201
|
Breast Cancer Cell Re-Dissemination from Lung Metastases-A Mechanism for Enhancing Metastatic Burden. J Clin Med 2021; 10:jcm10112340. [PMID: 34071839 PMCID: PMC8199463 DOI: 10.3390/jcm10112340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.
Collapse
|
202
|
Intravital microscopy to illuminate cell state plasticity during metastasis. Curr Opin Cell Biol 2021; 72:28-35. [PMID: 34020117 DOI: 10.1016/j.ceb.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Microenvironmental cues in tumors induce in a wide variety of cellular states that subsequently lead to cancer cells with distinct cellular identity, behavior, and fate. Recent literature suggests that the ability to change cellular states, a process defined as cell state plasticity, enable cells to rapidly adapt to their changing environment during tumor progression and metastasis. In this review, we will discuss how recent high-resolution intravital microscopy studies have been instrumental to reveal the real-time dynamics of tumor cell state plasticity during the different steps of the metastatic cascade. In addition, we will highlight the role of tumor plasticity during anticancer treatment response, and how plasticity can be used as a potential druggable target.
Collapse
|
203
|
Wang J, Li T, Ma L, Liu G, Wang G, Kang J. NDRG2 inhibition facilitates angiogenesis of hepatocellular carcinoma. Open Med (Wars) 2021; 16:742-748. [PMID: 34013046 PMCID: PMC8114951 DOI: 10.1515/med-2021-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an angiogenesis-dependent tumor, and angiogenesis plays pivotal roles in progression and hematogenous metastasis. Upregulating NDRG2 expression could inhibit endothelial cell proliferation and tumor angiogenesis. However, the development of angiogenesis is a complicated and dynamic process, and the specific mechanisms that NDRG2 influences its progression are largely unknown. Conditioned media (CM) was collected from HCC cells. Cell viability, migration assay, tube formation, and western blot were used to evaluate the effect of NDRG2 on angiogenesis in HCC cells. ELISA assay was used to measure the level of VEGFA in CM. CM from NDRG2 knockdown cells significantly promoted HUVECs proliferation, migration, and tube formation compared with control cells. The level of VEGFA in CM was increased by NDRG2 knockdown relative to the control group. The expression of VEGFA, HIF-1α, and p-Akt was significantly increased in NDRG2 knockdown cells. CM from NDRG2 knockdown cells with VEGFA antibody failed to induce HUVEC proliferation, migration, and tube formation. YC-1 significantly inhibited the level of VEGFA in CM from NDRG2 knockdown cells. YC-1 also inhibited the expression of VEGFA and HIF-1α. Therefore, NDRG2 inhibition promoted the angiogenesis of HCC via VEGFA and may be used to be an anti-angiogenesis target.
Collapse
Affiliation(s)
- Jianlong Wang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Tao Li
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Lifeng Ma
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guochao Liu
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guiying Wang
- General Surgical Department, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China.,General Surgical Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Jiansheng Kang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| |
Collapse
|
204
|
Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40:427-445. [PMID: 33973098 DOI: 10.1007/s10555-021-09974-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. .,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
205
|
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 2021; 54:885-902. [PMID: 33979586 DOI: 10.1016/j.immuni.2021.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Tumor cells metastasize to distant organs through a complex series of events that are driven by tumor intrinsic and extrinsic factors. In particular, non-malignant stromal cells, including immune cells, modify tumor metastatic behavior. Of these cells, tumor-associated innate immune cells, particularly macrophages and neutrophils, suppress the cytotoxic activity of innate and adaptive killer cells and interact with tumor cells to promote their growth and malignancy. These findings in mouse cancer models suggest that targeting these sub-populations of immune cells holds therapeutic promise in treating metastatic disease. In this review, we describe the origin and role of the macrophages, neutrophils, and their progenitors in the metastatic cascade and suggest strategies that might enhance cancer therapy.
Collapse
Affiliation(s)
- Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
206
|
Cotechini T, Atallah A, Grossman A. Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells 2021; 10:960. [PMID: 33924237 PMCID: PMC8074766 DOI: 10.3390/cells10040960] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages within solid tumors and metastatic sites are heterogenous populations with different developmental origins and substantially contribute to tumor progression. A number of tumor-promoting phenotypes associated with both tumor- and metastasis-associated macrophages are similar to innate programs of embryonic-derived tissue-resident macrophages. In contrast to recruited macrophages originating from marrow precursors, tissue-resident macrophages are seeded before birth and function to coordinate tissue remodeling and maintain tissue integrity and homeostasis. Both recruited and tissue-resident macrophage populations contribute to tumor growth and metastasis and are important mediators of resistance to chemotherapy, radiation therapy, and immune checkpoint blockade. Thus, targeting various macrophage populations and their tumor-promoting phenotypes holds therapeutic promise. Here, we discuss various macrophage populations as regulators of tumor progression, immunity, and immunotherapy. We provide an overview of macrophage targeting strategies, including therapeutics designed to induce macrophage depletion, impair recruitment, and induce repolarization. We also provide a perspective on the therapeutic potential for macrophage-specific acquisition of trained immunity as an anti-cancer agent and discuss the therapeutic potential of exploiting macrophages and their traits to reduce tumor burden.
Collapse
Affiliation(s)
- Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.A.); (A.G.)
| | | | | |
Collapse
|
207
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
208
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
209
|
Roarty K, Echeverria GV. Laboratory Models for Investigating Breast Cancer Therapy Resistance and Metastasis. Front Oncol 2021; 11:645698. [PMID: 33777805 PMCID: PMC7988094 DOI: 10.3389/fonc.2021.645698] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023] Open
Abstract
While numerous therapies are highly efficacious in early-stage breast cancers and in particular subsets of breast cancers, therapeutic resistance and metastasis unfortunately arise in many patients. In many cases, tumors that are resistant to standard of care therapies, as well as tumors that have metastasized, are treatable but incurable with existing clinical strategies. Both therapy resistance and metastasis are multi-step processes during which tumor cells must overcome diverse environmental and selective hurdles. Mechanisms by which tumor cells achieve this are numerous and include acquisition of invasive and migratory capabilities, cell-intrinsic genetic and/or epigenetic adaptations, clonal selection, immune evasion, interactions with stromal cells, entering a state of dormancy or senescence, and maintaining self-renewal capacity. To overcome therapy resistance and metastasis in breast cancer, the ability to effectively model each of these mechanisms in the laboratory is essential. Herein we review historic and the current state-of-the-art laboratory model systems and experimental approaches used to investigate breast cancer metastasis and resistance to standard of care therapeutics. While each model system has inherent limitations, they have provided invaluable insights, many of which have translated into regimens undergoing clinical evaluation. We will discuss the limitations and advantages of a variety of model systems that have been used to investigate breast cancer metastasis and therapy resistance and outline potential strategies to improve experimental modeling to further our knowledge of these processes, which will be crucial for the continued development of effective breast cancer treatments.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Gloria V Echeverria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
210
|
Bocci F, Mandal S, Tejaswi T, Jolly MK. Investigating epithelial‐mesenchymal heterogeneity of tumors and circulating tumor cells with transcriptomic analysis and biophysical modeling. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics Rice University Houston Texas USA
- NSF‐Simons Center for Multiscale Cell Fate Research University of California Irvine California USA
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore Karnataka India
| | - Tanishq Tejaswi
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore Karnataka India
- UG Programme Indian Institute of Science Bangalore Karnataka India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore Karnataka India
| |
Collapse
|
211
|
Multi-Modal Multi-Spectral Intravital Microscopic Imaging of Signaling Dynamics in Real-Time during Tumor-ImmuneInteractions. Cells 2021; 10:cells10030499. [PMID: 33652682 PMCID: PMC7996937 DOI: 10.3390/cells10030499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Intravital microscopic imaging (IVM) allows for the study of interactions between immune cells and tumor cells in a dynamic, physiologically relevant system in vivo. Current IVM strategies primarily use fluorescence imaging; however, with the advances in bioluminescence imaging and the development of new bioluminescent reporters with expanded emission spectra, the applications for bioluminescence are extending to single cell imaging. Herein, we describe a molecular imaging window chamber platform that uniquely combines both bioluminescent and fluorescent genetically encoded reporters, as well as exogenous reporters, providing a powerful multi-plex strategy to study molecular and cellular processes in real-time in intact living systems at single cell resolution all in one system. We demonstrate that our molecular imaging window chamber platform is capable of imaging signaling dynamics in real-time at cellular resolution during tumor progression. Importantly, we expand the utility of IVM by modifying an off-the-shelf commercial system with the addition of bioluminescence imaging achieved by the addition of a CCD camera and demonstrate high quality imaging within the reaches of any biology laboratory.
Collapse
|
212
|
Liu TW, Gammon ST, Fuentes D, Piwnica-Worms D. Multi-Modal Multi-Spectral Intravital Macroscopic Imaging of Signaling Dynamics in Real Time during Tumor-Immune Interactions. Cells 2021; 10:489. [PMID: 33668735 PMCID: PMC7996138 DOI: 10.3390/cells10030489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
A major obstacle in studying the interplay between cancer cells and the immune system has been the examination of proposed biological pathways and cell interactions in a dynamic, physiologically relevant system in vivo. Intravital imaging strategies are one of the few molecular imaging techniques that can follow biological processes at cellular resolution over long periods of time in the same individual. Bioluminescence imaging has become a standard preclinical in vivo optical imaging technique with ever-expanding versatility as a result of the development of new emission bioluminescent reporters, advances in genomic techniques, and technical improvements in bioluminescence imaging and processing methods. Herein, we describe an advance of technology with a molecular imaging window chamber platform that combines bioluminescent and fluorescent reporters with intravital macro-imaging techniques and bioluminescence spectral unmixing in real time applied to heterogeneous living systems in vivo for evaluating tumor signaling dynamics and immune cell enzyme activities concurrently.
Collapse
Affiliation(s)
- Tracy W. Liu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| |
Collapse
|
213
|
Cellular Fitness Phenotypes of Cancer Target Genes from Oncobiology to Cancer Therapeutics. Cells 2021; 10:cells10020433. [PMID: 33670680 PMCID: PMC7921985 DOI: 10.3390/cells10020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
To define the growing significance of cellular targets and/or effectors of cancer drugs, we examined the fitness dependency of cellular targets and effectors of cancer drug targets across human cancer cells from 19 cancer types. We observed that the deletion of 35 out of 47 cellular effectors and/or targets of oncology drugs did not result in the expected loss of cell fitness in appropriate cancer types for which drugs targeting or utilizing these molecules for their actions were approved. Additionally, our analysis recognized 43 cellular molecules as fitness genes in several cancer types in which these drugs were not approved, and thus, providing clues for repurposing certain approved oncology drugs in such cancer types. For example, we found a widespread upregulation and fitness dependency of several components of the mevalonate and purine biosynthesis pathways (currently targeted by bisphosphonates, statins, and pemetrexed in certain cancers) and an association between the overexpression of these molecules and reduction in the overall survival duration of patients with breast and other hard-to-treat cancers, for which such drugs are not approved. In brief, the present analysis raised cautions about off-target and undesirable effects of certain oncology drugs in a subset of cancers where the intended cellular effectors of drug might not be good fitness genes and that this study offers a potential rationale for repurposing certain approved oncology drugs for targeted therapeutics in additional cancer types.
Collapse
|
214
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
215
|
Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021; 22:ijms22041821. [PMID: 33673054 PMCID: PMC7918886 DOI: 10.3390/ijms22041821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.
Collapse
|
216
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
217
|
Luo Y, Hu J, Liu Y, Li L, Li Y, Sun B, Kong R. Invadopodia: A potential target for pancreatic cancer therapy. Crit Rev Oncol Hematol 2021; 159:103236. [PMID: 33482351 DOI: 10.1016/j.critrevonc.2021.103236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Dissemination of cancer cells is an intricate multistep process that represents the most deadly aspect of cancer. Cancer cells form F-actin-rich protrusions known as invadopodia to invade surrounding tissues, blood vessels and lymphatics. A number of studies have demonstrated the significant roles of invadopodia in cancer. Therefore, the specific cells and molecules involved in invadopodia activity can provide as therapeutic targets. In this review, we included a thorough overview of studies in invadopodia and discussed their functions in cancer metastasis. We then presented the specific cells and molecules involved in invadopodia activity in pancreatic cancer and analyzed their suitability to be effective therapeutic targets. Currently, drugs targeting invadopodia and relevant clinical trials are negligible. Here, we highlighted the significance of potential drugs and discussed future obstacles in implementing clinical trials. This review presents a new perspective on invadopodia-induced pancreatic cancer metastasis and may prosper the development of targeted therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
218
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
219
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
220
|
Macrophages in multiple myeloma: key roles and therapeutic strategies. Cancer Metastasis Rev 2021; 40:273-284. [PMID: 33404860 DOI: 10.1007/s10555-020-09943-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Macrophages are a vital component of the tumour microenvironment and crucial mediators of tumour progression. In the last decade, significant strides have been made in understanding the crucial functional roles played by macrophages in the development of the plasma cell (PC) malignancy, multiple myeloma (MM). Whilst the interaction between MM PC and stromal cells within the bone marrow (BM) microenvironment has been extensively studied, we are only just starting to appreciate the multifaceted roles played by macrophages in disease progression. Accumulating evidence demonstrates that macrophage infiltration is associated with poor overall survival in MM. Indeed, macrophages influence numerous pathways critical for the initiation and progression of MM, including homing of malignant cells to BM, tumour cell growth and survival, drug resistance, angiogenesis and immune suppression. As such, therapeutic strategies aimed at targeting macrophages within the BM niche have promise in the clinical setting. This review will discuss the functions elicited by macrophages throughout different stages of MM and provide a comprehensive evaluation of potential macrophage-targeted therapies.
Collapse
|
221
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
222
|
Malhab LJB, Saber-Ayad MM, Al-Hakm R, Nair VA, Paliogiannis P, Pintus G, Abdel-Rahman WM. Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation. Curr Pharm Des 2021; 27:2156-2169. [PMID: 33655853 DOI: 10.2174/1381612827666210303143442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023]
Abstract
Long-lasting subclinical inflammation is associated with a wide range of human diseases, particularly at a middle and older age. Recent reports showed that there is a direct causal link between inflammation and cancer development, as several cancers were found to be associated with chronic inflammatory conditions. In patients with cancer, healthy endothelial cells regulate vascular homeostasis, and it is believed that they can limit tumor growth, invasiveness, and metastasis. Conversely, dysfunctional endothelial cells that have been exposed to the inflammatory tumor microenvironment can support cancer progression and metastasis. Dysfunctional endothelial cells can exert these effects via diverse mechanisms, including dysregulated adhesion, permeability, and activation of NF-κB and STAT3 signaling. In this review, we highlight the role of vascular inflammation in predisposition to cancer within the context of two common disease risk factors: obesity and smoking. In addition, we discuss the molecular triggers, pathophysiological mechanisms, and the biological consequences of vascular inflammation during cancer development and metastasis. Finally, we summarize the current therapies and pharmacological agents that target vascular inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ranyah Al-Hakm
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Surgery, University of Sassari, Viale San Pietro 43,07100 Sassari, Italy
| | - Gianfranco Pintus
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
223
|
Studying the Tumor Microenvironment in Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:69-92. [PMID: 34664234 DOI: 10.1007/978-3-030-73119-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment significantly contributes to tumor initiation, progression, neo-angiogenesis, and metastasis, and a better understanding of the role of the different cellular players would facilitate the development of novel therapeutic strategies for cancer treatment. Towards this goal, intravital imaging is a powerful method to unravel interaction partners of tumor cells. Among vertebrate model organisms, zebrafish is uniquely suited for in vivo imaging studies. In recent years zebrafish has also become a valuable model in cancer research. In this chapter, we will summarize, how zebrafish has been used to characterize cells of the tumor microenvironment. We will cover both genetically engineered cancer models and xenograft models in zebrafish. The majority of work has been done on the role of innate immune cells and their role during tumor initiation and metastasis, but we will also cover studies focusing on adipocytes, fibroblasts, and endothelial cells. Taken together, we will highlight the versatile use of the zebrafish model for in vivo tumor microenvironment studies.
Collapse
|
224
|
Peixoto A, Cotton S, Santos LL, Ferreira JA. The Tumour Microenvironment and Circulating Tumour Cells: A Partnership Driving Metastasis and Glycan-Based Opportunities for Cancer Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:1-33. [PMID: 34664231 DOI: 10.1007/978-3-030-73119-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumour cells (CTC) are rare cells that actively detach or are shed from primary tumours into the lymph and blood. Some CTC subpopulations gain the capacity to survive, home and colonize distant locations, forming metastasis. This results from a multifactorial process in which cancer cells optimize motility, invasion, immune escape and cooperative relationships with microenvironmental cues. Here we present evidences of a self-fuelling molecular crosstalk between cancer cells and the tumour stroma supporting the main milestones leading to metastasis. We discuss how the tumour microenvironment supports pre-metastatic niches and CTC development and ultimately dictates CTC fate in targeted organs. Finally, we highlight the key role played by protein glycosylation in metastasis development, its prompt response to microenvironmental stimuli and the tremendous potential of glycan-based molecular signatures for liquid biopsies and targeted therapeutics.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal. .,Institute for Biomedical Engineering (INEB), Porto, Portugal. .,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal.,Institute for Biomedical Engineering (INEB), Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| |
Collapse
|
225
|
Boulter L, Bullock E, Mabruk Z, Brunton VG. The fibrotic and immune microenvironments as targetable drivers of metastasis. Br J Cancer 2021; 124:27-36. [PMID: 33239677 PMCID: PMC7782519 DOI: 10.1038/s41416-020-01172-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Although substantial progress has been made over the past 40 years in treating patients with cancer, effective therapies for those who are diagnosed with advanced metastatic disease are still few and far between. Cancer cells do not exist in isolation: rather, they exist within a complex microenvironment composed of stromal cells and extracellular matrix. Within this tumour microenvironment exists an interplay between the two main stromal cell subtypes, cancer-associated fibroblasts (CAFs) and immune cells, that are important in controlling metastasis. A complex network of paracrine signalling pathways between CAFs, immune cells and tumour cells are involved at multiple stages of the metastatic process, from invasion and intravasation at the primary tumour site to extravasation and colonisation in the metastatic site. Heterogeneity and plasticity within stromal cell populations also contribute to the complexity. Although many of these processes are likely to be common to a number of metastatic sites, we will describe in detail the interplay within the liver, a preferred site of metastasis for many tumours. A greater understanding of these networks provides opportunities for the design of new therapeutic approaches for targeting the metastatic disease.
Collapse
Affiliation(s)
- Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Zeanap Mabruk
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
226
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
227
|
Tinganelli W, Durante M. Tumor Hypoxia and Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21249592. [PMID: 33339353 PMCID: PMC7766826 DOI: 10.3390/ijms21249592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare tumor cell subpopulation induced and selected by the tumor microenvironment's extreme conditions. Under hypoxia and starvation, these aggressive and invasive cells are able to invade the lymphatic and circulatory systems. Escaping from the primary tumor, CTCs enter into the bloodstream to form metastatic deposits or re-establish themselves in cancer's primary site. Although radiotherapy is widely used to cure solid malignancies, it can promote metastasis. Radiation can disrupt the primary tumor vasculature, increasing the dissemination of CTCs. Radiation also induces epithelial-mesenchymal transition (EMT) and eliminates suppressive signaling, causing the proliferation of existent, but previously dormant, disseminated tumor cells (DTCs). In this review, we collect the results and evidence underlying the molecular mechanisms of CTCs and DTCs and the effects of radiation and hypoxia in developing these cells.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64291 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
228
|
Targeting tumor-associated macrophages as an antitumor strategy. Biochem Pharmacol 2020; 183:114354. [PMID: 33279498 DOI: 10.1016/j.bcp.2020.114354] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most widely infiltrating immune cells in the tumor microenvironment (TME). Clinically, the number of TAMs is closely correlated with poor outcomes in multiple cancers. The biological actions of TAMs are complex and diverse, including mediating angiogenesis, promoting tumor invasion and metastasis, and building an immunosuppressive microenvironment. Given these pivotal roles of TAMs in tumor development, TAM-based strategies are attractive and used in certain tumor therapies, including inhibition of angiogenic signalling, blockade of the immune checkpoint, and macrophage enhancement phagocytosis. Several attempts to develop TAM-targeted agents have been made to deplete TAMs or reprogram the behaviour of TAMs. Some have shown a favourable curative effect in monotherapy, combination with chemotherapy or immunotherapy in clinical trials. Additionally, a new macrophage-based cell therapeutic technology was recently developed by equipping macrophages with CAR molecules. It is expected to break through barriers to solid tumor treatment. Although TAM-related studies have yielded positive antitumor outcomes, further investigations are needed to better characterize TAMs, which will benefit further establishment of novel strategies for tumor therapy. Here, we concisely summarize the functions of TAMs in the TME and comprehensively introduce the latest TAM-based regimens in cancer treatment.
Collapse
|
229
|
Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. J Control Release 2020; 329:63-75. [PMID: 33278478 DOI: 10.1016/j.jconrel.2020.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
Selectively delivering anticancer drugs to solid tumors while avoiding their accumulation in healthy tissues is a major goal in polymeric micelle research. We have recently discovered that the extravasation and permeation of polymeric micelles occur in a dynamic manner characterized by vascular bursts followed by a brief and vigorous outward flow of fluid (called "nano-eruptions"). Nano-eruptions allow delivery of polymeric micelle-associated drugs, though delivery can be heterogeneous both among tumors and within an individual tumor, leading to suboptimal intratumoral distribution. Manipulation of nano-eruptions is expected to improve the efficiency of drug delivery systems (DDSs). By using compounds that affect the intratumoral environment, i.e. a TGF-β inhibitor and chloroquine, the possibility of manipulating nano-eruptions to improve delivery efficiency was investigated. Both compounds were tested in a mouse xenograft model of GFP-labeled pancreatic tumor cells by tracing nano-eruption events and extravasation of size-modulated polymeric micelles in real-time through intravital confocal laser scanning microscopy. The TGF-β inhibitor increased the number of dynamic vents, extended duration time, and generated dynamic vents with a wide range of sizes. Chloroquine did not affect the frequency of nano-eruptions, but it increased tumor vessel diameter, maximum nano-eruption area, and maximum radial increase. Both the TGF-β inhibitor and chloroquine augmented nano-eruptions to diffuse polymeric micelles through tumor stroma, and these medications had a greater effect on the polymeric micelles with larger size, i.e. 70-nm, than on the smaller polymeric micelles having a 30-nm diameter. The results indicate that TGF-β inhibition and chloroquine refashion the intratumoral distribution of DDSs by different mechanisms.
Collapse
|
230
|
Wu L, Zhang XHF. Tumor-Associated Neutrophils and Macrophages-Heterogenous but Not Chaotic. Front Immunol 2020; 11:553967. [PMID: 33343560 PMCID: PMC7738476 DOI: 10.3389/fimmu.2020.553967] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) have been extensively studied. Their pleotropic roles were observed in multiple steps of tumor progression and metastasis, and sometimes appeared to be inconsistent across different studies. In this review, we collectively discussed many lines of evidence supporting the mutual influence between cancer cells and TAMs/TANs. We focused on how direct interactions among these cells dictate co-evolution involving not only clonal competition of cancer cells, but also landscape shift of the entire tumor microenvironment (TME). This co-evolution may take distinct paths and contribute to the heterogeneity of cancer cells and immune cells across different tumors. A more in-depth understanding of the cancer-TAM/TAN co-evolution will shed light on the development of TME that mediates metastasis and therapeutic resistance.
Collapse
Affiliation(s)
- Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
231
|
The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. J Clin Med 2020; 9:jcm9123912. [PMID: 33276524 PMCID: PMC7761629 DOI: 10.3390/jcm9123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone marrow derived cells (BMDCs) play a wide variety of pro- and anti-tumorigenic roles in the tumor microenvironment (TME) and in the metastatic process. In response to chemotherapy, the anti-tumorigenic function of BMDCs can be enhanced due to chemotherapy-induced immunogenic cell death. However, in recent years, a growing body of evidence suggests that chemotherapy or other anti-cancer drugs can also facilitate a pro-tumorigenic function in BMDCs. This includes elevated angiogenesis, tumor cell proliferation and pro-tumorigenic immune modulation, ultimately contributing to therapy resistance. Such effects do not only contribute to the re-growth of primary tumors but can also support metastasis. Thus, the delicate balance of BMDC activities in the TME is violated following tumor perturbation, further requiring a better understanding of the complex crosstalk between tumor cells and BMDCs. In this review, we discuss the different types of BMDCs that reside in the TME and their activities in tumors following chemotherapy, with a major focus on their pro-tumorigenic role. We also cover aspects of rationally designed combination treatments that target or manipulate specific BMDC types to improve therapy outcomes.
Collapse
|
232
|
Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, Yang D, Qu H, Lai L, Wang Q, Chen Z. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging (Albany NY) 2020; 12:24394-24423. [PMID: 33260160 PMCID: PMC7762499 DOI: 10.18632/aging.202293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
FBXW7 functions as an E3 ubiquitin ligase to mediate oncoprotein degradation via the ubiquitin-proteasome system in cancer cells, effectively inhibiting the growth and survival of tumor cells. However, little is known about the functions of FBXW7 in macrophages and the tumor immune microenvironment. In this study, we find that FBXW7 suppresses M2-like tumor-associated macrophage (TAM) polarization to limit tumor progression. We identified a significant increase in the proportion of M2-like TAMs and aggravated tumor growth in mice with myeloid FBXW7 deficiency by subcutaneous inoculation with Lewis lung carcinoma cells (LLCs). When stimulated with LLCs supernatant in vitro, FBXW7-knockout macrophages displayed increased M2 macrophage polarization and enhanced ability of supporting cancer cells growth. In mechanism, we confirmed that FBXW7 inhibited M2-like TAM polarization by mediating c-Myc degradation via the ubiquitin-proteasome system. These findings highlight the role of FBXW7 in M2-like TAM polarization and provide new insights into the potential targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Lijia Zhong
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengyao Li
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yinjing Song
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danhui Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dehua Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhimin Chen
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
233
|
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2020; 221:107753. [PMID: 33259885 DOI: 10.1016/j.pharmthera.2020.107753] [Citation(s) in RCA: 1019] [Impact Index Per Article: 203.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. The constant interactions between tumor cells and the tumor microenvironment play decisive roles in tumor initiation, progression, metastasis, and response to therapies. The tumor microenvironment as a therapeutic target in cancer has attracted great research and clinical interest. Here we summarize the current progress in targeting the tumor microenvironment in both drug development and clinical trials; highlight challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new technologies and approaches to better decipher the tumor microenvironment; and discuss strategies to intervene in the pro-tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
234
|
Haykal MM, Nahmias C, Varon C, Martin OCB. Organotypic Modeling of the Tumor Landscape. Front Cell Dev Biol 2020; 8:606039. [PMID: 33330508 PMCID: PMC7732527 DOI: 10.3389/fcell.2020.606039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease and it is now clear that not only epithelial tumor cells play a role in carcinogenesis. The tumor microenvironment is composed of non-stromal cells, including endothelial cells, adipocytes, immune and nerve cells, and a stromal compartment composed of extracellular matrix, cancer-associated fibroblasts and mesenchymal cells. Tumorigenesis is a dynamic process with constant interactions occurring between the tumor cells and their surroundings. Even though all connections have not yet been discovered, it is now known that crosstalk between actors of the microenvironment drives cancer progression. Taking into account this complexity, it is important to develop relevant models to study carcinogenesis. Conventional 2D culture models fail to represent the entire tumor microenvironment properly and the use of animal models should be decreased with respect to the 3Rs rule. To this aim, in vitro organotypic models have been significantly developed these past few years. These models have different levels of complexity and allow the study of tumor cells alone or in interaction with the microenvironment actors during the multiple stages of carcinogenesis. This review depicts recent insights into organotypic modeling of the tumor and its microenvironment all throughout cancer progression. It offers an overview of the crosstalk between epithelial cancer cells and their microenvironment during the different phases of carcinogenesis, from the early cell autonomous events to the late metastatic stages. The advantages of 3D over classical 2D or in vivo models are presented as well as the most promising organotypic models. A particular focus is made on organotypic models used for studying cancer progression, from the less complex spheroids to the more sophisticated body-on-a-chip. Last but not least, we address the potential benefits of these models in personalized medicine which is undoubtedly a domain paving the path to new hopes in terms of cancer care and cure.
Collapse
Affiliation(s)
- Maria M. Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | | | | |
Collapse
|
235
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
236
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
237
|
Sarvestani SK, DeHaan RK, Miller PG, Bose S, Shen X, Shuler ML, Huang EH. A Tissue Engineering Approach to Metastatic Colon Cancer. iScience 2020; 23:101719. [PMID: 33205026 PMCID: PMC7653071 DOI: 10.1016/j.isci.2020.101719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colon cancer remains the third most common cause of cancer in the US, and the third most common cause of cancer death. Worldwide, colon cancer is the second most common cause of cancer and cancer deaths. At least 25% of patients still present with metastatic disease, and at least 25-30% will develop metastatic colon cancer in the course of their disease. While chemotherapy and surgery remain the mainstay of treatment, understanding the fundamental cellular niche and mechanical properties that result in metastases would facilitate both prevention and cure. Advances in biomaterials, novel 3D primary human cells, modelling using microfluidics and the ability to alter the physical environment, now offers a unique opportunity to develop and test impactful treatment.
Collapse
Affiliation(s)
- Samaneh Kamali Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Reece K. DeHaan
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Colon and Rectal Surgery, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Paula G. Miller
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Shree Bose
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael L. Shuler
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Emina H. Huang
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Colon and Rectal Surgery, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
238
|
Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci 2020; 21:ijms21228689. [PMID: 33217955 PMCID: PMC7698611 DOI: 10.3390/ijms21228689] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.
Collapse
|
239
|
Interstitial Hypertension Suppresses Escape of Human Breast Tumor Cells Via Convection of Interstitial Fluid. Cell Mol Bioeng 2020; 14:147-159. [PMID: 33868497 DOI: 10.1007/s12195-020-00661-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Interstitial hypertension, a rise in interstitial fluid pressure, is a common feature of many solid tumors as they progress to an invasive state. It is currently unclear whether this elevated pressure alters the probability that tumor cells eventually escape into a neighboring blood or lymphatic vessel. Methods In this study, we analyze the escape of MDA-MB-231 human breast tumor cells from a ~3-mm-long preformed aggregate into a 120-μm-diameter empty cavity in a micromolded type I collagen gel. The "micro-tumors" were located within ~300 μm of one or two cavities. Pressures of ~0.65 cm H2O were applied only to the tumor ("interstitial hypertension") or to its adjacent cavity. Results This work shows that interstitial hypertension suppresses escape into the adjacent cavity, but not because tumor cells respond directly to the pressure profile. Instead, hypertension alters the chemical microenvironment at the tumor margin to one that hampers escape. Administration of tumor interstitial fluid phenocopies the effects of hypertension. Conclusions This work uncovers a link between tumor pressure, interstitial flow, and tumor cell escape in MDA-MB-231 cells, and suggests that interstitial hypertension serves to hinder further progression to metastatic escape. Electronic Supplementary Material The online version of this article (10.1007/s12195-020-00661-w) contains supplementary material, which is available to authorized users.
Collapse
|
240
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
241
|
Koliaraki V, Henriques A, Prados A, Kollias G. Unfolding innate mechanisms in the cancer microenvironment: The emerging role of the mesenchyme. J Exp Med 2020; 217:133714. [PMID: 32044979 PMCID: PMC7144533 DOI: 10.1084/jem.20190457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Innate mechanisms in the tumor stroma play a crucial role both in the initial rejection of tumors and in cancer promotion. Here, we provide a concise overview of the innate system in cancer and recent advances in the field, including the activation and functions of innate immune cells and the emerging innate properties and modulatory roles of the fibroblastic mesenchyme. Novel insights into the diverse identities and functions of the innate immune and mesenchymal cells in the microenvironment of tumors should lead to improved anticancer therapies.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
242
|
Coste A, Karagiannis GS, Wang Y, Xue EA, Lin Y, Skobe M, Jones JG, Oktay MH, Condeelis JS, Entenberg D. Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Front Oncol 2020; 10:571100. [PMID: 33194666 PMCID: PMC7649363 DOI: 10.3389/fonc.2020.571100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022] Open
Abstract
In primary breast tumors, cancer cells hematogenously disseminate through doorways in the vasculature composed of three-cell complexes (known as Tumor MicroEnvironment of Metastasis) comprising a perivascular macrophage, a tumor cell overexpressing the actin-regulatory protein Mammalian Enabled (Mena), and an endothelial cell, all in direct physical contact. It has been previously shown that once tumor cells establish lymph node metastases in patients, TMEM doorways form in the metastatic tumor cell nests. However, it has not been established if such lymph node-TMEM doorways actively transit tumor cells into the peripheral circulation and on to tertiary sites. To address this question in this short report, we used a mouse model of lymph node metastasis to demonstrate that TMEM doorways: (1) exist in tumor-positive lymph nodes of mice, (2) are restricted to the blood vascular endothelium, (3) serve as a mechanism for further dissemination to peripheral sites such as to the lungs, and (4) their activity can be abrogated by a pharmaceutical intervention. Our data suggest that cancer cell dissemination via TMEM doorways is a common mechanism of breast cancer cell dissemination to distant sites and thus the pharmacological targeting of TMEM may be necessary, even after resection of the primary tumor, to suppress cancer cell dissemination.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yu Lin
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Mihaela Skobe
- Department of Oncological Sciences and Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Epidemiology and Population Health, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
243
|
Corvigno S, Mezheyeuski A, De La Fuente LM, Westbom-Fremer S, Carlson JW, Fernebro J, Åvall-Lundqvist E, Kannisto P, Hedenfalk I, Malander S, Rolny C, Dahlstrand H, Östman A. High density of stroma-localized CD11c-positive macrophages is associated with longer overall survival in high-grade serous ovarian cancer. Gynecol Oncol 2020; 159:860-868. [PMID: 33032823 DOI: 10.1016/j.ygyno.2020.09.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Pre-clinical studies have identified marker- and tumor compartment-defined functionally distinct macrophage subsets. Our study analyzes marker-defined macrophage subsets in different tumor compartments of high-grade serous ovarian cancer (HGSC). METHODS A discovery cohort (N = 113) was subjected to immunohistochemistry (IHC) analyses. CD68-positivity was confirmed for CD11c-, CD80- and CD163-positive cells. Subset-marker-positive cells were scored in the total tumor and in four tumor compartments. Correlation analyses investigated co-expression of subsets, relationship to CD8+ cells and survival associations. A validation cohort (N = 121) was used to confirm selected findings from the discovery cohort. RESULTS CD163-positve cells was the most abundant subtype in all compartments. CD11c and CD163 subsets were strongly correlated with each other in stroma and epithelial areas, whereas CD80 and CD163 were correlated in epithelial areas. CD80 and CD11c in perivascular areas showed low correlations. Strong associations were detected between CD8 and CD80 in the tumor epithelium-dominated areas, and between CD8 and CD11c in stroma areas. High stromal CD11c density was associated with a longer median overall survival in the discovery cohort (HR 0.39; CI 95%, 0.23-0.68; p = 0.001) and in the validation cohort (HR 0.46; CI 95%, 0.22-0.93; p = 0.03). CONCLUSIONS Our study supports the existence of clinically relevant marker- and localization defined macrophage subsets in HGSC, which are independently regulated. Moreover, it suggests stromal CD11c as a novel prognostic marker in HGSC.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Artur Mezheyeuski
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Martin De La Fuente
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sofia Westbom-Fremer
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Paivi Kannisto
- Department of Obstetrics and Gynecology, Skåne University Hospital, Sweden; Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ingrid Hedenfalk
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden; Department of Oncology, Skåne University Hospital, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
244
|
Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC, Ewald AJ. A Tissue-Engineered 3D Microvessel Model Reveals the Dynamics of Mosaic Vessel Formation in Breast Cancer. Cancer Res 2020; 80:4288-4301. [PMID: 32665356 PMCID: PMC7541732 DOI: 10.1158/0008-5472.can-19-1564] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
In solid tumors, vascular structure and function varies from the core to the periphery. This structural heterogeneity has been proposed to influence the mechanisms by which tumor cells enter the circulation. Blood vessels exhibit regional defects in endothelial coverage, which can result in cancer cells directly exposed to flow and potentially promoting intravasation. Consistent with prior reports, we observed in human breast tumors and in a mouse model of breast cancer that approximately 6% of vessels consisted of both endothelial cells and tumor cells, so-called mosaic vessels. Due, in part, to the challenges associated with observing tumor-vessel interactions deep within tumors in real-time, the mechanisms by which mosaic vessels form remain incompletely understood. We developed a tissue-engineered model containing a physiologically realistic microvessel in coculture with mammary tumor organoids. This approach allows real-time and quantitative assessment of tumor-vessel interactions under conditions that recapitulate many in vivo features. Imaging revealed that tumor organoids integrate into the endothelial cell lining, resulting in mosaic vessels with gaps in the basement membrane. While mosaic vessel formation was the most frequently observed interaction, tumor organoids also actively constricted and displaced vessels. Furthermore, intravasation of cancer cell clusters was observed following the formation of a mosaic vessel. Taken together, our data reveal that cancer cells can rapidly reshape, destroy, or integrate into existing blood vessels, thereby affecting oxygenation, perfusion, and systemic dissemination. Our novel assay also enables future studies to identify targetable mechanisms of vascular recruitment and intravasation. SIGNIFICANCE: A tissue-engineered microdevice that recapitulates the tumor-vascular microenvironment enables real-time imaging of the cellular mechanisms of mosaic vessel formation and vascular defect generation.
Collapse
Affiliation(s)
- Vanesa L Silvestri
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elodie Henriet
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raleigh M Linville
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
245
|
Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020; 255:120207. [PMID: 32569868 PMCID: PMC7396313 DOI: 10.1016/j.biomaterials.2020.120207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The vasculature is a key component of the tissue microenvironment. Traditionally known for its role in providing nutrients and oxygen to surrounding cells, the vasculature is now also acknowledged to provide signaling cues that influence biological outcomes in regeneration and disease. These cues come from the cells that comprise vasculature, as well as the dynamic biophysical and biochemical properties of the surrounding extracellular matrix that accompany vascular development and remodeling. In this review, we illustrate the larger role of the vasculature in the context of regenerative biology and cancer progression. We describe cellular, biophysical, biochemical, and metabolic components of vascularized microenvironments. Moreover, we provide an overview of multidimensional angiogenic biomaterials that have been developed to promote therapeutic vascularization and regeneration, as well as to mimic elements of vascularized microenvironments as a means to uncover mechanisms by which vasculature influences cancer progression and therapy.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
246
|
Shao Y, Lu B. The crosstalk between circular RNAs and the tumor microenvironment in cancer metastasis. Cancer Cell Int 2020; 20:448. [PMID: 32943996 PMCID: PMC7488731 DOI: 10.1186/s12935-020-01532-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Carcinomas are highly heterogeneous with regard to various cancer cells within a tumor microenvironment (TME), which is composed of stromal cells, blood vessels, immunocytes, and modified extracellular matrix. Focus of the study Circular RNAs (circRNAs) are non-coding RNAs that are expressed in cancer and stromal cells. They are closely associated with cancer metastasis as their expression in tumor cells directs the latter to migrate to different organs. circRNAs packaged in exosomes might be involved in this process. This is particularly important as the TME acts in tandem with cancer cells to enhance their proliferation and metastatic capability. In this review, we focus on recent studies on the crosstalk between circRNAs and the TME during cancer metastasis. Conclusion We particularly emphasize the roles of the interaction between circRNAs and the TME in anoikis resistance, vessel co-option, and local circRNA expression in directing homing of exosome.
Collapse
Affiliation(s)
- Ying Shao
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
247
|
Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. CURRENT TOPICS IN MEMBRANES 2020; 86:255-278. [PMID: 33837695 DOI: 10.1016/bs.ctm.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvesicles are small, membrane-bound vesicles that are shed from the plasma membrane of cells into the extracellular space. Microvesicles contain a variety of cargo not typically thought to be released from cells, including receptor tyrosine kinases, cytosolic signaling proteins, and microRNAs, which are transferred from donor cells to recipient cells. The transfer of microvesicle cargo can result in the transformation of recipient cells thereby supporting disease progression, including modified fibroblast metabolism, epithelial cell contractility, vascular remodeling, and immune cell inflammatory signaling. Additionally, microvesicles are believed to play prominent roles in cell-cell communication and disease progression as they are detected at elevated concentrations in diseased tissues. As microvesicle uptake by recipient cells can modulate cell function to promote disease progression, understanding the mechanisms and mechanosensitivity of microvesicle release, internalization, and the resulting signaling is crucial to fully comprehend their functions in disease. Here, we review recent advances in the understanding of actomyosin-regulated microvesicle biogenesis, microvesicle uptake via pinocytosis, and the resulting cellular transformation. We discuss the effects of altered cell contractility, mode of cell migration, and extracellular matrix compliance on microvesicle signaling, with direct implications in disease progression and identifying future therapeutic targets.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
248
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
249
|
Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020; 11:1842. [PMID: 32983100 PMCID: PMC7492293 DOI: 10.3389/fimmu.2020.01842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.
Collapse
Affiliation(s)
- Vitaliy Davidov
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Garrett Jensen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Sunny Mai
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-Hsia Chen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Ping-Ying Pan
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
250
|
Xiong W, Liao Y, Qin JY, Li WH, Tang ZY. Adverse effects of chemoradiotherapy on invasion and metastasis of tumor cells. Genes Dis 2020; 7:351-358. [PMID: 32884989 PMCID: PMC7452502 DOI: 10.1016/j.gendis.2020.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
The phenomenon of enhanced invasion and metastasis of residual tumor cells has been observed in an increasing number of patients receiving chemoradiotherapy recently, and tumor metastasis will undoubtedly limit patient prognosis. However, the key mechanism by which chemoradiotherapy affects the invasion and metastasis of tumor cells remains unclear. Studies have shown that chemoradiotherapy may directly act on tumor cells and alter the tumor microenvironment, or induce cell apoptosis and autophagy to promote tumor cell survival and metastasis. In this review, we summarize the potential mechanisms by which chemoradiotherapy may affect the biological behavior of tumor cells and open up new avenues for reducing tumor recurrence and metastasis after treatment. These insights will improve the efficacy of chemoradiotherapy.
Collapse
Affiliation(s)
- Wei Xiong
- The Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Liao
- Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Yong Qin
- The Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hui Li
- The Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|