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. Int J Mol Sci 2018; 19:E928. [PMID: 29561771 PMCID: PMC5979282 DOI: 10.3390/ijms19040928] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Fighting diseases and controlling the signs of ageing are the major goals of biomedicine. Sirtuins, enzymes with mainly deacetylating activity, could be pivotal targets of novel preventive and therapeutic strategies to reach such aims. Scientific proofs are accumulating in experimental models, but, to a minor extent, also in humans, that the ancient practice of calorie restriction could prove an effective way to prevent several degenerative diseases and to postpone the detrimental signs of ageing. In the present review, we summarize the evidence about the central role of sirtuins in mediating the beneficial effects of calorie restriction in skeletal and cardiac muscle since these tissues are greatly damaged by diseases and advancing years. Moreover, we entertain the possibility that the identification of sirtuin activators that mimic calorie restriction could provide the benefits without the inconvenience of this dietary style.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Simone
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Maddalena Grimaldi
- Department of Pediatric Oncology and Hematology, Charité University Hospital, 13353 Berlin, Germany.
| | - Vincenzina Musto
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | | |
Collapse
|
223
|
Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int J Obes (Lond) 2018. [PMID: 29535452 DOI: 10.1038/s41366-018-0030-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Uncorrected obesity contributes to cardiac remodeling and contractile dysfunction although the underlying mechanism remains poorly understood. Mitochondrial aldehyde dehydrogenase (ALDH2) is a mitochondrial enzyme with some promises in a number of cardiovascular diseases. This study was designed to evaluate the impact of ALDH2 on cardiac remodeling and contractile property in high fat diet-induced obesity. METHODS Wild-type (WT) and ALDH2 transgenic mice were fed low (10% calorie from fat) or high (45% calorie from fat) fat diet for 5 months prior to the assessment of cardiac geometry and function using echocardiography, IonOptix system, Lectin, and Masson Trichrome staining. Western blot analysis was employed to evaluate autophagy, CaM kinase II, PGC-1α, histone H3K9 methyltransferase SUV39H, and Sirt-1. RESULTS Our data revealed that high fat diet intake promoted weight gain, cardiac remodeling (hypertrophy and interstitial fibrosis, p < 0.0001) and contractile dysfunction (reduced fractional shortening (p < 0.0001), cardiomyocyte function (p < 0.0001), and intracellular Ca2+ handling (p = 0.0346)), mitochondrial injury (elevated O2- levels, suppressed PGC-1α, and enhanced PGC-1α acetylation, p < 0.0001), elevated SUV39H, suppressed Sirt1, autophagy and phosphorylation of AMPK and CaM kinase II, the effects of which were negated by ALDH2 (p ≤ 0.0162). In vitro incubation of the ALDH2 activator Alda-1 rescued against palmitic acid-induced changes in cardiomyocyte function, the effect of which was nullified by the Sirt-1 inhibitor nicotinamide and the CaM kinase II inhibitor KN-93 (p < 0.0001). The SUV39H inhibitor chaetocin mimicked Alda-1-induced protection again palmitic acid (p < 0.0001). Examination in overweight human revealed an inverse correlation between diastolic cardiac function and ALDH2 gene mutation (p < 0.05). CONCLUSIONS Taken together, these data suggest that ALDH2 serves as an indispensable factor against cardiac anomalies in diet-induced obesity through a mechanism related to autophagy regulation and facilitation of the SUV39H-Sirt1-dependent PGC-1α deacetylation.
Collapse
Affiliation(s)
- Shuyi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Kacy L Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|
224
|
Abstract
SIGNIFICANCE Extranuclear sirtuins in cytosol (SIRT2) and mitochondria (SIRT3, SIRT4, and SIRT5) are key regulators of metabolic enzymes and the antioxidative defense mechanisms. They play an important role in the adjustment of metabolic pathways in alterations of the nutritional status. Recent Advances: Recent studies have shown that in addition to lysine deacetylation, sirtuins catalyze several different lysine deacylation reactions, removal of lipid modifications, and adenosine diphosphate-ribosylation. Large-scale studies have revealed hundreds of target proteins regulated by different sirtuin modifications. CRITICAL ISSUES Sensing of the metabolic state and regulation of the sirtuin function and expression are critical components of the machinery, optimizing cellular functions in the switch from fed to fasting condition. Overfeeding, obesity, and metabolic diseases cause metabolic stress that dysregulates the sirtuins, which may play a role in the pathogenesis and complications of metabolic diseases such as type 2 diabetes, fatty liver disease, and cardiac diseases. In the current review, we will discuss the significance of the extranuclear sirtuins as metabolic regulators and in protection against the reactive oxygen species, and also how these sirtuins are regulated by metabolic status and their putative role in metabolic diseases. FUTURE DIRECTIONS To efficiently utilize sirtuins as drug targets for treatment of the metabolic diseases, better understanding of the sirtuin functions, targets, regulation, and cross talk is needed. Furthermore, more studies in humans are needed to confirm the many observations mainly made in animal and cell models so far. Antioxid. Redox Signal. 28, 662-676.
Collapse
Affiliation(s)
- Mahmoud-Sobhy Elkhwanky
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| | - Jukka Hakkola
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| |
Collapse
|
225
|
D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal 2018; 28:711-732. [PMID: 28661724 PMCID: PMC5824538 DOI: 10.1089/ars.2017.7178] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress represents the common hallmark of pathological conditions associated with cardiovascular disease (CVD), including atherosclerosis, heart failure, hypertension, aging, diabetes, and other vascular system-related diseases. The sirtuin (SIRT) family, comprising seven proteins (SIRT1-SIRT7) sharing a highly conserved nicotinamide adenine dinucleotide (NAD+)-binding catalytic domain, attracted a great attention for the past few years as stress adaptor and epigenetic enzymes involved in the cellular events controlling aging-related disorder, cancer, and CVD. Recent Advances: Among sirtuins, SIRT1 and SIRT6 are the best characterized for their protective roles against inflammation, vascular aging, heart disease, and atherosclerotic plaque development. This latest role has been only recently unveiled for SIRT6. Of interest, in recent years, complex signaling networks controlled by SIRT1 and SIRT6 common to stress resistance, vascular aging, and CVD have emerged. CRITICAL ISSUES We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular level. FUTURE DIRECTIONS A deeper understanding of the epigenetic mechanisms through which SIRT1 and SIRT6 act in the signalings responsible for onset and development CVD is a prime scientific endeavor of the upcoming years. Multiple "omic" technologies will have widespread implications in understanding such mechanisms, speeding up the achievement of selective and efficient pharmacological modulation of sirtuins for future applications in the prevention and treatment of CVD. Antioxid. Redox Signal. 28, 711-732.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| |
Collapse
|
226
|
Liu T, Yang W, Pang S, Yu S, Yan B. Functional genetic variants within the SIRT2 gene promoter in type 2 diabetes mellitus. Diabetes Res Clin Pract 2018; 137:200-207. [PMID: 29371109 DOI: 10.1016/j.diabres.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2D) is a common and complex metabolic diseases caused by interactions between environmental and genetic factors. Genome-wide association studies have identified more than 80 common genetic variants for T2D, which account for only ∼10% of the heritability of T2D cases. SIRT2, a member of NAD(+)-dependent class III deacetylases, is involved in genomic stability, metabolism, inflammation, oxidative stress and autophagy. In maintaining metabolic homeostasis, SIRT2 regulates adipocyte differentiation, fatty acid oxidation, gluconeogenesis, and insulin sensitivity. Thus, we hypothesized that DNA sequence variants (DSVs) in SIRT2 gene promoter may change SIRT2 levels, contributing to T2D. METHODS SIRT2 gene promoter was genetically and functionally analyzed in large cohorts of T2D patients (n = 365) and ethnic-matched controls (n = 358). RESULTS A total of 18 DSVs, including 5 SNPs, were identified in this study. Four novel heterozygous DSVs (g.38900912G > T, g.38900561C > T, g.38900359C > T and g.38900237G > A) were identified in four T2D patients, three of which (g.38900912G > T, g.38900359C > T and g.38900237G > A) significantly increased the transcriptional activity of the SIRT2 gene promoter in cultured pancreatic beta cells (P < .01). Seven novel heterozygous DSVs were only found in controls, and one heterozygous deletion DSV and five SNPs were found in both T2D patients and controls, which did not significantly affect SIRT2 gene promoter activity (P > .05). CONCLUSIONS Our findings suggested that the DSVs may increase SIRT2 gene promoter activity and SIRT2 levels, contributing to T2D development as a risk factor.
Collapse
Affiliation(s)
- Tingting Liu
- College of Clinical Medicine, Jining Medical University, Jining, Shandong 272100, China
| | - Wentao Yang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Shipeng Yu
- Division of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
227
|
Hu N, Ren J, Zhang Y. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α. Oncotarget 2018; 7:76398-76414. [PMID: 27634872 PMCID: PMC5363518 DOI: 10.18632/oncotarget.11977] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p < 0.05) along with unaltered cardiomyocyte size (p > 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation.
Collapse
Affiliation(s)
- Nan Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
228
|
Chu H, Jiang S, Liu Q, Ma Y, Zhu X, Liang M, Shi X, Ding W, Zhou X, Zou H, Qian F, Shaul PW, Jin L, Wang J. Sirtuin1 Protects against Systemic Sclerosis-related Pulmonary Fibrosis by Decreasing Proinflammatory and Profibrotic Processes. Am J Respir Cell Mol Biol 2018; 58:28-39. [PMID: 28800254 DOI: 10.1165/rcmb.2016-0192oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is the leading cause of death in systemic sclerosis (SSc). Sirtuin1 (SIRT1) is a deacetylase with known antiinflammatory and antifibrotic activity in the liver, kidney, and skin. The role of SIRT1 in SSc-related pulmonary fibrosis is unknown. In the present work, we determined that the expression of SIRT1 in peripheral blood mononuclear cells of patients with SSc with pulmonary fibrosis is lower than that in patients with SSc without pulmonary fibrosis. In in vivo studies of bleomycin-induced lung fibrosis in mice, SIRT1 activation with resveratrol reduced collagen production when it was administered either prophylactically during the inflammatory stage or after the development of fibrosis. Furthermore, SIRT1 activation or overexpression inhibited tumor necrosis factor-α-induced inflammatory responses in vitro in human fetal lung fibroblasts, depletion of SIRT1 in fibroblasts enhanced inflammation, and these effects were related to changes in the acetylation of NF-κB. In addition, SIRT1 activation or exogenous overexpression inhibited collagen production in vitro, and these manipulations also inhibited fibrosis via inactivation of transforming growth factor-β/mothers against decapentaplegic homolog and mammalian target of rapamycin signaling. Taken together, our results show that a loss of SIRT1 may participate in the pathogenesis of SSc-related pulmonary fibrosis, and that SIRT1 activation is an effective treatment for both the early (inflammatory) and late (fibrotic) stages of pulmonary fibrosis. Thus, SIRT1 may be a promising therapeutic target in the management of SSc-related pulmonary fibrosis.
Collapse
Affiliation(s)
- Haiyan Chu
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences
| | - Shuai Jiang
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences
| | - Qingmei Liu
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences.,2 Division of Dermatology, Huashan Hospital
| | - Yanyun Ma
- 3 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences
| | - Xiaoxia Zhu
- 4 Division of Rheumatology, Shanghai Medical College and Huashan Hospital, and.,5 Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| | - Minrui Liang
- 4 Division of Rheumatology, Shanghai Medical College and Huashan Hospital, and.,5 Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| | - Xiangguang Shi
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences
| | - Weifeng Ding
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences.,6 Medical Laboratory Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaodong Zhou
- 7 University of Texas-McGovern Medical School, Houston, Texas; and
| | - Hejian Zou
- 4 Division of Rheumatology, Shanghai Medical College and Huashan Hospital, and.,5 Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| | - Feng Qian
- 3 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences
| | - Philip W Shaul
- 8 Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Li Jin
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences
| | - Jiucun Wang
- 1 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences.,5 Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
229
|
Zou R, Shi W, Tao J, Li H, Lin X, Yang S, Hua P. SIRT5 and post-translational protein modifications: A potential therapeutic target for myocardial ischemia-reperfusion injury with regard to mitochondrial dynamics and oxidative metabolism. Eur J Pharmacol 2018; 818:410-418. [DOI: 10.1016/j.ejphar.2017.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
|
230
|
Zou P, Liu X, Li G, Wang Y. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1. Mol Med Rep 2017; 17:3212-3217. [PMID: 29257276 DOI: 10.3892/mmr.2017.8241] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/21/2017] [Indexed: 11/05/2022] Open
Abstract
The inflammatory response in the cerebral cortex serves an important role in the progression of secondary injury following traumatic brain injury (TBI). The NLR family pyrin domain containing 3 (NLRP3) inflammasome is necessary for initiating inflammation and is involved in various central nervous system disorders. The aim of the present study was to investigate the neuroprotective effect of resveratrol and elucidate the underlying mechanisms of resveratrol associated regulation of the NLRP3 inflammasome in TBI. The results demonstrated that the activation of NLRP3, caspase‑1 and sirtuin 1 (SIRT1), enhanced the production of inflammatory cytokines and reactive oxygen species (ROS) following TBI. Administration of resveratrol alleviated the degree of TBI, as evidenced by the reduced neuron‑specific enolase (NSE) and brain water content (WBC). Resveratrol pretreatment also inhibited the activation of NLRP3 and caspase‑1, and reduced the production of inflammatory cytokines and ROS. In addition, resveratrol further promoted SIRT1 activation. Furthermore, the suppressing effect of resveratrol on the NLRP3 inflammasome and ROS was blocked by the SIRT1 inhibitor, sirtinol. The results revealed that the activation of the NLRP3 inflammasome and the subsequent inflammatory responses in the cerebral cortex were involved in the process of TBI. Resveratrol may attenuate the inflammatory response and relieve TBI by reducing ROS production and inhibiting NLRP3 activation. The effect of resveratrol on NLRP3 inflammasome and ROS may also be SIRT1 dependent.
Collapse
Affiliation(s)
- Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoxiao Liu
- Department of Cardiology, Xi'an Medical University Affiliated Northern Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Gang Li
- Department of Neurosurgery, Jiangxian People's Hospital, Yuncheng, Shanxi 043600, P.R. China
| | - Yangang Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
231
|
Neuroprotective role of retinal SIRT3 against acute photo-stress. NPJ Aging Mech Dis 2017; 3:19. [PMID: 29214052 PMCID: PMC5712523 DOI: 10.1038/s41514-017-0017-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
SIRT3 is a key regulator of mitochondrial reactive oxygen species as well as mitochondrial function. The retina is one of the highest energy-demanding tissues, in which the regulation of reactive oxygen species is critical to prevent retinal neurodegeneration. Although previous reports have demonstrated that SIRT3 is highly expressed in the retina and important in neuroprotection, function of SIRT3 in regulating reactive oxygen species in the retina is largely unknown. In this study, we investigated the role of retinal SIRT3 in a light-induced retinal degeneration model using SIRT3 knockout mice. We demonstrate that SIRT3 deficiency causes acute reactive oxygen species accumulation and endoplasmic reticulum stress in the retina after the light exposure, which leads to increased photoreceptor death, retinal thinning, and decreased retinal function. Using a photoreceptor-derived cell line, we revealed that reactive oxygen species were the upstream initiators of endoplasmic reticulum stress. Under SIRT3 knockdown condition, we demonstrated that decreased superoxide dismutase 2 activity led to elevated intracellular reactive oxygen species. These studies have helped to elucidate the critical role of SIRT3 in photoreceptor neuronal survival, and suggest that SIRT3 might be a therapeutic target for oxidative stress-induced retinal disorders.
Collapse
|
232
|
Lin Y, Zhao Y, Liu E. High glucose upregulates endothelin type B receptors in vascular smooth muscle cells via the downregulation of Sirt1. Int J Mol Med 2017; 41:439-445. [PMID: 29115394 DOI: 10.3892/ijmm.2017.3242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Silent information regulator family protein 1 (Sirt1) has recently gained attention for its protective effects against diabetic and cardiovascular diseases (CVDs). Vascular smooth muscle endothelin type B (ETB) receptors are involved in the pathogenesis of CVDs and diabetes. The aim of present study was to explore whether Sirt1 is involved in high glucose (HG)-mediated regulation of ETB receptors in rat superior mesenteric arteries (SMA). The rat SMA segments were cultured in the presence and absence of HG with or without the activator of Sirt1 and specific inhibitor for the extracellular signal-regulated protein kinase 1/2 (ERK1/2) for 24 h. Following organ culture, the contractile responses to sarafotoxin 6c were studied using a sensitive myograph, and the ETB receptor protein expression level was determined using western blotting. The results demonstrated that HG induced upregulation of ETB receptor expression and increased receptor-mediated vasoconstriction in SMA. Resveratrol (Res; a Sirt1 activator) concentration-dependently inhibited the HG-induced upregulation of ETB receptor expression and receptor-mediated vasoconstriction. Additionally, these effects could also be abolished by an inhibitor of the ERK1/2 signaling pathway. Furthermore, upregulation of ERK1/2 phosphorylation induced by HG was inhibited by Res. In conclusion, HG upregulated ETB receptors by downregulating Sirt1 and subsequently activating the ERK1/2 signaling pathways in the organ culture SMA.
Collapse
Affiliation(s)
- Yan Lin
- Xi'an Jiaotong University Cardiovascular Research Center, Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhao
- Department of Pathophysiology, School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Enqi Liu
- Xi'an Jiaotong University Cardiovascular Research Center, Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
233
|
Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1750306. [PMID: 29234485 PMCID: PMC5695026 DOI: 10.1155/2017/1750306] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation.
Collapse
|
234
|
Lin N, Niu Y, Zhang W, Li X, Yang Z, Su Q. microRNA-802 is involved in palmitate-induced damage to pancreatic β cells through repression of sirtuin 6. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11300-11307. [PMID: 31966484 PMCID: PMC6965834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/30/2017] [Indexed: 06/10/2023]
Abstract
Free fatty acid (FFA)-induced pancreatic β-cell loss is implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). It has been documented that circulating microRNA (miR)-802 levels are significantly greater in T2DM patients than in healthy subjects. However, the role of miR-802 in FFA-induced damage to β cells is still unclear. In the present study, we measured the expression of miR-802 in the INS-1 rat insulinoma cell line after palmitate treatment for 48 h. Gain- and loss-of-function studies were conducted to determine the function of miR-802 in palmitate-induced apoptosis and reactive oxygen species (ROS) production. The target gene(s) of miR-802 was functionally characterized. Compared to control cells, palmitate treatment caused a time- and concentration-dependent induction of miR-802 in INS-1 cells. Knockdown of miR-802 significantly blocked palmitate-induced apoptosis and attenuated ROS formation. Moreover, miR-802 downregulation prevented the reduction of prosurvival proteins Mcl-1 and Bcl-xL by palmitate. In contrast, ectopic expression of miR-802 stimulated apoptosis and ROS generation in INS-1 cells. Sirtuin 6 (SIRT6) was identified to be a direct target gene of miR-802. Overexpression of miR-802 suppressed the expression of SIRT6. Enforced expression of SIRT6 abolished the induction of apoptosis and ROS production by miR-802. Taken together, miR-802 is required for palmitate-induced damage to β cells by targeting SIRT6 and represents a potential therapeutic target for T2DM.
Collapse
Affiliation(s)
- Ning Lin
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
235
|
Oxidative stress promotes SIRT1 recruitment to the GADD34/PP1α complex to activate its deacetylase function. Cell Death Differ 2017; 25:255-267. [PMID: 28984870 DOI: 10.1038/cdd.2017.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of the eukaryotic translation initiation factor, eIF2α, by stress-activated protein kinases and dephosphorylation by the growth arrest and DNA damage-inducible protein (GADD34)-containing phosphatase is a central node in the integrated stress response. Mass spectrometry demonstrated GADD34 acetylation at multiple lysines. Substituting K315 and K322 with alanines or glutamines did not impair GADD34's ability to recruit protein phosphatase 1α (PP1α) or eIF2α, suggesting that GADD34 acetylation did not modulate eIF2α phosphatase activity. Arsenite (Ars)-induced oxidative stress increased cellular GADD34 levels and enhanced Sirtuin 1 (SIRT1) recruitment to assemble a cytoplasmic complex containing GADD34, PP1α, eIF2α and SIRT1. Induction of GADD34 in WT MEFs paralleled the dephosphorylation of eIF2α (phosphoserine-51) and SIRT1 (phosphoserine-47). By comparison, eIF2α and SIRT1 were persistently phosphorylated in Ars-treated GADD34-/- MEFs. Expressing WT GADD34, but not a mutant unable to bind PP1α in GADD34-/- MEFs restored both eIF2α and SIRT1 dephosphorylation. SIRT1 dephosphorylation increased its deacetylase activity, measured in vitro and in cells. Loss of function of GADD34 or SIRT1 enhanced cellular p-eIF2α levels and attenuated cell death following Ars exposure. These results highlighted a novel role for the GADD34/PP1α complex in coordinating the dephosphorylation and reactivation of eIF2α and SIRT1 to determine cell fate following oxidative stress.
Collapse
|
236
|
Tang BL. Could Sirtuin Activities Modify ALS Onset and Progression? Cell Mol Neurobiol 2017; 37:1147-1160. [PMID: 27942908 PMCID: PMC11482121 DOI: 10.1007/s10571-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
237
|
Li D, Li L. MicroRNA‑3666 inhibits breast cancer cell proliferation by targeting sirtuin 7. Mol Med Rep 2017; 16:8493-8500. [PMID: 28944911 DOI: 10.3892/mmr.2017.7603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
The abnormal expression of microRNAs (miRNAs) is associated with cancer initiation and progression. miRNAs functioning as oncogenes or tumor suppressors represent novel biomarkers for cancer diagnosis, prognosis, and serve as therapeutic tools. MiR‑3666 has been reported as a tumor suppressor in various types of cancer; however, its role in breast cancer remains unknown. In the current study, the aim was to investigate the potential role of miR‑3666 in breast cancer. It was identified that miR‑3666 was decreased in breast cancer cell lines and that the overexpression of miR‑3666 inhibited breast cancer cell proliferation. Furthermore, miR‑3666 promotes cell apoptosis of breast cancer cells. Bioinformatics analysis and dual‑luciferase reporter assay demonstrated that miR‑3666 targeted the 3'‑untranslated region of sirtuin 7 (SIRT7) which was recognized as an oncogene. Overexpression of miR‑3666 decreased SIRT7 expression levels, and knockdown of SIRT7 suppressed proliferation and promoted apoptosis of breast cancer cells. A rescue assay demonstrated that the restoration of SIRT7 expression markedly reversed the miR‑3666‑induced anti‑tumor effects. Thus, the current study indicates that miR‑3666 suppresses breast cancer cell proliferation by targeting SIRT7, and propose miR‑3666 as a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Di Li
- Medical College of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| | - Lifei Li
- Department of Respiratory Medicine, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|
238
|
Mandal C, Halder D, Jung KH, Chai YG. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking. Int J Biol Sci 2017; 13:1100-1108. [PMID: 29104501 PMCID: PMC5666325 DOI: 10.7150/ijbs.21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
239
|
Hyndman KA, Knepper MA. Dynamic regulation of lysine acetylation: the balance between acetyltransferase and deacetylase activities. Am J Physiol Renal Physiol 2017; 313:F842-F846. [PMID: 28701313 DOI: 10.1152/ajprenal.00313.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Reversible posttranslational modification of proteins is a critically important process in physiological regulation in all tissues, including the kidney. Lysine acetylation occurs in all organisms, including prokaryotes, and is regulated by a balance between the lysine acetyltransferases (adding an acetyl group to the ε-amino group of a lysine) and deacetylases (removing it). The kidney is an organ rich with acetylated lysines, which map to >2,000 unique histone and nonhistone proteins. However, the functional significance of these modifications remains to be discovered. Here, we have compiled gene lists of the acetyltransferases and deacetylases in the mammalian genomes and mapped their mRNA expression along the renal tubule. These lists will be useful for generating targeted approaches to test the physiological or pathophysiological significance of lysine acetylation changes in the kidney.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Division of Nephrology, Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
240
|
Wencel PL, Lukiw WJ, Strosznajder JB, Strosznajder RP. Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity. Mol Neurobiol 2017; 55:4612-4623. [PMID: 28698968 PMCID: PMC5948241 DOI: 10.1007/s12035-017-0646-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs) are involved in the regulation of cell metabolism, transcription, and DNA repair. Alterations of these enzymes may play a crucial role in Alzheimer's disease (AD). Our previous results indicated that amyloid beta (Aβ) peptides and inflammation led to activation of PARP1 and cell death. This study focused on a role of PARP1 in the regulation of gene expression for SIRTs and beta-amyloid precursor protein (βAPP) cleaving enzymes under Aβ42 oligomers (AβO) toxicity in pheochromocytoma cells (PC12) in culture. Moreover, the effect of endogenously liberated Aβ peptides in PC12 cells stably transfected with human gene for APP wild-type (APPwt) was analyzed. Our results demonstrated that AβO enhanced transcription of presenilins (Psen1 and Psen2), the crucial subunits of γ-secretase. Aβ peptides in APPwt cells activated expression of β-secretase (Bace1), Psen1, Psen2, and Parp1. The inhibitor of PARP1, PJ-34 in the presence of AβO upregulated transcription of α-secretase (Adam10), Psen1, and Psen2, but also Bace1. Concomitantly, PJ-34 enhanced mRNA level of nuclear Sirt1, Sirt6, mitochondrial Sirt4, and Parp3 in PC12 cells subjected to AβOs toxicity. Our data indicated that Aβ peptides through modulation of APP secretases may lead to a vicious metabolic circle, which could be responsible for maintaining Aβ at high level. PARP1 inhibition, besides activation of nuclear SIRTs and mitochondrial Sirt4 expression, enhanced transcription of enzyme(s) involved in βAPP metabolism, and this effect should be considered in its application against Aβ peptide toxicity.
Collapse
Affiliation(s)
- Przemysław L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
241
|
Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, Han Y, Ji Y. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol 2017; 175:1126-1145. [PMID: 28503736 DOI: 10.1111/bph.13861] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/18/2017] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) is a gaseous signal molecule with antioxidative properties. Sirtuin 3 (SIRT3) is closely associated with mitochondrial function and oxidative stress. The study was to investigate whether and how H2 S improved myocardial hypertrophy via a SIRT3-dependent manner. EXPERIMENTAL APPROACH Neonatal rat cardiomyocytes were pretreated with NaHS (50 μM) for 4 h followed by angiotensin II (Ang II, 100 nM) for 24 h. SIRT3 was silenced with siRNA technology. SIRT3 promoter activity and expression, cell surface, hypertrophic gene mRNA expression, mitochondrial oxygen consumption rate and membrane potential were measured. Male 129S1/SvImJ [wild-type (WT)] and SIRT3 knockout (KO) mice were injected with NaHS (50 μmol·kg-1 ·day-1 ; i.p.) followed by transverse aortic constriction (TAC). Echocardiography, heart mass, mitochondrial ultrastructure, volume and number, oxidative stress, mitochondria fusion and fission-related protein expression were measured. KEY RESULTS In vitro, NaHS increased SIRT3 promoter activity and SIRT3 expression in Ang II-induced cardiomyocyte hypertrophy. SIRT3 silencing abolished the ability of NaHS to reverse the Ang II-induced cardiomyocyte hypertrophy, mitochondrial function impairment and permeability potential dysfunction, along with the decline in FOXO3a and SOD2 expression. In vivo, after TAC. NaHS attenuated myocardial hypertrophy, inhibited oxidative stress, improved mitochondrial ultrastructure, suppressed mitochondrial volume but increased mitochondrial numbers, enhanced OPA1, MFN1 and MFN2 expression but suppressed DRP1 and FIS1 expression in WT mice but not in SIRT3 KO mice CONCLUSION AND IMPLICATIONS: NaHS improved mitochondrial function and inhibited oxidative stress in myocardial hypertrophy in a SIRT3-dependent manner. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jieqiong Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Shangmin Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qiuyi Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Lulu Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
242
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
243
|
Yang W, Gao F, Zhang P, Pang S, Cui Y, Liu L, Wei G, Yan B. Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction. PLoS One 2017; 12:e0176245. [PMID: 28445509 PMCID: PMC5406008 DOI: 10.1371/journal.pone.0176245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Coronary artery disease (CAD), including acute myocardial infarction (AMI) is the complication of atherosclerosis. Recently, genome-wide association studies have identified a large number of CAD-related genetic variants. However, only 10% of CAD cases could be explained. Low frequent and rare genetic variants have been recently proposed to be main causes for CAD. SIRT2 is a member of sirtuin family, NAD(+)-dependent class III deacetylases. SIRT2 is involved in genomic stability, metabolism, inflammation, oxidative stress and autophagy, as well as in platelet function. Thus, we hypothesized that genetic variants in SIRT2 gene may contribute to AMI. In this study, SIRT2 gene promoter was analyzed in large cohorts of AMI patients (n = 375) and ethnic-matched controls (n = 377). Three novel heterozygous DSVs (g.38900888_91delTAAA, g.38900270A>G and g.38899853C>T) were identified in three AMI patients, but in none of controls. These DSVs significantly altered the transcriptional activity of the SIRT2 gene promoter (P<0.05) in both HEK-293 and H9c2 cells. Five novel heterozygous DSVS (g.38900562C>T, g.38900413A>C, g.38900030G>A, g.38899925A>C and g.38899852C>T) were only found in controls, which did not significantly affected SIRT2 gene promoter activity (P>0.05). In addition, four novel heterozygous DSVs and five SNPs were found in both AMI patients and control with similar frequencies (P>0.05), two SNPs of which were examined and did not affect SIRT2 gene promoter activity (P>0.05). Taken together, the DSVs identified in AMI patients may change SIRT2 level by affecting the transcriptional activity of SIRT2 gene promoter, contributing to the AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Feng Gao
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Pei Zhang
- College of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lixin Liu
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guanghe Wei
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- * E-mail:
| |
Collapse
|
244
|
Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, Deng LB, Wang XL, Wang JB, Ji GJ, Fu M, Deng KY, Xin HB. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med 2017; 21:1492-1502. [PMID: 28296029 PMCID: PMC5542907 DOI: 10.1111/jcmm.13076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Hui Guan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Hong
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ning Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiao-Hong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ting-Tao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Li-Bin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiao-Lei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jian-Bin Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guang-Ju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Mingui Fu
- Department of Basic Medical Science, Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
245
|
Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, Dexter DT, Sternberg MJE, Lam EWF, Steegborn C, Fuchter MJ. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J Med Chem 2017; 60:1928-1945. [PMID: 28135086 PMCID: PMC6014686 DOI: 10.1021/acs.jmedchem.6b01690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a cocrystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported selectivity pocket but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to an understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | - Sébastien Moniot
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Zimam Mahmud
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Shang Yao
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Paolo Di Fruscia
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | | | - David T. Dexter
- Centre for Neuroinflammation & Neurodegeneration,
Division of Brain Sciences, Imperial College
London, London W12 0NN, U.K.
| | | | - Eric W.-F. Lam
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Clemens Steegborn
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | | |
Collapse
|
246
|
Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M, Bin Zhang, Jin Z, Yu S, Yang Y, Wang H. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 2017; 7:41337. [PMID: 28120943 PMCID: PMC5264601 DOI: 10.1038/srep41337] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and the underlying mechanisms remain unknown. We hypothesize that melatonin ameliorates MI/R injury in type 1 diabetic rats by preserving mitochondrial function via AMPK-PGC-1α-SIRT3 signaling pathway. Both our in vivo and in vitro data showed that melatonin reduced MI/R injury by improving cardiac function, enhancing mitochondrial SOD activity, ATP production and oxidative phosphorylation complex (II, III and IV), reducing myocardial apoptosis and mitochondrial MDA, H2O2 generation. Importantly, melatonin also activated AMPK-PGC-1α-SIRT3 signaling and increased SOD2, NRF1 and TFAM expressions. However, these effects were abolished by Compound C (a specific AMPK signaling blocker) administration. Additionally, our cellular experiment showed that SIRT3 siRNA inhibited the cytoprotective effect of melatonin without affecting p-AMPK/AMPK ratio and PGC-1α expression. Taken together, we concluded that melatonin preserves mitochondrial function by reducing mitochondrial oxidative stress and enhancing its biogenesis, thus ameliorating MI/R injury in type 1 diabetic state. AMPK-PGC1α-SIRT3 axis plays an essential role in this process.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi 710032, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zhi Li
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Dandan Meng
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Zhang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
247
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
248
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death in both men and women and has largely been attributed to genetic makeup and lifestyle factors. However, genetic regulation does not fully explain the pathophysiology. Recently, epigenetic regulation, the regulation of the genetic code by modifications that affect the transcription and translation of target genes, has been shown to be important. Silent information regulator-2 proteins or sirtuins are an epigenetic regulator family of class III histone deacetylases (HDACs), unique in their dependency on coenzyme NAD+, that are postulated to mediate the beneficial effects of calorie restriction, thus promoting longevity by reducing the incidence of chronic diseases such as cancer, diabetes, and CVD. Emerging evidence shows that SIRT1 is ubiquitously expressed throughout the body. Resveratrol, a plant polyphenol, has cardioprotective effects and its mechanism of action is attributed to regulation of SIRT1. Incoproation of resveratrol into the diet may be a powerful therapeutic option for the prevention and treatment of CVD.
Collapse
|
249
|
Hsu YJ, Hsu SC, Hsu CP, Chen YH, Chang YL, Sadoshima J, Huang SM, Tsai CS, Lin CY. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 2016; 228:543-552. [PMID: 27875732 DOI: 10.1016/j.ijcard.2016.11.247] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The longevity regulator Sirtuin 1 is an NAD+-dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. METHODS We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1-/-) and control (Sirt1f/f) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. RESULTS Compared with 6-month-old Sirt1f/f mice, marked impaired contractility was observed in 12-month-old Sirt1-/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1-/- mice compared with those in Sirt1f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1-/- mice injected with a protein disulphide isomerase inhibitor. CONCLUSION The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Superintendent's Office, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
250
|
Cencioni C, Atlante S, Savoia M, Martelli F, Farsetti A, Capogrossi MC, Zeiher AM, Gaetano C, Spallotta F. The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. Pharmacol Ther 2016; 171:43-55. [PMID: 27742569 DOI: 10.1016/j.pharmthera.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Sandra Atlante
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Universitá Cattolica, Institute of Medical Pathology, 00138 Rome, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Roma, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Roma, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|