201
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
202
|
Si P, Chen J, Yu S, Huang X, Li Q, Lin W. Metal Hydrogen-Bonded Organic Framework as a pH Sensor for the Detection of Strong Acids. Inorg Chem 2022; 61:18504-18509. [DOI: 10.1021/acs.inorgchem.2c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Panpan Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jiaxing Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shijiang Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiajuan Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Qianqian Li
- Materials Genome Institute of Shanghai University, Shanghai 200444, P. R. China
| | - Wenxin Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
203
|
Acid-sensing ion channel 1: potential therapeutic target for tumor. Biomed Pharmacother 2022; 155:113835. [DOI: 10.1016/j.biopha.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
204
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
205
|
Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022; 189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.
Collapse
|
206
|
Globig P, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model. Bioact Mater 2022; 16:320-333. [PMID: 35386318 PMCID: PMC8965722 DOI: 10.1016/j.bioactmat.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Osteosarcoma is one of the most common cancers in young adults and is commonly treated using surgery and chemotherapy. During the past years, these therapy approaches improved but failed to ameliorate the outcomes. Therefore, novel, targeted therapeutic approaches should be established to enhance treatment success while preserving patient's quality of life. Recent studies suggest the application of degradable magnesium (Mg) alloys as orthopedic implants bearing a potential antitumor activity. Here, we examined the influence of Mg-based materials on an osteosarcoma-fibroblast coculture. Both, Mg and Mg-6Ag did not lead to tumor cell apoptosis at low degradation rates. Instead, the Mg-based materials induced cellular dormancy in the cancer cells indicated by a lower number of Ki-67 positive cancer cells and a higher p38 expression. This dormancy-like state could be reversed by reseeding on non-degrading glass slides but could not be provoked by inhibition of the protein kinase R-like endoplasmic reticulum kinase. By investigating the influence of the disjunct surface-near effects of the Mg degradation on cell proliferation, an increased pH was found to be a main initiator of Mg degradation-dependent tumor cell proliferation inhibition.
Collapse
Affiliation(s)
- Philipp Globig
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | |
Collapse
|
207
|
Gong H, Dai Q, Peng P. Cell-Membrane-Anchored DNA Logic-Gated Nanoassemblies for In Situ Extracellular Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43026-43034. [PMID: 36053489 DOI: 10.1021/acsami.2c13735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular K+ and adenosine triphosphate (ATP) levels are significantly elevated in the tumor microenvironment (TME) and can be used as biomarkers for early cancer detection and tumor localization. Most reported TME sensors only respond to single abnormal factors, resulting in a lack of accuracy and specificity for the detection of complex environments. Thus, precisely locating the TME remains challenging. In this work, we aimed to develop an intelligent DNA nanoassembly controlled by a "YES-AND" logic circuit using a bimolecular G-quadruplex (G4) and ATP aptamer as logical control units. As a proof of concept, in the presence of K+ (input 1) and ATP (input 2), the YES-AND Boolean operator returned a true value and the output was the fluorescence resonance energy transfer (FRET) signal, indicating high sensitivity and selectivity. After being anchored to living cell surfaces, this logic nanosensor imaged extracellular K+ and ATP present at abnormal levels in situ. Owing to diverse disease markers in the TME, this novel logic sensor might hold great promise for the targeted delivery of intelligent anticancer drugs and Boolean logic-controlled treatment.
Collapse
Affiliation(s)
- Hangsheng Gong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pai Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
208
|
Gao W, Zhang W, Yu H, Xing W, Yang X, Zhang Y, Liang C. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment. Front Bioeng Biotechnol 2022; 10:996177. [PMID: 36199359 PMCID: PMC9527326 DOI: 10.3389/fbioe.2022.996177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
MXene nanosheets have shown exciting potential in nanomedicine because of their large surface area, intense near-infrared (NIR) absorbance, and good biocompatibility. However, their development in the direction of treating tumors is constrained by the limitations of existing design methodologies. These methodologies lack control over the size and distribution of tumors. Moreover, their photodynamic therapy (PDT) effect is poor. To address this unmet medical need, a simple strategy that processes MXene with carbon nanotube (CNT) into a three-dimensional (3D) honeycomb structure having anti aggregation capacity was established. The structure can be used in disease phototherapy against tumors, bacteria, and viruses, such as photothermal therapy (PTT), photodynamic therapy (PDT), and multimodal synergistic therapy. In the present study, 3D CNT/MXene microspheres were obtained by the template method and spray-drying method. The microspheres possessed special photothermal effects and photothermal stability under NIR laser irradiation. Furthermore, the developed microspheres could achieve a maximum of 85.6% drug loading capability of doxorubicin (DOX). Under light irradiation at 650 and 808 nm, 3D CNT/MXene microspheres could efficiently produce singlet oxygen due to the effectiveness of CNTs as carries for Titanium Dioxide (TiO2) photosensitizers present on the MXene surface. Furthermore, in vitro studies had showed that 3D CNT/MXene-DOX effectively inhibited the proliferation of HeLa cells. Hence, this study provides a promising platform for future clinical applications to realize PTT/PDT/chemotherapy combination cancer treatment based on MXene.
Collapse
Affiliation(s)
- Wei Gao
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Weihao Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Haipeng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wenge Xing
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xueling Yang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yongguang Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
209
|
Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022; 12:1000106. [PMID: 36185202 PMCID: PMC9523312 DOI: 10.3389/fonc.2022.1000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
Collapse
|
210
|
Shah L, Latif A, Williams KJ, Tirella A. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomater 2022; 152:273-289. [PMID: 36087866 DOI: 10.1016/j.actbio.2022.08.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/16/2023]
Abstract
Several physico-chemical properties of the tumour microenvironment (TME) are dysregulated during tumour progression, such as tissue stiffness, extracellular pH and interstitial fluid flow. Traditional preclinical models, although useful to study biological processes, do not provide sufficient control over these physico-chemical properties, hence limiting the understanding of cause-effect relationships between the TME and cancer cells. Breast cancer stem cells (B-CSCs), a dynamic population within the tumour, are known to affect tumour progression, metastasis and therapeutic resistance. With their emerging importance in disease physiology, it is essential to study the interplay between above-mentioned TME physico-chemical variables and B-CSC marker expression. In this work, 3D in vitro models with controlled physico-chemical properties (hydrogel stiffness and composition, perfusion, pH) were used to mimic normal and tumour breast tissue to study changes in proliferation, morphology and B-CSC population in two separate breast cancer cell lines (MCF-7 and MDA-MB 231). Cells encapsulated in alginate-gelatin hydrogels varying in stiffness (2-10 kPa), density and adhesion ligand (gelatin) were perfused (500 µL/min) for up to 14 days. Physiological (pH 7.4) and tumorigenic (pH 6.5) media were used to mimic changes in extracellular pH within the TME. We found that both cell lines have distinct responses to changes in physico-chemical factors in terms of proliferation, cell aggregates size and morphology. Most importantly, stiff and dense hydrogels (10 kPa) and acidic pH (6.5) play a key role in B-CSCs dynamics, increasing both epithelial (E-CSCs) and mesenchymal cancer stem cell (M-CSCs) marker expression, supporting direct impact of the physico-chemical microenvironment on disease onset and progression. STATEMENT OF SIGNIFICANCE: Currently no studies evaluate the impact of physico-chemical properties of the tumour microenvironment on breast cancer stem cell (B-CSC) marker expression in a single in vitro model and at the same time. In this study, 3D in vitro models with varying stiffness, extracellular pH and fluid flow are used to recapitulate the breast tumour microenvironment to evaluate for the first time their direct effect on multiple breast cancer phenotypes: cell proliferation, cell aggregate size and shape, and B-CSC markers. Results suggest these models could open new ways of monitoring disease phenotypes, from the early-onset to progression, as well as being used as testing platforms for effective identification of specific phenotypes in the presence of relevant tumour physico-chemical microenvironment.
Collapse
Affiliation(s)
- Lekha Shah
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Ayşe Latif
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom; BIOtech - Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, Trento 38123, Italy.
| |
Collapse
|
211
|
Construction and In Vitro Evaluation of a Tumor Acidic pH-Targeting Drug Delivery System Based on Escherichia coli Nissle 1917 Bacterial Ghosts. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090433. [PMID: 36134979 PMCID: PMC9495381 DOI: 10.3390/bioengineering9090433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/06/2022]
Abstract
Synthetic nanocarriers are a promising therapeutic delivery strategy. However, these systems are often hampered by inherent disadvantages such as strong biotoxicity and poor biocompatibility. To overcome these issues, biological carriers with commonly used chemotherapy drugs have been developed. In this work, engineered bacterial ghosts (BGs) originated from probiotic Escherichia coli Nissle 1917 (EcN) were devised to specifically target acidic extracellular environments of tumor tissue. To improve the production efficiency and safety, a novel lysis protein E from phage α3 was applied to produce EcN BGs under high growth densities in high quality. In addition, the acidity-triggered rational membrane (ATRAM) peptides were displayed in EcN BGs to facilitate specific cancer cell internalization within the acidic tumor microenvironment before drug release. In conclusion, the engineered EcN BGs offer a promising means for bionic bacteria construction for hepatocellular carcinoma therapy.
Collapse
|
212
|
Wu Z, Han T, Su H, Xuan J, Wang X. Comprehensive analysis of fatty acid and lactate metabolism–related genes for prognosis value, immune infiltration, and therapy in osteosarcoma patients. Front Oncol 2022; 12:934080. [PMID: 36119478 PMCID: PMC9478861 DOI: 10.3389/fonc.2022.934080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most frequent bone tumor. Notwithstanding that significant medical progress has been achieved in recent years, the 5-year overall survival of osteosarcoma patients is inferior. Regulation of fatty acids and lactate plays an essential role in cancer metabolism. Therefore, our study aimed to comprehensively assess the fatty acid and lactate metabolism pattern and construct a fatty acid and lactate metabolism–related risk score system to predict prognosis in osteosarcoma patients. Clinical data and RNA expression data were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We used the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses to construct a prognostic risk score model. Relationships between the risk score model and age, gender, tumor microenvironment characteristics, and drug sensitivity were also explored by correlation analysis. We determined the expression levels of prognostic genes in osteosarcoma cells via Western blotting. We developed an unknown fatty acid and lactate metabolism–related risk score system based on three fatty acid and lactate metabolism–related genes (SLC7A7, MYC, and ACSS2). Survival analysis showed that osteosarcoma patients in the low-risk group were likely to have a better survival time than those in the high-risk group. The area under the curve (AUC) value shows that our risk score model performs well in predicting prognosis. Elevated fatty acids and lactate risk scores weaken immune function and the environment of the body, which causes osteosarcoma patients’ poor survival outcomes. In general, the constructed fatty acid and lactate metabolism–related risk score model can offer essential insights into subsequent mechanisms in available research. In addition, our study may provide rational treatment strategies for clinicians based on immune correlation analysis and drug sensitivity in the future.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Han
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haohan Su
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangwei Xuan
- Department of Orthopaedic Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
- *Correspondence: Xinwei Wang, ; Jiangwei Xuan,
| | - Xinwei Wang
- Department of Orthopaedic Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
- *Correspondence: Xinwei Wang, ; Jiangwei Xuan,
| |
Collapse
|
213
|
Ahmad S, Hassan MI, Gupta D, Dwivedi N, Islam A. Design and evaluation of pyrimidine derivatives as potent inhibitors of ABCG2, a breast cancer resistance protein. 3 Biotech 2022; 12:182. [PMID: 35875174 PMCID: PMC9296744 DOI: 10.1007/s13205-022-03231-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
The protein ATP-binding cassette subfamily G member 2 (ABCG2) is one of the major factors behind multidrug resistance (MDR) in breast cancer. We performed three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling, docking, and molecular dynamics (MD) simulation to design pyrimidine-based ABCG2 antagonists. The developed QSAR model (r 2 = 0.92, q 2 = 0.82, and good cross-validated r 2 = 0.73) dictate requirement of electrostatic, and hydrophobic fields for modulating bioactivity. Based on this rationale, we designed and screened 1010 new compounds, among them 2 (ND-510 and ND-500) exhibit excellent drug-like features. Comparative molecular docking, MM/GBSA and ADMET profiles were determined to understand the interactive poses, affinity, and drug-likeness of the designed compounds. Furthermore, MD simulations were performed with the ABCG2 receptor, and the results were compared with the two earlier synthesized active compounds. The outcomes of the study will help researchers to develop new antagonists for treatment of MDR breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03231-1.
Collapse
Affiliation(s)
- Shahnawaz Ahmad
- School of Biotechnology, College of Engineering and Technology, IFTM University, Lodhipur-Rajput, Delhi Road (NH-24), Moradabad, Uttar Pradesh 244102 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Neeraj Dwivedi
- School of Biotechnology, College of Engineering and Technology, IFTM University, Lodhipur-Rajput, Delhi Road (NH-24), Moradabad, Uttar Pradesh 244102 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
214
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 496] [Impact Index Per Article: 165.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
215
|
Migliorini F, Cini E, Dreassi E, Finetti F, Ievoli G, Macrì G, Petricci E, Rango E, Trabalzini L, Taddei M. A pH-responsive crosslinker platform for antibody-drug conjugate (ADC) targeting delivery. Chem Commun (Camb) 2022; 58:10532-10535. [PMID: 36043993 DOI: 10.1039/d2cc03052g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new 1-6 self-immolative, traceless crosslinker derived from the natural product gallic acid. The linker acts through a pH-dependent mechanism for drug release. This 5-(hydroxymethyl)pyrogallol orthoester derivative (HMPO) was stable for 24 hours at pH values of 7.4 and 6.6 and in plasma, releasing molecules bound to the hydroxymethyl moiety under acid-dependent stimuli at pH 5.5. The linker was non-toxic and was used for the conjugation of Doxorubicin (Doxo) or Combretastatin A4 with Cetuximab. The ADCs formed showed their pH responsivity reducing cell viability of A431 and A549 cancer cells better than Cetuximab alone.
Collapse
Affiliation(s)
- Francesca Migliorini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Elena Cini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Federica Finetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Giovanni Ievoli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Giulia Macrì
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Enrico Rango
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Lorenza Trabalzini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| | - Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A.Moro 2, 53100 Siena, Italy.
| |
Collapse
|
216
|
Han JH, Jeong SH, Yuk HD, Jeong CW, Kwak C, Ku JH. Acidic urine is associated with poor prognosis in patients with bladder cancer undergoing radical cystectomy. Front Oncol 2022; 12:964571. [PMID: 36091123 PMCID: PMC9459327 DOI: 10.3389/fonc.2022.964571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the prognostic value of acidic urine (low urine pH) in patients with bladder cancer undergoing radical cystectomy. MATERIALS AND METHODS We reviewed patients enrolled in the Seoul National University Prospectively Enrolled Registry for Urothelial Cancer-Cystectomy (SUPER-UC-Cx) who underwent radical cystectomy for bladder cancer between March 2016 and December 2020 at the Seoul National University Hospital. During this period, 368 patients were registered in our database. To eliminate confounding factors, we excluded patients diagnosed with non-urothelial cancer and end-stage renal disease. RESULTS A total of 351 patients with a mean age of 69.8 ± 10.5 years and median follow-up of 16.0 months were eligible for the analysis. The mean preoperative urine pH was 6.0. The patients were divided into low (pH ≤ 5.5) and high (pH≥6.0) urine pH groups for comparison. All clinicopathological features, including the tumor size, grade, and stage were comparable between the low and high urine pH groups. A Cox regression analysis was performed to assess the independent effect of acidic urine on patient survival. A multivariate analysis showed that high T stage (T3-4) (hazard ratio (HR) 5.18, P<0.001), decreased renal function (estimated glomerular filtration rate <60 mL/min/1.73 m2) (HR 2.29, P=0.003), and low urine pH (≤5.5) (HR 1.69, P=0.05) were associated with shortened recurrence-free survival (RFS). Regarding the overall survival (OS), high T stage (T3-4) (HR 7.15, P<0.001) and low urine pH (≤5.5) (HR 2.66, P=0.029) were significantly associated with shortened survival. A Kaplan-Meier analysis demonstrated that the acidic urine group showed shorter RFS (P=0.04) and OS (P=0.028) than the other groups. CONCLUSIONS Acidic urine was independently associated with reduced RFS and OS in patients with bladder cancer undergoing radical cystectomy. Acidic urine contributing to an acidic tumor environment may promote aggressive behavior in bladder cancer.
Collapse
Affiliation(s)
- Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Seung-hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
217
|
Zhang J, Wang S, Guo X, Lu Y, Liu X, Jiang M, Li X, Qin B, Luo Z, Liu H, Li Q, Du YZ, Luo L, You J. Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS NANO 2022; 16:12964-12978. [PMID: 35968927 DOI: 10.1021/acsnano.2c05408] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tumor microenvironment (TME) is characterized by several immunosuppressive factors, of which weak acidity and l-arginine (l-arg) deficiency are two common features. A weak acidic environment threatens the survival of immune cells, and insufficient l-arg will severely restrain the effect of antitumor immune responses, both of which affect the efficiency of cancer treatments (especially immunotherapy). Meanwhile, l-arg is essential for tumor progression. Thus, two strategies, l-arg supplementation and l-arg deprivation, are developed for cancer treatment. However, these strategies have the potential risk of promoting tumor growth and impairing immune responses, which might lead to a paradoxical therapeutic effect. It is optimal to limit the l-arg availability of tumor cells from the microenvironment while supplying l-arg for immune cells. In this study, we designed a multivesicular liposome technology to continuously supply alkaline l-arg, which simultaneously changed the acidity and l-arg deficiency in the TME, and by selectively knocking down the CAT-2 transporter, l-arg starvation of tumors was maintained while tumor-killing immune cells were enriched in the TME. The results showed that our strategy promoted the infiltration and activation of CD8+ T cells in tumor, increased the proportion of M1 macrophages, inhibited melanoma growth, and prolonged survival. In combination with anti-PD-1 antibody, our strategy reversed the low tumor response to immune checkpoint blockade therapy, showing a synergistic antitumor effect. Our work provided a reference for improving the TME combined with regulating nutritional competitiveness to achieve the sensitization of immunotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
218
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
219
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
220
|
Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081618. [PMID: 36015244 PMCID: PMC9416746 DOI: 10.3390/pharmaceutics14081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Biodegradable nanoparticles (NPs) are preferred as drug carriers because of their effectiveness in encapsulating drugs, ability to control drug release, and low cytotoxicity. Although poly(lactide co-glycolide) (PLGA)-based NPs have been used for controlled release strategies, they have some disadvantages. This study describes an approach using biodegradable polyhydroxyalkanoate (PHA) to overcome these challenges. By varying the amount of PHA, NPs were successfully fabricated by a solvent evaporation method. The size range of the NPS ranged from 137.60 to 186.93 nm, and showed zero-order release kinetics of paclitaxel (PTX) for 7 h, and more sustained release profiles compared with NPs composed of PLGA alone. Increasing the amount of PHA improved the PTX loading efficiency of NPs. Overall, these findings suggest that PHA can be used for designing polymeric nanocarriers, which offer a potential strategy for the development of improved drug delivery systems for sustained and controlled release.
Collapse
|
221
|
Howe A, Bhatavdekar O, Salerno D, Josefsson A, Pacheco-Torres J, Bhujwalla ZM, Gabrielson KL, Sgouros G, Sofou S. Combination of Carriers with Complementary Intratumoral Microdistributions of Delivered α-Particles May Realize the Promise for 225Ac in Large, Solid Tumors. J Nucl Med 2022; 63:1223-1230. [PMID: 34795012 PMCID: PMC9364351 DOI: 10.2967/jnumed.121.262992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
α-particle radiotherapy has already been shown to be impervious to most resistance mechanisms. However, in established (i.e., large, vascularized) soft-tissue lesions, the diffusion-limited penetration depths of radiolabeled antibodies or nanocarriers (≤50-80 μm) combined with the short range of α-particles (4-5 cell diameters) may result in only partial tumor irradiation, potentially limiting treatment efficacy. To address this challenge, we combined carriers with complementary intratumoral microdistributions of the delivered α-particles. We used the α-particle generator 225Ac, and we combined a tumor-responsive liposome (which, on tumor uptake, releases into the interstitium a highly diffusing form of its radioactive payload [225Ac-DOTA], potentially penetrating the deeper parts of tumors where antibodies do not reach) with a separately administered, less-penetrating radiolabeled antibody (irradiating the tumor perivascular regions where liposome contents clear too quickly). Methods: In a murine model with orthotopic human epidermal growth factor receptor 2-positive BT474 breast cancer xenografts, the biodistributions of each carrier were evaluated, and the control of tumor growth was monitored after administration of the same total radioactivity of 225Ac delivered by the 225Ac-DOTA-encapsulating liposomes, by the 225Ac-DOTA-SCN--labeled trastuzumab, and by both carriers at equally split radioactivities. Results: Tumor growth was significantly more inhibited when the same total injected radioactivity was divided between the 2 separate carriers than when delivered by either of the carriers alone. The combined carriers enabled more uniform intratumoral microdistributions of α-particles, at a tumor dose that was lower than the dose delivered by the antibody alone. Conclusion: This strategy demonstrates that more uniform microdistributions of the delivered α-particles within established solid tumors improve efficacy even at lower tumor doses. Augmentation of antibody-targeted α-particle therapies with tumor-responsive liposomes may address partial tumor irradiation, improving therapeutic effects.
Collapse
Affiliation(s)
- Alaina Howe
- Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Omkar Bhatavdekar
- Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Dominick Salerno
- Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Jesus Pacheco-Torres
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Zaver M. Bhujwalla
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Kathleen L. Gabrielson
- Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland; and
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Stavroula Sofou
- Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland;,Sidney Kimmel Comprehensive Cancer Center, Cancer Invasion and Metastasis Program, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
222
|
Tran A, Moon JT, Shaikh J, Nezami N. Acetazolamide enhanced drug-eluting beads: manipulating the hepatocellular carcinoma microenvironment. MINIM INVASIV THER 2022; 31:973-977. [DOI: 10.1080/13645706.2022.2040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew Tran
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - John T. Moon
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamil Shaikh
- Department of Vascular and Interventional Radiology, Tampa General Hospital, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
223
|
Hong WX, Shevtsov VY, Shieh YT. Preparation of pH-responsive poly(methyl methacrylate) nanoparticles with CO2-triggered aggregation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
224
|
Targeting Tumor Acidosis and Regulatory T Cells Unmasks Anti-Metastatic Potential of Local Tumor Ablation in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23158479. [PMID: 35955613 PMCID: PMC9368760 DOI: 10.3390/ijms23158479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100–200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called “BiCyclA”, was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.
Collapse
|
225
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
226
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
227
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, Lloyd MC, Swietach P, Verduzco D, Wojtkowiak J, Gillies RJ. Proton export upregulates aerobic glycolysis. BMC Biol 2022; 20:163. [PMID: 35840963 PMCID: PMC9287933 DOI: 10.1186/s12915-022-01340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.
Collapse
Affiliation(s)
- Shonagh Russell
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Liping Xu
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Yoonseok Kam
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 9505 USA
| | - Dominique Abrahams
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Bryce Ordway
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Alex S. Lopez
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Marilyn M. Bui
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Joseph Johnson
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Department, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Mark C. Lloyd
- Inspirata, Inc., One North Dale Mabry Hwy. Suite 600, Tampa, FL 33609 USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Daniel Verduzco
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Jonathan Wojtkowiak
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Robert J. Gillies
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| |
Collapse
|
228
|
Tufail M, Cui J, Wu C. Breast cancer: molecular mechanisms of underlying resistance and therapeutic approaches. Am J Cancer Res 2022; 12:2920-2949. [PMID: 35968356 PMCID: PMC9360230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023] Open
Abstract
Breast cancer (BC) affects over 250,000 women in the US each year. Drug-resistant cancer cells are responsible for most breast cancer fatalities. Scientists are developing novel chemotherapeutic drugs and targeted therapy combinations to overcome cancer cell resistance. Combining drugs can reduce the chances of a tumor developing resistance to treatment. Clinical research has shown that combination chemotherapy enhances or improves survival, depending on the patient's response to treatment. Combination therapy is a highly successful supplemental cancer treatment. This review sheds light on intrinsic resistance to BC drugs and the importance of combination therapy for BC treatment. In addition to recurrence and metastasis of BC, the article discussed biomarkers for BC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi UniversityTaiyuan 030006, Shanxi, China
| | - Jia Cui
- Department of Microbiology, Changzhi Medical CollegeChangzhi 046000, Shanxi, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi UniversityTaiyuan 030006, Shanxi, China
| |
Collapse
|
229
|
Two birds with one stone: innovative ceria-loaded gold@platinum nanospheres for photothermal-catalytic therapy of tumors. J Colloid Interface Sci 2022; 627:299-307. [PMID: 35863189 DOI: 10.1016/j.jcis.2022.07.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Photothermal therapy (PTT) has been widely employed in tumor treatment due to the non-invasive, highly selective, and low toxic side effects. However, the limited penetration of laser couples with the metastasis and recurrence of tumors, thus failing to eliminate them. Here, we report that ceria-loaded gold@platinum (CeO2/Au@Pt) nanospheres modified with polyethylene glycol (PEG). exhibit dual enzymatic activities for photothermal-catalytic synergistic therapy of tumors. CeO2/Au@Pt nanospheres are constructed through the loading of ultra-small CeO2 into core-shell Au@Pt nanospheres. In such a construct, Au@Pt enables targeted PTT, thanks to exceptional photothermal properties, while CeO2 nanozymes alleviate tumor hypoxia and kill tumor cells by producing highly toxic hydroxyl radicals (·OH) based on catalase- and peroxidase-like activities. Synergistic photothermal-catalytic therapy is achieved by delivering nanozymes to the tumor microenvironment (TME) coupled with PTT. This photothermal-catalytic approach that combines simultaneous exogenous and endogenous activation is a potential option for tumor co-therapy.
Collapse
|
230
|
Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14143297. [PMID: 35884358 PMCID: PMC9322110 DOI: 10.3390/cancers14143297] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor hypoxia remains a significant problem in the effective treatment of most cancers. Tumor cells within hypoxic niches tend to be largely resistant to most therapeutic modalities, and adaptation of the cells within the hypoxic microenvironment imparts the cells with aggressive, invasive behavior. Thus, a major goal of successful cancer therapy should be the eradication of hypoxic tumor cells. Carbonic Anhydrase IX (CAIX) is an exquisitely hypoxia induced protein, selectively expressed on hypoxic tumor cells, and thus has garnered significant attention as a therapeutic target. In this Commentary, we discuss the current status of targeting CAIX, and future strategies for effective, durable cancer treatment. Abstract Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.
Collapse
|
231
|
Yang X, Yin H, Zhang D, Peng L, Li K, Cui F, Xia C, Li Z, Huang H. Bibliometric Analysis of Cathepsin B Research From 2011 to 2021. Front Med (Lausanne) 2022; 9:898455. [PMID: 35872750 PMCID: PMC9301081 DOI: 10.3389/fmed.2022.898455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsin B (CTSB) is a lysosomal protease implicated in the progression of various diseases. A large number of CTSB-related studies have been conducted to date. However, there is no comprehensive bibliometric analysis on this subject. In our study, we performed quantitative analysis of CTSB-related publications retrieved from the Science Citation Index Expanded (SCIE) of the Web of Science Core Collection (reference period: 2011–2021). A total of 3,062 original articles and reviews were retrieved. The largest number of publications were from USA (n = 847, 27.66%). The research output of each country showed positive correlation with gross domestic product (GDP) (r = 0.9745, P < 0.0001). Active collaborations between countries/regions were also observed. Reinheckel T and Sloane BF were perhaps the most impactful researchers in the research landscape of CTSB. Plos ONE was the most prevalent (119/3,062, 3.89%) and cited journal (3,021 citations). Comprehensive analysis of the top citations, co-citations, and keywords was performed to acquire the theoretical basis and hotspots of CTSB-related research. The main topics included CTSB-related cancers and inflammatory diseases, CTSB-associated cell death pattern, and the applications of CTSB. These results provide comprehensive insights into the current status of global CTSB-related research especially in pancreas, which is worthy of continued follow-up by practitioners and clinicians in this field.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- *Correspondence: Zhaoshen Li
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- Haojie Huang
| |
Collapse
|
232
|
Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol 2022; 86:325-333. [PMID: 35809880 DOI: 10.1016/j.semcancer.2022.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022]
Abstract
Tumors have long been known to rewire their metabolism to endorse their proliferation, growth, survival, and invasiveness. One of the common characteristics of these alterations is the enhanced glucose uptake and its subsequent transformation into lactic acid by means of glycolysis, regardless the availability of oxygen or the mitochondria effectiveness. This phenomenon is called the "Warburg effect", which has turned into a century of age now, since its first disclosure by German physiologist Otto Heinrich Warburg. Since then, this peculiar metabolic switch in tumors has been addressed by extensive studies covering several areas of research. In this historical perspective, we aim at illustrating the evolution of these studies over time and their implication in various fields of science.
Collapse
|
233
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
234
|
Berz AM, Santana JG, Iseke S, Gross M, Pekurovsky V, Laage Gaupp F, Savic LJ, Borde T, Gottwald LA, Boustani AM, Gebauer B, Lin M, Zhang X, Schlachter T, Madoff DC, Chapiro J. Impact of Chemoembolic Regimen on Immune Cell Recruitment and Immune Checkpoint Marker Expression following Transcatheter Arterial Chemoembolization in a VX2 Rabbit Liver Tumor Model. J Vasc Interv Radiol 2022; 33:764-774.e4. [PMID: 35346859 PMCID: PMC9344951 DOI: 10.1016/j.jvir.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To characterize the effects of commonly used transcatheter arterial chemoembolization (TACE) regimens on the immune response and immune checkpoint marker expression using a VX2 rabbit liver tumor model. MATERIALS AND METHODS Twenty-four VX2 liver tumor-bearing New Zealand white rabbits were assigned to 7 groups (n = 3 per group) undergoing locoregional therapy as follows: (a) bicarbonate infusion without embolization, (b) conventional TACE (cTACE) using a water-in-oil emulsion containing doxorubicin mixed 1:2 with Lipiodol, drug-eluting embolic-TACE with either (c) idarubicin-eluting Oncozene microspheres (40 μm) or (d) doxorubicin-eluting Lumi beads (40-90 μm). For each therapy arm (b-d), a tandem set of 3 animals with additional bicarbonate infusion before TACE was added, to evaluate the effect of pH modification on the immune response. Three untreated rabbits served as controls. Tissue was harvested 24 hours after treatment, followed by digital immunohistochemistry quantification (counts/μm2 ± SEM) of tumor-infiltrating cluster of differentiation 3+ T-lymphocytes, human leukocyte antigen DR type antigen-presenting cells (APCs), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and programmed cell death protein-1 (PD-1)/PD-1 ligand (PD-L1) pathway axis expression. RESULTS Lumi-bead TACE induced significantly more intratumoral T-cell and APC infiltration than cTACE and Oncozene-microsphere TACE. Additionally, tumors treated with Lumi-bead TACE expressed significantly higher intratumoral immune checkpoint markers compared with cTACE and Oncozene-microsphere TACE. Neoadjuvant bicarbonate demonstrated the most pronounced effect on cTACE and resulted in a significant increase in intratumoral cluster of differentiation 3+ T-cell infiltration compared with cTACE alone. CONCLUSIONS This preclinical study revealed significant differences in evoked tumor immunogenicity depending on the choice of chemoembolic regimen for TACE.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Jessica G Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Simon Iseke
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Moritz Gross
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Vasily Pekurovsky
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Lynn J Savic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tabea Borde
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Luzie A Gottwald
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Anne Marie Boustani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Bernhard Gebauer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Visage Imaging, Inc., San Diego, California
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
235
|
Zafeiriadou A, Kollias I, Londra T, Tsaroucha E, Georgoulias V, Kotsakis A, Lianidou E, Markou A. Metabolism-Related Gene Expression in Circulating Tumor Cells from Patients with Early Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133237. [PMID: 35805008 PMCID: PMC9264894 DOI: 10.3390/cancers14133237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In the present study, the expression of three Metabolism-Related Enzymes (MRGs) that are related to glucose and pyruvate metabolism, in parallel with glucose and monocarboxylate transporter expression (HK2, MCT1, PHGDH), was studied in CTCs isolated from the peripheral blood of early stage NSCLC patients at different timepoints. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that wereglycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies. Abstract Purpose: Metabolic reprogramming is now characterized as one of the core hallmarks of cancer, and it has already been shown that the altered genomic profile of metabolically rewired cancer cells can give valuable information. In this study, we quantified three Metabolism-Related Gene (MRG) transcripts in the circulating tumor cells (CTCs) of early stage NSCLC patients and evaluated their associations with epithelial and EMT markers. Experimental Design: We first developed and analytically validated highly sensitive RT-qPCR assays for the quantification of HK2, MCT1 and PHGDH transcripts, and further studied the expression of MRGs in CTCs that were isolated using a size-dependent microfluidic device (Parsortix, Angle) from the peripheral blood of: (a) 46 NSCLC patients at baseline, (b) 39/46 of these patients one month after surgery, (c) 10/46 patients at relapse and (d) 10 pairs of cancerous and adjacent non-cancerous FFPE tissues from the same NSCLC patients. Epithelial and EMT markers were also evaluated. Results: MCT1 and HK2 were differentially expressed between HD and NSCLC patients. An overexpression of MCT1 was detected in 15/46 (32.6%) and 3/10 (30%) patients at baseline and at progression disease (PD), respectively, whereas an overexpression of HK2 was detected in 30.4% and 0% of CTCs in the same group of samples. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. The expression levels of HK2 and MCT1 were associated with the overexpression of mesenchymal markers (TWIST-1 and VIM). Conclusion: An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that were glycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies.
Collapse
Affiliation(s)
- A. Zafeiriadou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - I. Kollias
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - T. Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - E. Tsaroucha
- ‘Sotiria’ General Hospital for Chest Diseases, 11527 Athens, Greece;
| | - V. Georgoulias
- First Department of Medical Oncology, IASO General Hospital of Athens, 15123 Athens, Greece;
| | - A. Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - E. Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - A. Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
- Correspondence:
| |
Collapse
|
236
|
Sudarikova AV, Bychkov ML, Kulbatskii DS, Chubinskiy-Nadezhdin VI, Shlepova OV, Shulepko MA, Koshelev SG, Kirpichnikov MP, Lyukmanova EN. Mambalgin-2 Inhibits Lung Adenocarcinoma Growth and Migration by Selective Interaction With ASIC1/α-ENaC/γ-ENaC Heterotrimer. Front Oncol 2022; 12:904742. [PMID: 35837090 PMCID: PMC9273970 DOI: 10.3389/fonc.2022.904742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is one of the most common cancer types in the world. Despite existing treatment strategies, overall patient survival remains low and new targeted therapies are required. Acidification of the tumor microenvironment drives the growth and metastasis of many cancers. Acid sensors such as acid-sensing ion channels (ASICs) may become promising targets for lung cancer therapy. Previously, we showed that inhibition of the ASIC1 channels by a recombinant analogue of mambalgin-2 from Dendroaspis polylepis controls oncogenic processes in leukemia, glioma, and melanoma cells. Here, we studied the effects and molecular targets of mambalgin-2 in lung adenocarcinoma A549 and Lewis cells, lung transformed WI-38 fibroblasts, and lung normal HLF fibroblasts. We found that mambalgin-2 inhibits the growth and migration of A549, metastatic Lewis P29 cells, and WI-38 cells, but not of normal fibroblasts. A549, Lewis, and WI-38 cells expressed different ASIC and ENaC subunits, while normal fibroblasts did not at all. Mambalgin-2 induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma cells. In line, acidification-evoked inward currents were observed only in A549 and WI-38 cells. Gene knockdown showed that the anti-proliferative and anti-migratory activity of mambalgin-2 is dependent on the expression of ASIC1a, α-ENaC, and γ-ENaC. Using affinity extraction and immunoprecipitation, mambalgin-2 targeting of ASIC1a/α-ENaC/γ-ENaC heteromeric channels in A549 cells was shown. Electrophysiology studies in Xenopus oocytes revealed that mambalgin-2 inhibits the ASIC1a/α-ENaC/γ-ENaC channels with higher efficacy than the ASIC1a channels, pointing on the heteromeric channels as a primary target of the toxin in cancer cells. Finally, bioinformatics analysis showed that the increased expression of ASIC1 and γ-ENaC correlates with a worse survival prognosis for patients with lung adenocarcinoma. Thus, the ASIC1a/α-ENaC/γ-ENaC heterotrimer can be considered a marker of cell oncogenicity and its targeting is promising for the design of new selective cancer therapeutics.
Collapse
Affiliation(s)
- Anastasia V. Sudarikova
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Group of Ionic Mechanisms of Cell Signaling, Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maxim L. Bychkov
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S. Kulbatskii
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav I. Chubinskiy-Nadezhdin
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Group of Ionic Mechanisms of Cell Signaling, Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Shlepova
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Mikhail A. Shulepko
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey G. Koshelev
- Laboratory of Neuroreceptors and Neuroregulators, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Ekaterina N. Lyukmanova,
| |
Collapse
|
237
|
Phytochemicals as Regulators of Tumor Glycolysis and Hypoxia Signaling Pathways: Evidence from In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15070808. [PMID: 35890106 PMCID: PMC9315613 DOI: 10.3390/ph15070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.
Collapse
|
238
|
Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022; 17:2707-2731. [PMID: 35747168 PMCID: PMC9213040 DOI: 10.2147/ijn.s364840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Ordinarily, cancer cells possess features of abnormally increased nutrient intake and metabolic pathways. The disorder of glucose metabolism is the most important among them. Therefore, starvation therapy targeting glucose metabolism specifically, which results in metabolic disorders, restricted synthesis, and inhibition of tumor growth, has been developed for cancer therapy. However, issues such as inadequate targeting effectiveness and drug tolerance impede their clinical transformation. In recent years, nanomaterial-assisted starvation treatment has made significant progress in addressing these challenges, whether as a monotherapy or in combination with other medications. Herein, representative researches on the construction of nanosystems conducting starvation therapy are introduced. Elaborate designs and interactions between different treatment mechanisms are meticulously mentioned. Not only are traditional treatments based on glucose oxidase involved, but also newly sprung small molecule agents targeting glucose metabolism. The obstacles and potential for advancing these anticancer therapies were also highlighted in this review.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xianghui Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
239
|
Martín-Otal C, Navarro F, Casares N, Lasarte-Cía A, Sánchez-Moreno I, Hervás-Stubbs S, Lozano T, Lasarte JJ. Impact of tumor microenvironment on adoptive T cell transfer activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:1-31. [PMID: 35798502 DOI: 10.1016/bs.ircmb.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aritz Lasarte-Cía
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
240
|
Matsue T, Gi M, Shiota M, Tachibana H, Suzuki S, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, Wanibuchi H. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of β-catenin signaling. Cancer Sci 2022; 113:2642-2653. [PMID: 35723039 PMCID: PMC9357660 DOI: 10.1111/cas.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Carbonic anhydrases (CAs) play an important role in maintaining pH homeostasis. We previously demonstrated that overexpression of CA2 was associated with invasion and progression of urothelial carcinoma (UC) in humans. The purpose of the present study was to evaluate the effects of the CA inhibitor acetazolamide (Ace) on N‐butyl‐N‐(4‐hydroxybutyl)nitrosamine (BBN)‐induced bladder carcinogenesis in mice and explore the function of CA2 in muscle invasion by UC. Male mice were treated with 0.025% (experiment 1) or 0.05% BBN (experiment 2) in their drinking water for 10 weeks, then treated with cisplatin (Cis), Ace, or Cis plus Ace for 12 weeks. In experiment 1, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Ace and BBN→Cis+Ace groups. In experiment 2, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Cis+Ace group, and the incidence of muscle invasive UC was significantly decreased in both the BBN→Ace and the BBN→Cis+Ace groups. We also show that overexpression of CA2 by human UC cells T24 and UMUC3 significantly increased their migration and invasion capabilities, and that Ace significantly inhibited migration and invasion by CA2‐overexpressing T24 and UMUC3 cells. These data demonstrate a functional association of CA2 with UC development and progression, confirming the association of CA2 with UC that we had shown previously by immunohistochemical analysis of human UC specimens and proteome analysis of BBN‐induced UC in rats. Our finding that inhibition of CA2 inhibits UC development and muscle invasion also directly confirms that CA2 is a potential therapeutic target for bladder cancers.
Collapse
Affiliation(s)
- Taisuke Matsue
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Tachibana
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Junji Uchida
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
241
|
Esmailzadeh A, Shanei A, Attaran N, Hejazi SH, Hemati S. Sonodynamic Therapy Using Dacarbazine-Loaded AuSiO 2 Nanoparticles for Melanoma Treatment: An In-Vitro Study on the B16F10 Murine Melanoma Cell Line. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1131-1142. [PMID: 35307236 DOI: 10.1016/j.ultrasmedbio.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The use of nanoparticles as a sonosensitizer in cancer sonodynamic therapy has been gaining attention because of their great advantages in drug delivery applications. By conjugating chemotherapy agents with nanoparticles, we can develop a drug delivery platform, control drug release and improve the outcome of treatments. The in-vitro study described here evaluates the combination of AuSiO2 nanoparticles and dacarbazine (DTIC@AuSiO2) as a sonosensitizer for sonodynamic therapy of melanoma. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays revealed that the viability of B16F10 melanoma cells was significantly inhibited by the increase in apoptosis induction in treatment with DTIC@AuSiO2 nanoparticles under ultrasound exposure compared with treatment with the free DTIC or AuSiO2 nanoparticles. The sonosensitization activity of AuSiO2 nanoparticles and greater uptake of DTIC by tumor cells after loading in DTIC@AuSiO2 nanoparticles inhibited the proliferation of melanoma tumor cells effectively. In conclusion, the DTIC@AuSiO2 nanoparticles established in this study could represent a good drug delivery and sonosensitizer platform for use in melanoma sonodynamic therapy.
Collapse
Affiliation(s)
- Arman Esmailzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simin Hemati
- Department of Radiation Oncology, School of Medicine, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
242
|
Kwak SB, Kim SJ, Kim J, Kang YL, Ko CW, Kim I, Park JW. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:720-729. [PMID: 35764882 PMCID: PMC9256747 DOI: 10.1038/s12276-022-00784-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Surgery is unanimously regarded as the primary strategy to cure solid tumors in the early stages but is not always used in advanced cases. However, tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure. Tumor surgery may result in a deep wound, which induces many biological responses favoring tumor metastasis. In particular, NETosis, which is the process of forming neutrophil extracellular traps (NETs), has received attention as a risk factor for surgery-induced metastasis. To reduce cancer mortality, researchers have made efforts to prevent secondary metastasis after resection of the primary tumor. From this point of view, a better understanding of surgery-induced metastasis might provide new strategies for more effective and safer surgical approaches. In this paper, recent insights into the surgical effects on metastasis will be reviewed. Moreover, in-depth opinions about the effects of NETs on metastasis will be discussed. Therapies that limit the formation of web-like structures formed by white cells known as neutrophils may lower the risk of cancer spread (metastasis) following surgical tumor removal. Removing solid tumors remains a key cancer treatment, but in some cases surgery itself increases the risk of metastasis. Jong-Wan Park at Seoul National University, South Korea, and co-workers reviewed current understanding of metastasis following surgery. Surgical removal destroys the architecture supporting cancer cells but this can release tumor cells into blood vessels. The stress of deep wounds also affects immune responses, most notably neutrophil extracellular traps (NETs), web-like structures formed by neutrophils to trap and kill pathogens. NETs have previously been implicated in metastasis. In a post-surgical environment enriched in neutrophils and pro-inflammatory cytokines, NET formation may help cancer cells thrive, promoting metastasis.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sang Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ye-Lim Kang
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Woo Ko
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
243
|
Kong X, Sun Y, Zhang Q, Li S, Jia Y, Li R, Liu Y, Xie Z. Specific Tumor Cell Detection by a Metabolically Targeted Aggregation-Induced Emission-Based Gold Nanoprobe. ACS OMEGA 2022; 7:18073-18084. [PMID: 35664593 PMCID: PMC9161387 DOI: 10.1021/acsomega.2c01494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Detection of circulating tumor cells (CTCs) could be widely used for early diagnosis and real-time monitoring of tumor progression in liquid biopsy samples. Compared with normal cells, tumor cells exhibit relatively strong negative surface charges due to the high rate of glycolysis. In this study, a cationic fluorescence "turn-on" aggregation-induced emission (AIE) nanoprobe based on gold nanorods (GNRs) was designed and tested to detect tumor cells specifically. In brief, tetraphenylethene (TPE), an AIE dye, was conjugated to the cationic polymer polyethylenimine (PEI) yielding TPEI. TPEI-PEG-SH was obtained by further functionalizing TPEI with a thiol group. TPEI-PEG-SH was grafted to the surface of GNRs, yielding the cationic AIE nanoprobe, named as GNRs-PEG-TPEI. The nanoprobe was characterized to have a uniform particle size of 172 nm, a strong positive surface charge (+54.87 mV), and a surface modification load of ∼40%. The in vitro stability of GNRs-PEG-TPEI was verified. The cellular imaging results demonstrated that the nanoprobe could efficiently recognize several types of tumor cells including MCF-7, HepG2, and Caco-2 while exhibiting specific fluorescence signals only after interacting with tumor cells and minimal background interference. In addition, the study investigated the toxicity of the nanoprobe to the captured cells and proved the safety of the nanoprobe. In conclusion, a specific and efficient nanoprobe was developed for capture and detection of different types of tumor cells based on their unique metabolic characteristics. It holds great promise for achieving early diagnosis and monitoring the tumor progression by detecting the CTCs in clinical liquid biopsy samples.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Siju Li
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Li
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiyong Xie
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
244
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers (Basel) 2022; 14:2655. [PMID: 35681635 PMCID: PMC9179868 DOI: 10.3390/cancers14112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic alterations in neoplastic cells have recently gained increasing attention as a main topic of research, playing a crucial regulatory role in the development and progression of tumors. The interplay between epigenetic modifications and metabolic pathways in glioblastoma cells has emerged as a key pathogenic area with great potential for targeted therapy. Epigenetic mechanisms have been demonstrated to affect main metabolic pathways, such as glycolysis, pentose phosphate pathway, gluconeogenesis, oxidative phosphorylation, TCA cycle, lipid, and glutamine metabolism by modifying key regulatory genes. Although epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. In this way, they participate in a complex network of interactions that regulate the metabolic behavior of malignant cells, increasing their heterogeneity and plasticity. Herein, we discuss the main epigenetic mechanisms that regulate the metabolic pathways in glioblastoma cells and highlight their targeting potential against tumor progression.
Collapse
|
245
|
Zhang L, Zheng L, Yang X, Yao S, Wang H, An J, Jin H, Wen G, Tuo B. Pathology and physiology of acid‑sensitive ion channels in the digestive system (Review). Int J Mol Med 2022; 50:94. [PMID: 35616162 PMCID: PMC9170189 DOI: 10.3892/ijmm.2022.5150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
As a major proton-gated cation channel, acid-sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
246
|
Zhu L, Meng D, Wang X, Chen X. Ferroptosis-Driven Nanotherapeutics to Reverse Drug Resistance in Tumor Microenvironment. ACS APPLIED BIO MATERIALS 2022; 5:2481-2506. [PMID: 35614872 DOI: 10.1021/acsabm.2c00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis, characterized by iron-dependent lipid reactive oxygen species (ROS) accumulation, is non-apoptotic programmed cell death highly relevant to tumor development. It was found to manipulate oncogenes and resistant mutations of cancer cells via lipid metabolism pathways converging on phospholipid glutathione peroxidase (GPX4) that squanders lipid peroxides (L-OOH) to block the iron-mediated reactions of peroxides, thus rendering resistant cancer cells vulnerable to ferroptotic cell death. By accumulating ROS and lipid peroxidation (LPO) products to lethal levels in tumor microenvironment (TME), ferroptosis-driven nanotherapeutics show a superior ability of eradicating aggressive malignancies than traditional therapeutic modalities, especially for the drug-resistant tumors with high metastasis tendency. Moreover, Fenton reaction, inhibition of GPX-4, and exogenous regulation of LPO are three major therapeutic strategies to induce ferroptosis in cancer cells, which were generally applied in ferroptosis-driven nanotherapeutics. In this review, we elaborate current trends of ferroptosis-driven nanotherapeutics to reverse drug resistance of tumors in anticancer fields at the intersection of cancer biology, materials science, and chemistry. Finally, their challenges and perspectives toward feasible translational studies are spotlighted, which would ignite the hope of anti-resistant cancer treatment.
Collapse
Affiliation(s)
- Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
247
|
Bauer D, Visca H, Weerakkody A, Carter LM, Samuels Z, Kaminsky S, Andreev OA, Reshetnyak YK, Lewis JS. PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Front Oncol 2022; 12:882541. [PMID: 35664740 PMCID: PMC9160799 DOI: 10.3389/fonc.2022.882541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acidosis of the tumor microenvironment is a hallmark of tumor progression and has emerged as an essential biomarker for cancer diagnosis, prognosis, and evaluation of treatment response. A tool for quantitatively visualizing the acidic tumor environment could significantly advance our understanding of the behavior of aggressive tumors, improving patient management and outcomes. 89Zr-labeled pH-low insertion peptides (pHLIP) are a class of radiopharmaceutical imaging probes for the in vivo analysis of acidic tumor microenvironments via positron emission tomography (PET). Their unique structure allows them to sense and target acidic cancer cells. In contrast to traditional molecular imaging agents, pHLIP's mechanism of action is pH-dependent and does not rely on the presence of tumor-specific molecular markers. In this study, one promising acidity-imaging PET probe ([89Zr]Zr-DFO-Cys-Var3) was identified as a candidate for clinical translation.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hannah Visca
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Anuradha Weerakkody
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Lukas M. Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Samuels
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Spencer Kaminsky
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Pharmacology Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
248
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal 2022; 20:63. [PMID: 35538545 PMCID: PMC9092709 DOI: 10.1186/s12964-022-00871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background The tumor microenvironment consists of stromal cells, extracellular matrix, and physicochemical properties (e.g., oxygenation, acidification). An important element of the tumor niche are cancer-associated fibroblasts (CAFs). They may constitute up to 80% of the tumor mass and share some features with myofibroblasts involved in the process of wound healing. CAFs can facilitate cancer progression. However, their interaction with melanoma cells is still poorly understood.
Methods We obtained CAFs using conditioned media derived from primary and metastatic melanoma cells, and via co-culture with melanoma cells on Transwell inserts. Using 2D and 3D wound healing assays and Transwell invasion method we evaluated CAFs’ motile activities, while coverslips with FITC-labeled gelatin, gelatin zymography, and fluorescence-based activity assay were employed to determine the proteolytic activity of the examined cells. Western Blotting method was used for the identification of CAFs’ markers as well as estimation of the mediators of MMPs’ (matrix metalloproteinases) expression levels. Lastly, CAFs’ secretome was evaluated with cytokine and angiogenesis proteomic arrays, and lactate chemiluminescence-based assay. Results Acquired FAP-α/IL6-positive CAFs exhibited elevated motility expressed as increased migration and invasion ratio, as well as higher proteolytic activity (area of digestion, MMP2, MMP14). Furthermore, fibroblasts activated by melanoma cells showed upregulation of the MMPs’ expression mediators’ levels (pERK, p-p38, CD44, RUNX), enhanced secretion of lactate, several cytokines (IL8, IL6, CXCL1, CCL2, ICAM1), and proteins related to angiogenesis (GM-CSF, DPPIV, VEGFA, PIGF). Conclusions Observed changes in CAFs’ biology were mainly driven by highly aggressive melanoma cells (A375, WM9, Hs294T) compared to the less aggressive WM1341D cells and could promote melanoma invasion, as well as impact inflammation, angiogenesis, and acidification of the tumor niche. Interestingly, different approaches to CAFs acquisition seem to complement each other showing interactions between studied cells. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00871-x.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | - Michał Majkowski
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
249
|
Miret NV, Zárate LV, Díaz FE, Agustina Leguizamón M, Pontillo CA, Chiappini FA, Ceballos L, Geffner J, Randi AS. Extracellular acidosis stimulates breast cancer cell motility through aryl hydrocarbon receptor and c-Src kinase activation. J Cell Biochem 2022; 123:1197-1206. [PMID: 35538691 DOI: 10.1002/jcb.30275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
A reduction in extracellular pH (pHe) is a characteristic of most malignant tumors. The aryl hydrocarbon receptor (AhR) is a transcription factor localized in a cytosolic complex with c-Src, which allows it to trigger non-genomic effects through c-Src. Considering that the slightly acidic tumor microenvironment promotes breast cancer progression in a similar way to the AhR/c-Src axis, our aim was to evaluate whether this pathway could be activated by low pHe. We examined the effect of pHe 6.5 on AhR/c-Src axis using two breast cancer cell lines (MDA-MB-231 and LM3) and mammary epithelial cells (NMuMG) and found that acidosis increased c-Src phosphorylation only in tumor cells. Moreover, the presence of AhR inhibitors prevented c-Src activation. Low pHe reduced intracellular pH (pHi), while amiloride treatment, which is known to reduce pHi, induced c-Src phosphorylation through AhR. Analyses were conducted on cell migration and metalloproteases (MMP)-2 and -9 activities, with results showing an acidosis-induced increase in MDA-MB-231 and LM3 cell migration and MMP-9 activity, but no changes in NMuMG cells. Moreover, all these effects were blocked by AhR and c-Src inhibitors. In conclusion, acidosis stimulates the AhR/c-Src axis only in breast cancer cells, increasing cell migration and MMP-9 activity. Although the AhR activation mechanism still remains elusive, a reduction in pHi may be thought to be involved. These findings suggest a critical role for the AhR/c-Src axis in breast tumor progression stimulated by an acidic microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - M Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Jorge Geffner
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| |
Collapse
|
250
|
Storz MA, Ronco AL. Quantifying dietary acid load in U.S. cancer survivors: an exploratory study using NHANES data. BMC Nutr 2022; 8:43. [PMID: 35505426 PMCID: PMC9063047 DOI: 10.1186/s40795-022-00537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diet is an important determinant of systemic pH and acid-base regulation. A frequent consumption of acid-inducing foods (including processed meats and cheese) combined with a low intake of base-inducing foods (such as fruits, legumes and vegetables) increases Dietary Acid Load (DAL), which has been associated with an increased risk for certain cancers. DAL also appears to be of paramount importance in cancer survivors, in whom it was associated with increased mortality and poor overall physical health. Literature on DAL in cancer survivors, however, is scarce and limited to a few studies. METHODS Using cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES), we sought to quantify DAL in U.S. cancer survivors and contrasted the results to the general population. DAL was estimated using established formulas (Potential Renal Acid Load (PRAL) and Net Endogenous Acid Production (NEAP)). RESULTS Our study comprised 19,413 participants, of which 1444 were self-reported cancer survivors. Almost 63% of cancer survivors were female (weighted proportion) with a mean age of 61.75 (0.51) years. DAL scores were consistently higher in cancer survivors (as compared to the general population) after adjustment for confounders in multivariate regression models. These differences, however, were not statistically significant (p = 0.506 for NEAPF, 0.768 for PRALR and 0.468 for NEAPR, respectively). Notably, DAL scores were positive throughout (> 0 mEq/d) in cancer survivors, suggesting an acidifying diet. Specific examples include mean PRALR scores > 11 mEq/d in cancer survivors aged 55 years and mean NEAPF scores > 50 mEq/d in cancer survivors aged 40-60 years). CONCLUSIONS The acidifying diet in this sample of cancer survivors warrants caution and requires further investigation. Comparably high DAL scores have been associated with adverse health outcomes and an increased mortality in previous studies in breast cancer survivors. Thus, increased awareness as well as additional clinical trials in this field are urgently warranted.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alvaro Luis Ronco
- Unit of Oncology and Radiotherapy, Pereira Rossell Women's Hospital, Bvard. Artigas 1590, 11600, Montevideo, Uruguay
- School of Medicine, CLAEH University, Prado and Salt Lake, 20100, Maldonado, Uruguay
- Biomedical Sciences Center, University of Montevideo, Puntas de Santiago 1604, 11500, Montevideo, Uruguay
| |
Collapse
|