201
|
Resveratrol and endothelial nitric oxide. Molecules 2014; 19:16102-21. [PMID: 25302702 PMCID: PMC6270738 DOI: 10.3390/molecules191016102] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) derived from the endothelial NO synthase (eNOS) has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.
Collapse
|
202
|
Chen Z, Martin M, Li Z, Shyy JYJ. Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 2014; 25:339-49. [PMID: 25188917 PMCID: PMC4339278 DOI: 10.1097/mol.0000000000000107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Great effort has been devoted to elucidate the molecular mechanisms by which inflammasome in macrophages contributes to atherosclerosis. Inflammasome in vascular endothelial cells and its causal relationship with endothelial dysfunction in atherosclerosis are less understood. Here, we review the recent studies of inflammasome and its activation in endothelial cells, and highlight such endothelial inflammatory response in atherosclerosis. RECENT FINDINGS Inflammasomes are critical effectors in innate immunity, and their activation in macrophages and the arterial wall contributes to atherogenesis. Sterol regulatory element-binding protein 2, a master regulator in cholesterol biosynthesis, can be activated in a noncanonical manner, which leads to the activation of the NOD-like receptor family pyrin domain-containing protein inflammasome in macrophages and endothelial cells. Results from in-vitro and in-vivo models suggest that sterol regulatory element-binding protein 2 is a key molecule in aggravating proinflammatory responses in endothelial cells and promoting atherosclerosis. SUMMARY The SREBP-induced NOD-like receptor family pyrin domain-containing protein inflammasome and its instigation of innate immunity is an important contributor to atherosclerosis. Elucidating the underlying mechanisms will expand our understanding of endothelial dysfunction and its dynamic interaction with vascular inflammation. Furthermore, targeting SREBP-inflammasome pathways can be a therapeutic strategy for attenuating atherosclerosis.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Marcy Martin
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, Riverside, CA 92521
| | - Zhao Li
- Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, PRC
| | - John Y-J. Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, PRC
| |
Collapse
|
203
|
Yogev O, Lagos D, Enver T, Boshoff C. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 2014; 10:e1004400. [PMID: 25255370 PMCID: PMC4177984 DOI: 10.1371/journal.ppat.1004400] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/14/2014] [Indexed: 02/01/2023] Open
Abstract
Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency. Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of this neoplasm. The discovery of KSHV and its oncogenic enigmas has enlightened many fields of tumor biology and viral oncogenesis. The metabolic properties of KS significantly differ from those of normal cells and resemble cancer cells in general, but the mechanisms employed by KSHV to alter host cell metabolism are poorly understood. Our work demonstrates that KSHV microRNAs can alter cell metabolism through coherent control of independent pathways, a key feature of microRNA-mediated control of cellular functions. This provides a fresh perspective for how microRNA-encoding pathogens shape a cell's metabolism to create an optimal environment for their survival and/or replication. Indeed, we show that, in the case of KSHV, viral microRNA-driven regulation of metabolism is important for viral latency. These findings will evoke new and exciting approaches to prevent KSHV from establishing latency and later on KS.
Collapse
MESH Headings
- Aerobiosis
- Blotting, Western
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/virology
- Cell Proliferation
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Energy Metabolism
- Gene Expression Regulation, Viral
- Glucose/metabolism
- Herpesvirus 8, Human/physiology
- Humans
- Lactic Acid/metabolism
- MicroRNAs/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/virology
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Osteosarcoma/virology
- Oxygen Consumption
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Virion/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Ohad Yogev
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
- * E-mail:
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Tariq Enver
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
| | - Chris Boshoff
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
| |
Collapse
|
204
|
Dolinsky VW, Dyck JRB. Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules 2014; 19:14919-47. [PMID: 25237749 PMCID: PMC6271699 DOI: 10.3390/molecules190914919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023] Open
Abstract
Regular exercise contributes to healthy aging and the prevention of chronic disease. Recent research has focused on the development of molecules, such as resveratrol, that activate similar metabolic and stress response pathways as exercise training. In this review, we describe the effects of exercise training and resveratrol on some of the organs and tissues that act in concert to transport oxygen throughout the body. In particular, we focus on animal studies that investigate the molecular signaling pathways induced by these interventions. We also compare and contrast the effects of exercise and resveratrol in diseased states.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Manitoba Institute of Child Health, University of Manitoba, 601 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.
| | - Jason R B Dyck
- Department of Pediatrics and the Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
205
|
Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 2014; 6:19. [PMID: 25243060 PMCID: PMC4169693 DOI: 10.1186/2045-824x-6-19] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion molecules and an impaired vasodilatory function. Increased expression of adhesion molecules amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both conduit arteries and resistance arterioles. Age-related impaired function also associates with phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and pericytes. Age-related morphological changes are in most of cases organ-specific and include microvascular wall thickening and collagen deposition that affect the basement membrane, with the consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide (NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic attempts have been suggested to improve microvascular function in age-related end-organ failure, and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the most promising results. Research efforts should persist to fully elucidate the biomolecular basis of age-related microvascular dysfunction in order to better support new therapeutic strategies aimed to improve quality of life and to reduce morbidity and mortality among the elderly patients.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Gaetano Arcuri
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| |
Collapse
|
206
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
207
|
Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J Pharmacol Exp Ther 2014; 350:257-64. [PMID: 24849926 PMCID: PMC4109485 DOI: 10.1124/jpet.114.214700] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
Many acute and chronic conditions, such as acute kidney injury, chronic kidney disease, heart failure, and liver disease, involve mitochondrial dysfunction. Although we have provided evidence that drug-induced stimulation of mitochondrial biogenesis (MB) accelerates mitochondrial and cellular repair, leading to recovery of organ function, only a limited number of chemicals have been identified that induce MB. The goal of this study was to assess the role of the 5-hydroxytryptamine 1F (5-HT1F) receptor in MB. Immunoblot and quantitative polymerase chain reaction analyses revealed 5-HT1F receptor expression in renal proximal tubule cells (RPTC). A MB screening assay demonstrated that two selective 5-HT1F receptor agonists, LY334370 (4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide) and LY344864 (N-[(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-6-yl]-4-fluorobenzamide; 1-100 nM) increased carbonylcyanide-p-trifluoromethoxyphenylhydrazone-uncoupled oxygen consumption in RPTC, and validation studies confirmed both agonists increased mitochondrial proteins [e.g., ATP synthase β, cytochrome c oxidase 1 (Cox1), and NADH dehydrogenase (ubiquinone) 1β subcomplex subunit 8 (NDUFB8)] in vitro. Small interfering RNA knockdown of the 5-HT1F receptor blocked agonist-induced MB. Furthermore, LY344864 increased peroxisome proliferator-activated receptor coactivator 1-α, Cox1, and NDUFB8 transcript levels and mitochondrial DNA (mtDNA) copy number in murine renal cortex, heart, and liver. Finally, LY344864 accelerated recovery of renal function, as indicated by decreased blood urea nitrogen and kidney injury molecule 1 and increased mtDNA copy number following ischemia/reperfusion-induced acute kidney injury (AKI). In summary, these studies reveal that the 5-HT1F receptor is linked to MB, 5-HT1F receptor agonism promotes MB in vitro and in vivo, and 5-HT1F receptor agonism promotes recovery from AKI injury. Induction of MB through 5-HT1F receptor agonism represents a new target and approach to treat mitochondrial organ dysfunction.
Collapse
Affiliation(s)
- Sara M Garrett
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Ryan M Whitaker
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Craig C Beeson
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
208
|
Abstract
Heart failure has become a huge public health problem. The treatment options for heart failure, however, are considerably limited. The significant disparity between the scope of a prominent health problem and the restricted means of therapy propagates heart failure epidemics. Delineating novel mechanisms of heart failure is imperative. Emerging evidence suggests that epigenetic regulation may take part in the pathogenesis of heart failure. Epigenetic regulation involves DNA and histone modifications that lead to changes in DNA-based transcriptional programs without altering the DNA sequence. Although more and more mechanisms are being discovered, the best understood epigenetic modifications are achieved through covalent biochemical reactions including histone acetylation, histone methylation and DNA methylation. Connecting environmental stimuli with genomic programs, epigenetic regulation remains important in maintaining homeostases and the pathogeneses of diseases. This review summarizes the most recent developments regarding individual epigenetic modifications and their implications in the pathogenesis of heart failure. Understanding this strategically important mechanism is potentially the key for developing powerful interventions in the future.
Collapse
Affiliation(s)
- Dian J Cao
- Department of Internal Medicine, Cardiology Division, UT Southwestern Medical Center, Dallas VA Medical Center, 4500 S Lancaster Rd, Dallas, TX 75216, USA
| |
Collapse
|
209
|
Kalogeris TJ, Baines C, Korthuis RJ. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis. PLoS One 2014; 9:e98459. [PMID: 24914683 PMCID: PMC4051583 DOI: 10.1371/journal.pone.0098459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022] Open
Abstract
We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO) donor, a guanylate cyclase (GC) activator, or a cell-permeant cyclic GMP (cGMP) analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS), or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.
Collapse
Affiliation(s)
- Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Christopher Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
210
|
Aires V, Delmas D, Le Bachelier C, Latruffe N, Schlemmer D, Benoist JF, Djouadi F, Bastin J. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J Rare Dis 2014; 9:79. [PMID: 24898617 PMCID: PMC4051957 DOI: 10.1186/1750-1172-9-79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
Background Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models. Our study explores its possible effects on FAO and mitochondrial energy metabolism in human cells, which are still very little documented. Methods Using cells from controls and from patients with Carnitine Palmitoyl Transferase 2 (CPT2) or Very Long Chain AcylCoA Dehydrogenase (VLCAD) deficiency we characterized the metabolic effects of RSV, RSV metabolites, and other stilbenes. We also focused on analysis of RSV uptake, and on the effects of low RSV concentrations, considering the limited bioavailability of RSV in vivo. Results Time course of RSV accumulation in fibroblasts over 48 h of treatment were consistent with the resulting stimulation or correction of FAO capacities. At 48 h, half maximal and maximal FAO stimulations were respectively achieved for 37,5 microM (EC50) and 75 microM RSV, but we found that serum content of culture medium negatively modulated RSV uptake and FAO induction. Indeed, decreasing serum from 12% to 3% led to shift EC50 from 37,5 to 13 microM, and a 2.6-3.6-fold FAO stimulation was reached with 20 microM RSV at 3% serum, that was absent at 12% serum. Two other stilbenes often found associated with RSV, i.e. cis- RSV and piceid, also triggered significant FAO up-regulation. Resveratrol glucuro- or sulfo- conjugates had modest or no effects. In contrast, dihydro-RSV, one of the most abundant circulating RSV metabolites in human significantly stimulated FAO (1.3-2.3-fold). Conclusions This study provides the first compared data on mitochondrial effects of resveratrol, its metabolites, and other natural compounds of the stilbene family in human cells. The results clearly indicate that several of these compounds can improve mitochondrial FAO capacities in human FAO-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Bastin
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.
| |
Collapse
|
211
|
Ponzo V, Soldati L, Bo S. Resveratrol: a supplementation for men or for mice? J Transl Med 2014; 12:158. [PMID: 24893845 PMCID: PMC4049475 DOI: 10.1186/1479-5876-12-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 12/17/2022] Open
Abstract
Resveratrol is a polyphenolic compound found in several plants. In the last decades, the interest in this compound has enormously increased after benefits on metabolism and increased lifespan of various organisms have been reported with its supplementation. Several in-vitro and animal studies have observed that resveratrol can act on multiple molecular targets, including sirtuins, a class of NAD + -dependent deacetylases. Despite the enthusiastic results reported in many animal- and in-vitro studies, few trials have been performed in humans with contrasting results. These conflicting data may be due at least in part to differences in the characteristics of the patients enrolled, the dosages and the duration of supplementation. Furthermore, many questions remain still unsolved, such as the dose or the duration of treatment to maximize its effects, the bioavailability of resveratrol and the role of food matrix to improve its bioactivity. In conclusion, at present the use of resveratrol as a supplement is not yet justified by the existing evidence.
Collapse
Affiliation(s)
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Milan, Italy.
| | | |
Collapse
|
212
|
Kim SK, Joe Y, Zheng M, Kim HJ, Yu JK, Cho GJ, Chang KC, Kim HK, Han J, Ryter SW, Chung HT. Resveratrol induces hepatic mitochondrial biogenesis through the sequential activation of nitric oxide and carbon monoxide production. Antioxid Redox Signal 2014; 20:2589-605. [PMID: 24041027 PMCID: PMC4024846 DOI: 10.1089/ars.2012.5138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS Nitric oxide (NO) can induce mitochondrial biogenesis in cultured cells, through increased guanosine 3',5'-monophosphate (cGMP), and activation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We sought to determine the role of NO, heme oxygenase-1 (HO-1), and its reaction product (carbon monoxide [CO]) in the induction of mitochondrial biogenesis by the natural antioxidant resveratrol. RESULTS S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced mitochondrial biogenesis in HepG2 hepatoma cells, and in vivo, through stimulation of PGC-1α. NO-induced mitochondrial biogenesis required cGMP, and was mimicked by the cGMP analogue (8-bromoguanosine 3',5'-cyclic monophosphate [8-Br-cGMP]). Activation of mitochondrial biogenesis by SNAP required HO-1, as it could be reversed by genetic interference of HO-1; and by treatment with the HO inhibitor tin-protoporphyrin-IX (SnPP) in vitro and in vivo. Cobalt protoporphyrin (CoPP)-IX, an HO-1 inducing agent, stimulated mitochondrial biogenesis in HepG2 cells, which could be reversed by the CO scavenger hemoglobin. Application of CO, using the CO-releasing molecule-3 (CORM-3), stimulated mitochondrial biogenesis in HepG2 cells, in a cGMP-dependent manner. Both CoPP and CORM-3-induced mitochondrial biogenesis required NF-E2-related factor-2 (Nrf2) activation and phosphorylation of Akt. The natural antioxidant resveratrol induced mitochondrial biogenesis in HepG2 cells, in a manner dependent on NO biosynthesis, cGMP synthesis, Nrf2-dependent HO-1 activation, and endogenous CO production. Furthermore, resveratrol preserved mitochondrial biogenesis during lipopolysaccharides-induced hepatic inflammation in vivo. INNOVATION AND CONCLUSIONS The complex interplay between endogenous NO and CO production may underlie the mechanism by which natural antioxidants induce mitochondrial biogenesis. Strategies aimed at improving mitochondrial biogenesis may be used as therapeutics for the treatment of diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Seul-Ki Kim
- 1 School of Biological Sciences, University of Ulsan , Ulsan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Sandoval-Acuña C, Ferreira J, Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 2014; 559:75-90. [PMID: 24875147 DOI: 10.1016/j.abb.2014.05.017] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023]
Abstract
Polyphenols, ubiquitously present in fruits and vegetables, have been traditionally viewed as antioxidant molecules. Such contention emerged, mainly from their well established in vitro ability to scavenge free radicals and other reactive oxygen species (ROS). During the last decade, however, increasing evidence has emerged supporting the ability of certain polyphenols to also exert numerous ROS-scavenging independent actions. Although the latter can comprise the whole cell, particular attention has been placed on the ability of polyphenols to act, whether favorably or not, on a myriad of mitochondrial processes. Thus, some particular polyphenols are now recognized as molecules capable of modulating pathways that define mitochondrial biogenesis (i.e., inducing sirtuins), mitochondrial membrane potential (i.e., mitochondrial permeability transition pore opening and uncoupling effects), mitochondrial electron transport chain and ATP synthesis (i.e., modulating complexes I to V activity), intra-mitochondrial oxidative status (i.e., inhibiting/inducing ROS formation/removal enzymes), and ultimately mitochondrially-triggered cell death (i.e., modulating intrinsic-apoptosis). The present review describes recent evidence on the ability of some polyphenols to modulate each of the formerly mentioned pathways, and discusses on how, by acting on such mitochondrial processes, polyphenols may afford protection against those mitochondrial damaging events that appear to be key in the cellular toxicity induced by various xenobiotics as well as that seen during the development of several ROS-related diseases.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hernán Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
214
|
Seo DB, Jeong HW, Lee SJ, Lee SJ. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4298-4305. [PMID: 24712520 DOI: 10.1021/jf404882w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mitochondrion is a central organelle in cellular energy homeostasis; thus, reduced mitochondrial activity has been associated with aging and metabolic disorders. This paper provides biological evidence that coumestrol, which is a natural isoflavone, activates mitochondrial biogenesis. In cultured myocytes, coumestrol activated the silent information regulator two ortholog 1 (Sirt1) through the elevation of the intracellular NAD(+)/NADH ratio. Coumestrol also increased the mitochondrial contents and induced the expression of key proteins in the mitochondrial electron transfer chain in cultured myocytes. A Sirt1 inhibitor and Sirt1-targeting siRNAs abolished the effect of coumestrol on mitochondrial biogenesis. Similar to an increase in mitochondrial content, coumestrol improved myocyte function with increased ATP concentration. Taken together, the data suggest that coumestrol is a novel inducer of mitochondrial biogenesis through the activation of Sirt1.
Collapse
Affiliation(s)
- Dae-Bang Seo
- College of Life and Environmental Sciences, Division of Food Science, Korea University , Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
215
|
Duluc L, Jacques C, Soleti R, Andriantsitohaina R, Simard G. Delphinidin inhibits VEGF induced-mitochondrial biogenesis and Akt activation in endothelial cells. Int J Biochem Cell Biol 2014; 53:9-14. [PMID: 24792670 DOI: 10.1016/j.biocel.2014.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Delphinidin, an anthocyanin present in red wine, has been reported to exert vasculoprotective properties on endothelial cells, including vasorelaxing and anti-apoptotic effects. Moreover, delphinidin treatment in a rat model of post-ischemic neovascularization has been described to exert anti-angiogenic property. Angiogenesis is an energetic process and VEGF-induced angiogenesis is associated with mitochondrial biogenesis. However, whether delphinidin induces changes in mitochondrial biogenesis has never been addressed. Effects of delphinidin were investigated in human endothelial cells at a concentration described to be anti-angiogenic in vitro (10(-2)g/l). mRNA expression of mitochondrial biogenesis factors, mitochondrial respiration, DNA content and enzyme activities were assessed after 48 h of stimulation. Delphinidin increased mRNA expression of several mitochondrial biogenesis factors, including NRF1, ERRα, Tfam, Tfb2m and PolG but did not affect neither mitochondrial respiration, DNA content nor enzyme activities. In presence of delphinidin, VEGF failed to increase mitochondrial respiration, DNA content, complex IV activity and Akt activation in endothelial cells. These results suggest a possible association between inhibition of VEGF-induced mitochondrial biogenesis through Akt pathway by delphinidin and its anti-angiogenic effect, providing a novel mechanism sustaining the beneficial effect of delphinidin against pathologies associated with excessive angiogenesis such as cancers.
Collapse
Affiliation(s)
- Lucie Duluc
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Caroline Jacques
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Raffaella Soleti
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Ramaroson Andriantsitohaina
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Gilles Simard
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France; Laboratoire de Biochimie, IBS, PBH, CHU d'Angers, rue Larrey, F-49033 Angers, France.
| |
Collapse
|
216
|
Salidroside stimulates mitochondrial biogenesis and protects against H₂O₂-induced endothelial dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:904834. [PMID: 24868319 PMCID: PMC4020198 DOI: 10.1155/2014/904834] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.
Collapse
|
217
|
Sato D, Itami N, Tasaki H, Takeo S, Kuwayama T, Iwata H. Relationship between mitochondrial DNA copy number and SIRT1 expression in porcine oocytes. PLoS One 2014; 9:e94488. [PMID: 24747689 PMCID: PMC3991605 DOI: 10.1371/journal.pone.0094488] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/16/2014] [Indexed: 12/19/2022] Open
Abstract
The present study assessed the effect of resveratrol on the expression of SIRT1 and mitochondrial quality and quantity in porcine oocytes. Supplementing the maturation medium with 20 µM resveratrol increased the expression of SIRT1, and enhanced mitochondrial functions, as observed from the increased ATP content and mitochondrial membrane potential. Addition of resveratrol also improved the ability of oocytes to develop into the blastocyst stage following activation. The effects of resveratrol on mitochondrial number were examined by comparing the mitochondrial DNA copy number (Mt number) between group of oocytes collected from the same donor gilt ovaries. Supplementing the maturation medium with only resveratrol did not affect the Mt number in the oocytes. However, supplementing the maturation medium with 10 µM MG132, a proteasome inhibitor, significantly increased the amount of ubiquitinated proteins and Mt number by 12 and 14%, respectively. In addition, when resveratrol was added to the medium containing MG132, the Mt number increased significantly by 39%, this effect was diminished by the addition of the SIRT1 inhibitor EX527. Furthermore, supplementing the medium with MG132 and EX527 did not affect Mt number. The mean SIRT1 expression in 20 oocytes was significantly and positively correlated with the Mt number in oocytes collected from the same donor. This study suggests that the expression of SIRT1 is associated with the Mt number in oocytes. In addition, activation of SIRT1 by resveratrol enhances the biosynthesis and degradation of mitochondria in oocytes, thereby replenishing and improving mitochondrial function and the developmental ability of oocytes.
Collapse
Affiliation(s)
- Daichi Sato
- Tokyo University of Agriculture, Funako, Atugi City, Japan
| | - Nobuhiko Itami
- Tokyo University of Agriculture, Funako, Atugi City, Japan
| | | | - Shun Takeo
- Tokyo University of Agriculture, Funako, Atugi City, Japan
| | | | - Hisataka Iwata
- Tokyo University of Agriculture, Funako, Atugi City, Japan
- * E-mail:
| |
Collapse
|
218
|
Lopes Costa A, Le Bachelier C, Mathieu L, Rotig A, Boneh A, De Lonlay P, Tarnopolsky MA, Thorburn DR, Bastin J, Djouadi F. Beneficial effects of resveratrol on respiratory chain defects in patients' fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum Mol Genet 2014; 23:2106-19. [PMID: 24365713 DOI: 10.1093/hmg/ddt603] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial respiratory chain (RC) disorders are the most prevalent inborn metabolic diseases and remain without effective treatment to date. Up-regulation of residual enzyme activity has been proposed as a possible therapeutic approach in this group of disorders. As resveratrol (RSV), a natural compound, was proposed to stimulate mitochondrial metabolism in rodents, we tested the effect of this compound on mitochondrial functions in control or in Complex I (CI)- or Complex IV (CIV)-deficient patients' fibroblasts. We show that RSV stimulates the expression of a panel of proteins representing structural subunits or assembly factors of the five RC complexes, in control fibroblasts. In moderate RC-deficient patients' cells, RSV treatment increases the amount of mutated proteins and stimulates residual enzyme activities. In these patients' cells, we establish that up-regulation of RC enzyme activities induced by RSV translates into increased cellular O2 consumption rates and results in the correction of RC deficiencies. Importantly, RSV also prevents the accumulation of lactate that occurred in RC-deficient fibroblasts. Different complementary approaches demonstrate that RSV induces a mitochondrial biogenesis that might underlie the increase in mitochondrial capacities. Finally, we showed that, in human fibroblasts, RSV stimulated mitochondrial functions mainly in a SIRT1- and AMPK-independent manner and that its effects rather involved the estrogen receptor (ER) and estrogen-related receptor alpha (ERRα) signaling pathways. These results represent the first demonstration that RSV could have a beneficial effect on inborn CI and CIV deficiencies from nuclear origin, in human fibroblasts and might be clinically relevant for the treatment of some RC deficiencies.
Collapse
|
219
|
Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J Trauma Acute Care Surg 2014; 76:409-17. [PMID: 24458046 DOI: 10.1097/ta.0000000000000096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxidative stress following hemorrhagic shock and resuscitation (HSR) is regulated, in part, by inflammatory and apoptotic mediators such as necrosis factor κB (NF-κB) and p53. Sirtuin 1 (Sirt-1) is a metabolic intermediary that regulates stress responses by suppressing NF-κB and p53 activity. Resveratrol is a naturally occurring polyphenolic antioxidant and Sirt-1 agonist. The aim of this study was to determine whether resveratrol protects hepatocytes following HSR or hypoxia. METHODS In vivo, HSR was achieved in male rats by arterial blood withdrawal to 30 ± 2 mm Hg for 1 hour before resuscitation with or without resveratrol (Res, 30 mg/kg). Hepatic tissue was stained and scored for necrosis, interleukin 6, and Sirt-1 expression. In vitro, primary rat hepatocytes were subjected to 8 hours of hypoxia without or with Res (100 µM). Cells were analyzed immediately or after 6 hours of normoxia, for survival and markers of injury (lactate dehydrogenase assay, lipid peroxidation, and mitochondrial integrity). Cell lysates were collected for cytochrome c analysis and immunoprecipitated using antibodies against NF-κB (p65) or p53. RESULTS In vivo, animals subject to HSR exhibited increased expression of markers of hepatocyte damage compared with those sham operated, concomitant with lower Sirt-1 expression. In vitro, hypoxia followed by normoxia resulted in increased cell death, an effect that was blunted by Res. Analysis of cell and mitochondrial function demonstrated that Res inhibited the detrimental effects of hypoxia in isolated hepatocytes. CONCLUSION Resveratrol prevents cell death in HSR and exerts a protective effect on the mitochondria in a hepatocyte model of hypoxic injury-reoxygenation possibly via Sirt-1 modulation of p53 and NF-κB activity.
Collapse
|
220
|
Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomás-Barberán FA, García-Conesa MT, Espín JC. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 2014; 19:6064-93. [PMID: 23448440 PMCID: PMC3782695 DOI: 10.2174/13816128113199990407] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is a non-flavonoid polyphenol that may be present in a limited number of food-stuffs such as grapes and red wine. Resveratrol has been reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet have drawn the worldwide attention of many research groups over the past twenty years, which has resulted in a huge output of in vitro and animal (preclinical) studies. In line with this expectation, many resveratrol-based nutraceuticals are consumed all over the world with questionable clinical/scientific support. In fact, the confirmation of these benefits in humans through randomized clinical trials is still very limited. The vast majority of preclinical studies have been performed using assay conditions with a questionable extrapolation to humans, i.e. too high concentrations with potential safety concerns (adverse effects and drug interactions), short-term exposures, in vitro tests carried out with non-physiological metabolites and/or concentrations, etc. Unfortunately, all these hypothesis-generating studies have contributed to increased the number of ‘potential’ benefits and mechanisms of resveratrol but confirmation in humans is very limited. Therefore, there are many issues that should be addressed to avoid an apparent endless loop in resveratrol research. The so-called ‘Resveratrol Paradox’, i.e., low bioavailability but high bioactivity, is a conundrum not yet solved in which the final responsible actor (if any) for the exerted effects has not yet been unequivocally identified. It is becoming evident that resveratrol exerts cardioprotective benefits through the improvement of inflammatory markers, atherogenic profile, glucose metabolism and endothelial function. However, safety concerns remain unsolved regarding chronic consumption of high RES doses, specially in medicated people. This review will focus on the currently available evidence regarding resveratrol’s effects on humans obtained from randomized clinical trials. In addition, we will provide a critical outlook for further research on this molecule that is evolving from a minor dietary compound to a possible multi-target therapeutic drug.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Research Group of Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
221
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
222
|
Csiszár A, Csiszar A, Pinto JT, Gautam T, Kleusch C, Hoffmann B, Tucsek Z, Toth P, Sonntag WE, Ungvari Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 2014; 70:303-13. [PMID: 24642904 DOI: 10.1093/gerona/glu029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system. To study their cellular uptake and cellular effects, we treated primary cerebromicrovascular endothelial cells isolated from aged F344xBN rats with resveratrol encapsulated in fusogenic liposomes (FL-RSV). To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dye, DiR, and resveratrol in cerebromicrovascular endothelial cells was confirmed using flow cytometry and confocal microscopy and high-performance liquid chromatography electrochemical detection. Treatment of aged cerebromicrovascular endothelial cells with FL-RSV activated Nrf2 (assessed with a reporter gene assay), significantly decreased cellular production of reactive oxygen species (assessed by a flow cytometry-based H2DCFDA fluorescence method), and inhibited apoptosis. Taken together, encapsulation of resveratrol into novel fusogenic liposomes significantly enhances the delivery of resveratrol into aged cells, which subsequently results in rapid activation of cellular Nrf2-driven antioxidant defense mechanisms. Our studies provide proof-of-concept for the development of a novel, translationally relevant interventional strategy for prevention and/or control of oxidative stress-related pathophysiological conditions in aging.
Collapse
Affiliation(s)
- Agnes Csiszár
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | | | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Christian Kleusch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | | | | |
Collapse
|
223
|
Kwon SM, Park HG, Jun JK, Lee WL. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. J Exerc Nutrition Biochem 2014; 18:51-60. [PMID: 25566439 PMCID: PMC4241935 DOI: 10.5717/jenb.2014.18.1.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
[Purpose] The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. [Methods] Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30–60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice. [Results] As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle. [Conclusion] These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.
Collapse
Affiliation(s)
- Soon Mi Kwon
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Hee Geun Park
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Jong Kui Jun
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Wang Lok Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
224
|
Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell'aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:902-15. [PMID: 24582596 DOI: 10.1016/j.bbadis.2014.02.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 01/25/2023]
Abstract
Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but the molecular mechanisms controlling these events are not completely understood. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator known as master regulator of mitochondrial functions and oxidative metabolism. Recent studies, including one from our group, have highlighted altered PGC-1α activity and transcriptional deregulation of its target genes in PD pathogenesis suggesting it as a new potential therapeutic target. Resveratrol, a natural polyphenolic compound proved to improve mitochondrial activity through the activation of several metabolic sensors resulting in PGC-1α activation. Here we have tested in vitro the effect of resveratrol treatment on primary fibroblast cultures from two patients with early-onset PD linked to different Park2 mutations. We show that resveratrol regulates energy homeostasis through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) and raise of mRNA expression of a number of PGC-1α's target genes resulting in enhanced mitochondrial oxidative function, likely related to a decrease of oxidative stress and to an increase of mitochondrial biogenesis. The functional impact of resveratrol treatment encompassed an increase of complex I and citrate synthase activities, basal oxygen consumption, and mitochondrial ATP production and a decrease in lactate content, thus supporting a switch from glycolytic to oxidative metabolism. Moreover, resveratrol treatment caused an enhanced macro-autophagic flux through activation of an LC3-independent pathway. Our results, obtained in early-onset PD fibroblasts, suggest that resveratrol may have potential clinical application in selected cases of PD-affected patients.
Collapse
Affiliation(s)
- Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Antonio Gaballo
- Institute of Nanoscience-NNL, Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Marco Di Paola
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, (CNR), Bari, Italy
| | | | - Michele De Mari
- Department of Neurology, 'Bonomo' Hospital, Andria (BA), Italy
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Consiglia Pacelli
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy.
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy.
| |
Collapse
|
225
|
Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 2013; 18:786-99. [PMID: 23525928 DOI: 10.1007/s10495-013-0837-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction contributing to the pathogenesis of glaucomatous neurodegeneration has stimulated considerable interest recently. In this study, we explored the role of peroxisome proliferator activated receptor-γ co-activator 1α (PGC-1α) in resveratrol-triggered mitochondrial biogenesis for preventing apoptosis in a retinal ganglion cell line RGC-5. Our results showed that serum deprivation induced cell apoptosis in a time-dependent manner. Applying resveratrol maintained the normal mitochondrial membrane potential, decreased the levels of both total and cleaved caspase-3, and inhibited the release of cytochrome c, which subsequently enhanced cell survival. Moreover, resveratrol stimulated mitochondrial biogenesis by increasing the absolute quantity of mitochondria as well as their DNA copies. Treatment with resveratrol promoted the protein expression of SIRT1, but not PGC-1α; instead, resveratrol facilitated PGC-1α translocation from the cytoplasm to the nucleus and up-regulated NRF1 and TFAM, which were blocked by nicotinamide. Collectively, we demonstrate that the SIRT1-dependent PGC-1α subcellular translocation following resveratrol application potentially attenuates serum deprivation-elicited RGC-5 cell death, thereby raising the possibility of mitigating glaucomatous retinopathy by enhancement of mitochondrial biogenesis.
Collapse
|
226
|
Olguín-Martínez M, Hernández-Espinosa DR, Hernández-Muñoz R. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats. Free Radic Biol Med 2013; 65:1090-1100. [PMID: 23994576 DOI: 10.1016/j.freeradbiomed.2013.08.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 07/04/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
In experimentally induced chronic gastritis, a compensatory mucosal cell proliferation occurs with enhanced glucose oxidative metabolism linked to lipoperoxidative events. Therefore, this study was aimed at assessing the participation of cell NAD/NADH redox state and mitochondrial functions during gastric mucosa proliferation and the effects of in vivo α-tocopherol (vitamin E) administration. Glucose oxidation and oxygen consumption were tested in gastric mucosa samples obtained from rats with gastritis and from those also treated with α-tocopherol. Gastric mucosal mitochondria were isolated and structural and functional parameters were determined. Succinate oxidation, ADP phosphorylation, mitochondrial enzyme activities, and membrane lipid composition were measured. In addition, parameters indicative of cellular NAD/NADH redox state, proliferation, apoptosis, and nitric oxide (NO) metabolism were also determined. After ethanol withdrawal, the damaged gastric mucosa increased glucose and oxygen consumption, events associated with a more reduced cytoplasmic NAD/NADH ratio. Enhanced mitochondrial oxidative phosphorylation and increased mitochondrial enzyme activities occurred early, accompanied by recovery of lost mitochondrial protein and lipid composition in the gastric mucosa, events associated with increased NO production. When mitochondrial function and structural events were normalized, apoptosis was initiated as assessed by the mitochondrial Bax/Bcl2 ratio. Treatment with α-tocopherol inhibited cell proliferation and blocked enhanced glucose utilization, mitochondrial substrate oxidation, and changes in redox state, delaying the onset of these adaptive metabolic changes, whereas it inhibited cell proliferation. In conclusion, α-tocopherol could abolish damage-induced "stress" signaling by desynchronizing mitochondrial adaptive responses, including mitochondria biogenesis, and consequently NAD/NADH redox, which seems to regulate gastric mucosal cell proliferation.
Collapse
Affiliation(s)
- Marisela Olguín-Martínez
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, DF, Mexico
| | - Diego R Hernández-Espinosa
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, DF, Mexico
| | - Rolando Hernández-Muñoz
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, DF, Mexico.
| |
Collapse
|
227
|
Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS One 2013; 8:e78788. [PMID: 24244361 PMCID: PMC3823992 DOI: 10.1371/journal.pone.0078788] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022] Open
Abstract
Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5–100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.
Collapse
|
228
|
Abstract
Endothelial cells (ECs) are quiescent for years but can plastically switch to angiogenesis. Vascular sprouting relies on the coordinated activity of migrating tip cells at the forefront and proliferating stalk cells that elongate the sprout. Past studies have identified genetic signals that control vascular branching. Prominent are VEGF, activating tip cells, and Notch, which stimulates stalk cells. After the branch is formed and perfused, ECs become quiescent phalanx cells. Now, emerging evidence has accumulated indicating that ECs not only adapt their metabolism when switching from quiescence to sprouting but also that metabolism regulates vascular sprouting in parallel to the control by genetic signals.
Collapse
Affiliation(s)
- Katrien De Bock
- Department of Oncology, University of Leuven, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium; VIB, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium
| | | | | |
Collapse
|
229
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
230
|
Desquiret-Dumas V, Gueguen N, Leman G, Baron S, Nivet-Antoine V, Chupin S, Chevrollier A, Vessières E, Ayer A, Ferré M, Bonneau D, Henrion D, Reynier P, Procaccio V. Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J Biol Chem 2013; 288:36662-75. [PMID: 24178296 DOI: 10.1074/jbc.m113.466490] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1-5 μM) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 μM). In HepG2 cells, this complex I activation increases the mitochondrial NAD(+)/NADH ratio. This higher NAD(+) level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.
Collapse
|
231
|
Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013; 5:3779-827. [PMID: 24077237 PMCID: PMC3820045 DOI: 10.3390/nu5103779] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 08/04/2013] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.
Collapse
Affiliation(s)
- Sandhya Khurana
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Krishnan Venkataraman
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Amanda Hollingsworth
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Matthew Piche
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - T. C. Tai
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| |
Collapse
|
232
|
Soiferman D, Ayalon O, Weissman S, Saada A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie 2013; 100:184-91. [PMID: 24012549 DOI: 10.1016/j.biochi.2013.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/25/2013] [Indexed: 01/18/2023]
Abstract
The five complexes of the mitochondrial respiratory chain (MRC) supply most organs and tissues with ATP produced by oxidative phosphorylation (OXPHOS). Inherited mitochondrial diseases affecting OXPHOS dysfunction are heterogeneous; symptoms may present at any age and may affect a wide range of tissues, with many diseases giving rise to devastating multisystemic disorders resulting in neonatal death. Combined respiratory chain deficiency with normal complex II accounts for a third of all respiratory deficiencies; mutations in nuclear-encoded components of the mitochondrial translation machinery account for many cases. Although mutations have been identified in over 20 such genes and our understanding of the mitochondrial translation apparatus is increasing, to date no definitive cure for these disorders exists. We evaluated the effect of seven small molecules with reported therapeutic potential in fibroblasts of four patients with combined respiratory complex disorders, each harboring a known mutation in a different nuclear-encoded component of the mitochondrial translation machinery: EFTs, GFM1, MRPS22 and TRMU. Six mitochondrial parameters were screened as follows; growth in glucose-free medium, reactive oxygen species (ROS) production, ATP content, mitochondrial content, mitochondrial membrane potential and complex IV activity. It was clearly evident that each patient displayed an individual response and there was no universally beneficial compound. AICAR increased complex IV activity in GFM1 cells and increased ATP content in MRPS22 fibroblasts but was detrimental to TRMU, who benefitted from bezafibrate. Two antioxidants, ascorbate and N-acetylcysteine (NAC), significantly improved cell growth, ATP content and mitochondrial membrane potential and decreased levels of intracellular reactive oxygen species (ROS) in EFTs fibroblasts. This study presents an expanded repertoire of assays that can be performed using the microtiter screening system with a small number of patients' fibroblasts and highlights some therapeutic options while providing additional evidence for the importance of personalized medicine in mitochondrial disorders.
Collapse
Affiliation(s)
- Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oshrat Ayalon
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Weissman
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
233
|
BAI TAO, DONG DAOSONG, PEI LING. Resveratrol mitigates isoflurane-induced neuroapoptosis by inhibiting the activation of the Akt-regulated mitochondrial apoptotic signaling pathway. Int J Mol Med 2013; 32:819-26. [DOI: 10.3892/ijmm.2013.1464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022] Open
|
234
|
Guedes-Dias P, Oliveira JM. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1345-59. [DOI: 10.1016/j.bbadis.2013.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/28/2022]
|
235
|
Davinelli S, Sapere N, Visentin M, Zella D, Scapagnini G. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. IMMUNITY & AGEING 2013; 10:28. [PMID: 23842073 PMCID: PMC3750512 DOI: 10.1186/1742-4933-10-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/15/2013] [Indexed: 02/05/2023]
Abstract
Emerging evidence suggests that combinatorial action of numerous biologically active compounds may be a valuable source in a variety of therapeutic applications. Several nutraceuticals have demonstrated to augment the efficacy of pharmacological approaches or provide physiological benefit to improve age-related decline. Recently, the possibilities of anti-ageing interventions have multiplied also to ameliorate the mitochondrial alterations in ageing-associated diseases. In this report, we approached a novel treatment strategy by combining two bioactive dietary constituents (resveratrol and equol) to determine their effect on mitochondrial function. Taking into account that the biological activities of resveratrol and equol has been observed in a wide range of biological processes, they were selected to examine whether combining them would be more effective to modulate mitochondrial function. In HUVEC cells our results demonstrate that the co-administration of these natural products increased mitochondrial mass and mitochondrial DNA content. Additionally, combined use of both compounds increased SIRT1 enzymatic activity and induced mitochondrial biogenesis factors such as PGC1-α, TFAM and NRF-1. Therefore, identification of this novel synergism may provide a new perspective for future treatments aiming to modulate the mitochondrial activity with implications in maintaining endothelial function which is crucial in the regulation of immune response. Further studies to discover the molecular details of this crosstalk and to identify new combinations of active compounds affecting the mitochondrial function will be extremely beneficial to prevent mitochondrial decline.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | | | | | | | | |
Collapse
|
236
|
Wendling D, Abbas W, Godfrin-Valnet M, Guillot X, Khan KA, Cedoz JP, Baud L, Prati C, Herbein G. Resveratrol, a sirtuin 1 activator, increases IL-6 production by peripheral blood mononuclear cells of patients with knee osteoarthritis. Clin Epigenetics 2013; 5:10. [PMID: 23844973 PMCID: PMC3716931 DOI: 10.1186/1868-7083-5-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/03/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sirtuin 1 (Sirt1) is a nuclear enzyme from the class III histone deacetylases that modulates gene expression and is involved in bone and cartilage remodeling. The goal of our study was to evaluate Sirt1 activity in peripheral blood mononuclear cells in patients with osteoarthritis in comparison with control patients, and to determine the relationship between Sirt1 activity and production of TNFα, IL-6 and IL-8 by peripheral blood mononuclear cells after ex vivo treatment with resveratrol, a Sirt1 activator. RESULTS A prospective study was performed to compare the activity of Sirt1 in patients with primary osteoarthritis of the knee (American College of Rheumatology criteria) with its activity in controls. Peripheral blood mononuclear cells were isolated from peripheral blood, and Sirt1 activity evaluated from cytoplasmic and nuclear compartments using a fluorometric assay. Culture supernatant levels of TNFα, IL-6, and IL-8 were quantified before and after resveratrol ex vivo treatment. Nineteen patients with symptomatic knee osteoarthritis (age 64 ±9 years) and 18 controls (age 54 ±13 years) were included. No differences were found in cytoplasmic or nuclear Sirt1 activity between patients and controls. After resveratrol treatment, no changes in TNFα or IL-8 levels were found, but a significant dose-dependent increase in IL-6 levels was demonstrated in patients with osteoarthritis, but not controls. Sirt1 activity did not correlate with clinical activity (Lequesne's index) or inflammation (erythrocyte sedimentation rate, C-reactive protein). CONCLUSION Sirt1 activity (cytoplasmic and nuclear) from peripheral blood mononuclear cells did not differ between patients with osteoarthritis and controls. Ex vivo treatment of peripheral blood mononuclear cells with resveratrol was associated with a dose-dependent increase in IL-6 levels only in patients with osteoarthritis.
Collapse
Affiliation(s)
- Daniel Wendling
- Department of Rheumatology, CHRU de Besançon, Boulevard Fleming, F-25030 Besançon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, reactive oxygen species production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and/or inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Kluge
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
238
|
Martínez-Morúa A, Soto-Urquieta MG, Franco-Robles E, Zúñiga-Trujillo I, Campos-Cervantes A, Pérez-Vázquez V, Ramírez-Emiliano J. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:905-915. [PMID: 23782307 DOI: 10.1080/10286020.2013.802687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays a key role in obesity and diabetes-related mitochondrial dysfunction. Mitochondrial dysfunction is characterized by increased oxidative damage, nitric oxide (NO) synthesis, and a reduced ratio of adenosine-5'-triphosphate (ATP) production/oxygen consumption. Curcumin represents a potential antioxidant and anti-inflammatory agent. In this study, our objective was to determine the effect of curcumin treatment on oxidative stress and mitochondrial dysfunction in high-fat diet (HFD)-induced obese mice (OM). These results suggest that curcumin treatment increased oxygen consumption and significantly decreased lipid and protein oxidation levels in liver mitochondria isolated from HFD-induced OM compared with those in the untreated OM (UOM). In kidney mitochondria, curcumin treatment significantly increased oxygen consumption and decreased lipid and protein peroxidation levels in HFD-induced OM when compared with those in UOM. Curcumin treatment neither has any effect on body weight gain nor have any effects on mitochondrial NO synthesis. These findings suggest that obesity induces oxidative stress and mitochondrial dysfunction, whereas curcumin may have a protective role against obesity-induced oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Antonia Martínez-Morúa
- a Departamento de Medicina y Nutrición , Universidad de Guanajuato , Campus León , León, Gto. , Mexico
| | | | | | | | | | | | | |
Collapse
|
239
|
Ca2+/calmodulin-dependent protein kinase kinase β phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci U S A 2013; 110:E2420-7. [PMID: 23754392 DOI: 10.1073/pnas.1309354110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Atheroprotective flow exerts antioxidative and anti-inflammatory effects on vascular endothelial cells (ECs), in part through the induction of Sirtuin 1 (SIRT1), a class III histone deacetylase. The role of Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)β in flow induction of SIRT1 both in vitro and in vivo was investigated. Pulsatile shear stress mimicking atheroprotective flow increased the level of SIRT1 in cultured ECs by enhancing its stability, and this effect was abolished by inhibition or knockdown of CaMKKβ. Flow-enhanced SIRT1 stability was primarily mediated by CaMKKβ phosphorylation of SIRT1 at Ser-27 and Ser-47, as evidenced by in vitro kinase assay, mass spectrometry, and experiments using loss- or gain-of-function SIRT1 mutants. Flow-induced CaMKKβ phosphorylation of SIRT1 Ser-27 and Ser-47 increased antioxidative and anti-inflammatory capacities. Ablation of CaMKKβ or SIRT1 in mice with an apolipoprotein E-null background showed increased atherosclerosis both in athero-prone and in athero-protective areas. The results suggest that the CaMKKβ-SIRT1 axis in ECs is mechanosensitive, antioxidative, and anti-inflammatory.
Collapse
|
240
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
241
|
Chen F, Qian LH, Deng B, Liu ZM, Zhao Y, Le YY. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress. CNS Neurosci Ther 2013; 19:675-81. [PMID: 23731528 DOI: 10.1111/cns.12131] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. AIMS We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. RESULTS Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. CONCLUSIONS HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
242
|
Park S, Mori R, Shimokawa I. Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol Cells 2013; 35:474-80. [PMID: 23661364 PMCID: PMC3887872 DOI: 10.1007/s10059-013-0130-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/11/2023] Open
Abstract
Sirtuins (SIRTs), a family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases, are emerging as key molecules that regulate aging and age-related diseases including cancers, metabolic disorders, and neurodegenerative diseases. Seven isoforms of SIRT (SIRT1-7) have been identified in mammals. SIRT1 and 6, mainly localized in the nucleus, regulate transcription of genes and DNA repair. SIRT3 in the mitochondria regulates mitochondrial bioenergetics. Initial studies in yeasts, nematodes, and flies indicated a strong connection of SIRT with the life-prolonging effects of calorie restriction (CR), a robust experimental intervention for longevity in a range of organisms. However, subsequent studies reported controversial findings regarding SIRT roles in the effect of CR. This review describes the functional roles of mammalian SIRTs and discusses their relevance to mechanisms underlying the longevity effect of CR.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Investigative Pathology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8523,
Japan
| | - Ryoichi Mori
- Department of Investigative Pathology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8523,
Japan
| | - Isao Shimokawa
- Department of Investigative Pathology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8523,
Japan
| |
Collapse
|
243
|
Moreno-Ulloa A, Cid A, Rubio-Gayosso I, Ceballos G, Villarreal F, Ramirez-Sanchez I. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorg Med Chem Lett 2013; 23:4441-6. [PMID: 23791569 DOI: 10.1016/j.bmcl.2013.05.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
Abstract
Impaired mitochondrial function represents an early manifestation of endothelial dysfunction and likely contributes to the development of cardiovascular diseases (CVD). The stimulation of mitochondrial function and/or biogenesis is seen as a means to improve the bioenergetic and metabolic status of cells and thus, reduce CVD. In this study we examined the capacity of the flavanol (-)-epicatechin and two novel derivatives to enhance mitochondrial function and protein levels in cultured bovine coronary artery endothelial cells. As nitric oxide production by endothelial cells is suspected in mediating mitochondria effects (including biogenesis), we also examined the dependence of responses on this molecule using an inhibitor of nitric oxide synthase. Results indicate that the flavanol (-)-epicatechin and derivatives are capable of stimulating mitochondrial function as assessed by citrate synthase activity as well as induction of structural (porin, mitofilin) and oxidative phosporylation protein levels (complex I and II). Effects were blocked by the use of the chemical inhibitor of the synthase thus, evidencing a role for nitric oxide in mediating these effects. The results observed indicate that the three agents are effective in enhancing mitochondria function and protein content. The effects noted for (-)-epicatechin may serve to explain the healthy effects on cardiometabolic risk ascribed to the consumption of cocoa products.
Collapse
Affiliation(s)
- Aldo Moreno-Ulloa
- University of California, San Diego, Department of Medicine, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | |
Collapse
|
244
|
Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:796891. [PMID: 23738041 PMCID: PMC3657429 DOI: 10.1155/2013/796891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD) in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR) and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.
Collapse
|
245
|
De Paepe B, Vandemeulebroecke K, Smet J, Vanlander A, Seneca S, Lissens W, Van Hove JL, Deschepper E, Briones P, Van Coster R. Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects. Phytother Res 2013; 28:312-6. [PMID: 23620374 DOI: 10.1002/ptr.4988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 11/09/2022]
Abstract
Few therapeutic options are available to patients with oxidative phosphorylation disorders. Administering pharmacological agents that are able to stimulate mitochondrial biogenesis have been put forward as a possible treatment, yet the approach remains in need of thorough testing. We investigated the effect of resveratrol in an in vitro setting. Mitochondrial enzymatic activities were tested in cultured skin fibroblasts from patients harboring a nuclear defect in either complex II or complex IV (n = 11), and in fibroblasts from healthy controls (n = 11). In the latter, preincubation with resveratrol resulted in a significant increase of citrate synthase, complex II and complex IV enzyme activity. In patients with complex II or complex IV deficiency, however, activity of the deficient complex could not be substantially augmented, and response was dependent upon the residual activity. We conclude that resveratrol is not capable of normalizing oxidative phosphorylation activities in deficient cell lines.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Marín C, Yubero-Serrano EM, López-Miranda J, Pérez-Jiménez F. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int J Mol Sci 2013; 14:8869-89. [PMID: 23615475 PMCID: PMC3676761 DOI: 10.3390/ijms14058869] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Aging is a condition which favors the development of atherosclerosis, which has been associated with a breakdown in repair processes that occurs in response to cell damage. The dysregulation of the biological systems associated with aging are produced partly through damage which accumulates over time. One major source of this injury is oxidative stress, which can impair biological structures and the mechanisms by which they are repaired. These mechanisms are based on the pathogenesis of endothelial dysfunction, which in turn is associated with cardiovascular disease, carcinogenesis and aging. The dependent dysfunction of aging has been correlated with a reduction in the number and/or functional activity of endothelial progenitor cells, which could hinder the repair and regeneration of the endothelium. In addition, aging, inflammation and oxidative stress are endogenous factors that cause telomere shortening, which is dependent on oxidative cell damage. Moreover, telomere length correlates with lifestyle and the consumption of a healthy diet. Thus, diseases associated with aging and age may be caused by the long-term effects of oxidative damage, which are modified by genetic and environmental factors. Considering that diet is a very important source of antioxidants, in this review we will analyze the relationship between oxidative stress, aging, and the mechanisms which may be involved in a higher survival rate and a lower incidence of the diseases associated with aging in populations which follow a healthy diet.
Collapse
Affiliation(s)
- Carmen Marín
- Lipids and Atherosclerosis Unit, Maimonides Institute for Research in Biomedicina at Cordoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba and CIBER Fisiopatologia Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Cordoba, 14004, Spain.
| | | | | | | |
Collapse
|
247
|
Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci 2013; 34:313-9. [PMID: 23608227 DOI: 10.1016/j.tips.2013.03.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/28/2022]
Abstract
Cardiovascular risk factors lead to enhanced production of reactive oxygen species (ROS) generated by NADPH oxidase, xanthine oxidase (XO), the mitochondrial electron-transport chain (ETC), and dysfunctional endothelial nitric oxide synthase (eNOS). When the capacity of antioxidant defense systems [e.g., superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), heme oxygenase (HO), paraoxonase (PON)] is exceeded, this results in oxidative stress, which can promote atherogenesis. Therefore, pharmacological means to prevent oxidative stress are of major therapeutic interest. Some established drugs and novel therapeutic approaches can prevent oxidative stress and, presumably, vascular disease. These include angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor type 1 (AT1 receptor) blockers (ARBs), statins, nebivolol, pentaerithrityl tetranitrate (PETN), resveratrol, and mitochondria-targeted antioxidants. Molecular mechanisms involved in the induction of oxidative stress under pathological conditions as well as pharmacological approaches (and their molecular mechanisms) are summarized in this review.
Collapse
|
248
|
Xia N, Strand S, Schlufter F, Siuda D, Reifenberg G, Kleinert H, Förstermann U, Li H. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide 2013; 32:29-35. [PMID: 23583951 DOI: 10.1016/j.niox.2013.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022]
Abstract
Many of the cardiovascular protective effects of resveratrol are attributable to an enhanced production of nitric oxide (NO) by the endothelial NO synthase (eNOS). Resveratrol has been shown to enhance eNOS gene expression as well as eNOS enzymatic activity. The aim of the present study was to analyze the molecular mechanisms of eNOS transcriptional activation by resveratrol. Treatment of human EA.hy 926 endothelial cells with resveratrol led to a concentration-dependent upregulation of eNOS expression. In luciferase reporter gene assay, resveratrol enhanced the activity of human eNOS promoter fragments (3500, 1600, 633 and 263bp in length, respectively), indicating that the proximal promoter region is required for resveratrol-induced eNOS transcriptional activation. Knockdown of the NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1) by siRNA prevented the upregulation of eNOS mRNA and protein by resveratrol. Forkhead box O (FOXO) transcription factors are established downstream targets of SIRT1. siRNA-mediated knockdown of FOXO1 and FOXO3a abolished the effect of resveratrol on eNOS expression, indicating the involvement of these factors. Resveratrol treatment enhanced the expression of FOXO1 and FOXO3a in EA.hy 926 cells. Reporter gene assay using promoter containing forkhead response elements showed increased FOXO factor activity by resveratrol. In electrophoretic mobility shift assay, the enhanced binding of nuclear proteins to the eNOS promoter regions by resveratrol could be blocked by antibodies against FOXO1 and FOXO3a. In conclusion, resveratrol enhances the expression and activity of FOXO transcription factors. The SIRT1/FOXO factor axis is involved in resveratrol-induced eNOS transcriptional activation.
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Duluc L, Jacques C, Soleti R, Iacobazzi F, Simard G, Andriantsitohaina R. Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways. Int J Biochem Cell Biol 2013; 45:783-91. [DOI: 10.1016/j.biocel.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/29/2012] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
|
250
|
Mitterberger MC, Zwerschke W. Mechanisms of Resveratrol-Induced Inhibition of Clonal Expansion and Terminal Adipogenic Differentiation in 3T3-L1 Preadipocytes. ACTA ACUST UNITED AC 2013; 68:1356-76. [DOI: 10.1093/gerona/glt019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|