201
|
Botnar RM, Makowski MR. Cardiovascular magnetic resonance imaging in small animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:227-61. [PMID: 22137434 DOI: 10.1016/b978-0-12-394596-9.00008-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noninvasive imaging studies involving small animals are becoming increasingly important in preclinical pharmacological, genetic, and biomedical cardiovascular research. Especially small animal magnetic resonance imaging (MRI) using high field and clinical MRI systems has gained significant importance in recent years. Compared to other imaging modalities, like computer tomography, MRI can provide an excellent soft tissue contrast, which enables the characterization of different kinds of tissues without the use of contrast agents. In addition, imaging can be performed with high spatial and temporal resolution. Small animal MRI cannot only provide anatomical information about the beating murine heart; it can also provide functional and molecular information, which makes it a unique imaging modality. Compared to clinical MRI examinations in humans, small animal MRI is associated with additional challenges. These included a smaller size of all cardiovascular structures and a up to ten times higher heart rate. Dedicated small animal monitoring devices make a reliable cardiac triggering and respiratory gating feasible. MRI in combination with molecular probes enables the noninvasive imaging of biological processes at a molecular level. Different kinds of iron oxide or gadolinium-based contrast agents can be used for this purpose. Compared to other molecular imaging modalities, like single photon emission computed tomography (SPECT) and positron emission tomography (PET), MRI can also provide imaging with high spatial resolution, which is of high importance for the assessment of the cardiovascular system. The sensitivity for detection of MRI contrast agents is however lower compared to sensitivity of radiation associated techniques like PET and SPECT. This chapter is divided into the following sections: (1) "Introduction," (2) "Principals of Magnetic Resonance Imaging," (3) "MRI Systems for Preclinical Imaging and Experimental Setup," and (4) "Cardiovascular Magnetic Resonance Imaging."
Collapse
Affiliation(s)
- René M Botnar
- Division of Imaging Sciences, King's College London, London, United Kingdom
| | | |
Collapse
|
202
|
Gorelikov I, Martin AL, Seo M, Matsuura N. Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15024-33. [PMID: 22026433 DOI: 10.1021/la202679p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There has been recent interest in developing new, targeted, perfluorocarbon (PFC) droplet-based contrast agents for medical imaging (e.g., magnetic resonance imaging, X-ray/computed tomography, and ultrasound imaging). However, due to the large number of potential PFCs and droplet stabilization strategies available, it is challenging to determine in advance the PFC droplet formulation that will result in the optimal in vivo behavior and imaging performance required for clinical success. We propose that the integration of fluorescent quantum dots (QDs) into new PFC droplet agents can help to rapidly screen new PFC-based candidate agents for biological compatibility early in their development. QD labels can allow the interaction of PFC droplets with single cells to be assessed at high sensitivity and resolution using optical methods in vitro, complementing the deeper depth penetration but lower resolution provided by PFC droplet imaging using in vivo medical imaging systems. In this work, we introduce a simple and robust method to miscibilize silica-coated nanoparticles into hydrophobic and lipophobic PFCs through fluorination of the silica surface via a hydrolysis-condensation reaction with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Using CdSe/ZnS core/shell QDs, we show that nanoscale, QD-labeled PFC droplets can be easily formed, with similar sizes and surface charges as unlabeled PFC droplets. The QD label can be used to determine the PFC droplet uptake into cells in vitro by fluorescence microscopy and flow cytometry, and can be used to validate the fate of PFC droplets in vivo in small animals via fluorescence microscopy of histological tissue sections. This is demonstrated in macrophage and cancer cells, and in rabbits, respectively. This work reveals the potential of using QD labels for rapid, preclinical, optical assessment of different PFC droplet formulations for their future use in patients.
Collapse
Affiliation(s)
- Ivan Gorelikov
- Imaging Research, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | | | | | |
Collapse
|
203
|
Shen B, Kezheng W, Xilin S, Lina W. Development of molecular imaging and nanomedicine in China. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:533-44. [PMID: 21850712 DOI: 10.1002/wnan.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid progress of molecular imaging (MI) and the application of nanotechnology in medicine have the potential to advance the foundations of diagnosis, treatment, and prevention of diseases. Although MI and biomedical nanotechnology are still in a formative phase in China, much has been achieved over the last decade. This article provides a commentary on the development and current status of nanomedicine in China, with a selective focus on Chinese nanoparticle synthesis technology, the development of imaging equipment, and the preclinical application of novel MI probes.
Collapse
Affiliation(s)
- Baozhong Shen
- Molecular Imaging Center, Department of Radiology, Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China. ,
| | | | | | | |
Collapse
|
204
|
Lobatto ME, Fuster V, Fayad ZA, Mulder WJM. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 2011; 10:835-52. [PMID: 22015921 PMCID: PMC3623275 DOI: 10.1038/nrd3578] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of nanotechnology for medical purposes--nanomedicine--has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration's approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis. This Review elaborates on nanoparticle-targeting concepts in atherosclerotic disease, provides an overview of the use of nanomedicine in atherosclerosis, and discusses potential future applications and clinical benefits.
Collapse
Affiliation(s)
- Mark E Lobatto
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, BOX 1234, New York 10029, USA
| | | | | | | |
Collapse
|
205
|
Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 2011; 6:e26385. [PMID: 22028868 PMCID: PMC3196552 DOI: 10.1371/journal.pone.0026385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022] Open
Abstract
Rationale Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment. Objective To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques. Methods and Results Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7–14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine (19F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP. Conclusions The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of endothelial permeability to nanoparticles is suggested.
Collapse
|
206
|
Abstract
Nanoparticles (NPs) offer diagnostic and therapeutic capabilities not available with small molecules or microscale tools. As the field of molecular imaging has emerged from the blending of molecular biology with medical imaging, NP imaging is increasingly common for both therapeutic and diagnostic applications. The term theranostic describes technology with concurrent and complementary diagnostic and therapeutic capabilities. Although NPs have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. However, NPs have shown remarkable success in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with NPs in molecular imaging involves the correlation of the signal with a phenotype. The location and intensity of NP signals emanating from a living subject indicate the disease area's size, stage, and biochemical signature. Therapy with NPs uses the image for resection or delivery of a small molecule or RNA therapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP includes several features: (1) it selectively and rapidly accumulates in diseased tissue; (2) it reports biochemical and morphological characteristics of the area; (3) it delivers an effective therapeutic; and (4) it is safe and biodegrades with nontoxic byproducts. Such a system contains a central imaging core surrounded by small molecule therapeutics. The system targets via ligands such as IgG and is protected from immune scavengers by a cloak of protective polymer. Although no NP has achieved all of the above criteria, many NPs possess one or more of these features. While the most clinically translatable NPs have been used in the field of magnetic resonance imaging, other types in development are quickly becoming more biocompatible through methods that modify their toxicity and biodistribution profiles. In this Account, we describe diagnostic imaging and therapeutic uses of NPs. We propose and offer examples of five primary types of nanoparticles with concurrent diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Jesse V. Jokerst
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, California 94305-5427, United States
| | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, California 94305-5427, United States
- Bioengineering, Materials Science & Engineering, Bio-X, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
207
|
Chandran P, Sasidharan A, Ashokan A, Menon D, Nair S, Koyakutty M. Highly biocompatible TiO₂:Gd³⁺ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. NANOSCALE 2011; 3:4150-4161. [PMID: 21853215 DOI: 10.1039/c1nr10591d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the development of a novel magnetic nano-contrast agent (nano-CA) based on Gd(3+) doped amorphous TiO(2) of size ∼25 nm, exhibiting enhanced longitudinal relaxivity (r(1)) and magnetic resonance (MR) contrasting together with excellent biocompatibility. Quantitative T1 mapping of phantom samples using a 1.5 T clinical MR imaging system revealed that the amorphous phase of doped titania has the highest r(1) relaxivity which is ∼2.5 fold higher than the commercially used CA Magnevist™. The crystalline (anatase) samples formed by air annealing at 250 °C and 500 °C showed significant reduction in r(1) values and MR contrast, which is attributed to the loss of proton-exchange contribution from the adsorbed water and atomic re-arrangement of Gd(3+) ions in the crystalline host lattice. Nanotoxicity studies including cell viability, plasma membrane integrity, reactive oxygen stress and expression of pro-inflammatory cytokines, performed on human primary endothelial cells (HUVEC), human blood derived peripheral blood mononuclear cells (PBMC) and nasopharyngeal epidermoid carcinoma (KB) cell line showed excellent biocompatibility up to relatively higher doses of 200 μg ml(-1). The potential of this nano-CA to cause hemolysis, platelet aggregation and plasma coagulation were studied using human peripheral blood samples and found no adverse effects, illustrating the possibility of the safe intravenous administration of these agents for human applications. Furthermore, the ability of these agents to specifically detect cancer cells by targeting molecular receptors on the cell membrane was demonstrated on folate receptor (FR) positive oral carcinoma (KB) cells, where the folic acid conjugated nano-CA showed receptor specific accumulation on cell membrane while leaving the normal fibroblast cells (L929) unstained. This study reveals that the Gd(3+) doped amorphous TiO(2) nanoparticles having enhanced magnetic resonance contrast and high biocompatibility is a promising candidate for molecular receptor targeted MR imaging.
Collapse
Affiliation(s)
- Parwathy Chandran
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre Amrita, Vishwa Vidyapeetham University, Cochin 682 041 Kerala, India
| | | | | | | | | | | |
Collapse
|
208
|
Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, Azure M, Robinson S, Sadeghi MM. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52:1795-802. [PMID: 21969358 DOI: 10.2967/jnumed.111.092379] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Matrix metalloproteinases (MMPs) play a key role in the development of atherosclerosis and its complications. In vivo detection and quantification of MMP activation can help track the propensity to complications and response to therapy. We sought to establish an in vivo imaging approach for monitoring MMP activation in atherosclerotic mouse aorta and use it to assess the response to dietary modification. METHOD Apolipoprotein-deficient mice were fed normal chow or a high-fat diet (HFD) for up to 3 mo or a HFD for 2 mo, followed by 1 mo on normal chow. Then they underwent micro-SPECT/CT, along with autoradiography and oil red O staining of tissues. RESULTS After 3 mo of HFD, there was considerable atherosclerosis in the aorta. In vivo micro-SPECT/CT using RP782 (an (111)In-labeled tracer targeting activated MMPs) showed a heterogeneous pattern of tracer uptake along the aorta. Heterogeneity of RP782 uptake was confirmed by autoradiography, and specificity was demonstrated using excess unlabeled precursor. Tracer uptake quantified by micro-SPECT significantly correlated with uptake quantified by autoradiography. Comparison of oil red O staining with autoradiography demonstrated areas of discordance between plaque presence and tracer uptake. HFD withdrawal led to significant reduction in RP782 uptake beyond the effect on plaque area. MMP expression and macrophage infiltration were similarly heterogeneous along the aorta and significantly reduced after withdrawal from the HFD. Finally, RP782 uptake significantly correlated with aortic macrophage content. CONCLUSION Molecular imaging of MMP activation reveals the heterogeneity of atherosclerotic plaques and is a useful tool for tracking plaque biology and response to therapy.
Collapse
Affiliation(s)
- Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, Nie L, Sadeghi MM. Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol 2011; 31:2820-6. [PMID: 21940943 DOI: 10.1161/atvbaha.111.231654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Inflammation plays a key role in the development of vascular diseases. Monocytes and macrophages express α(v)β(3) integrin. We used an α(v) integrin-specific tracer, (99m)Tc-NC100692, to investigate integrin-targeted imaging for detection vessel wall inflammation. METHODS AND RESULTS The binding of a fluorescent homologue of NC100692 to α(v)β(3) on human monocytes and macrophages was shown by flow cytometry. Vessel wall inflammation and remodeling was induced in murine carotid arteries through adventitial exposure to CaCl(2). NC100692 micro single photon computed tomography/CT imaging was performed after 2 and 4 weeks and showed significantly higher uptake of the tracer in CaCl(2)-exposed left carotids compared with sham-operated contralateral arteries. Histological analysis at 4 weeks demonstrated significant remodeling of left carotid arteries and considerable macrophage infiltration, which was confirmed by real-time polymerase chain reaction. There was no significant difference in normalized α(v), β(3), or β(5) mRNA expression between right and left carotid arteries. Finally, NC100692 uptake strongly correlated with macrophage marker expression in carotid arteries. CONCLUSIONS NC100692 imaging can detect vessel wall inflammation in vivo. If further validated, α(v)-targeted imaging may provide a noninvasive approach for identifying patients who are at high risk for vascular events and tracking the effect of antiinflammatory treatments.
Collapse
Affiliation(s)
- Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Yu SS, Ortega RA, Reagan BW, McPherson JA, Sung HJ, Giorgio TD. Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:620-46. [PMID: 21834059 DOI: 10.1002/wnan.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An estimated 16 million people in the United States have coronary artery disease (CAD), and approximately 325,000 people die annually from cardiac arrest. About two-thirds of unexpected cardiac deaths occur without prior recognition of cardiac disease. A vast majority of these deaths are attributable to the rupture of 'vulnerable atherosclerotic plaques'. Clinically, plaque vulnerability is typically assessed through imaging techniques, and ruptured plaques leading to acute myocardial infarction are treated through angioplasty or stenting. Despite significant advances, it is clear that current imaging methods are insufficiently capable for elucidating plaque composition--which is a key determinant of vulnerability. Further, the exciting improvement in the treatment of CAD afforded by stenting procedures has been buffered by significant undesirable host-implant effects, including restenosis and late thrombosis. Nanotechnology has led to some potential solutions to these problems by yielding constructs that interface with plaque cellular components at an unprecedented size scale. By leveraging the innate ability of macrophages to phagocytose nanoparticles, contrast agents can now be targeted to plaque inflammatory activity. Improvements in nano-patterning procedures have now led to increased ability to regenerate tissue isotropy directly on stents, enabling gradual regeneration of normal, physiologic vascular structures. Advancements in immunoassay technologies promise lower costs for biomarker measurements, and in the near future, may enable the addition of routine blood testing to the clinician's toolbox--decreasing the costs of atherosclerosis-related medical care. These are merely three examples among many stories of how nanotechnology continues to promise advances in the diagnosis and treatment of vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Shann S Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
211
|
Small GR, Ruddy TD. PET imaging of aortic atherosclerosis: Is combined imaging of plaque anatomy and function an amaranthine quest or conceivable reality? J Nucl Cardiol 2011; 18:717-28. [PMID: 21553158 DOI: 10.1007/s12350-011-9385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Traditionally, blood vessels have been studied using contrast luminography to determine the site, extent and severity of luminal compromise by atherosclerotic deposits. Similar anatomical data can now be acquired non-invasively using ultrasound, computed tomography or magnetic resonance imaging. Plaque stability is an important determinant of subsequent vascular events and currently functional data on the stability of plaque is less well provided by these methods. The search for non-invasive techniques to image combined plaque anatomy and function has been pursued with visionary anticipation. This expectation may soon be realised as imaging with radionuclide-labelled atheroma-targeted contrast agents has demonstrated that plaque functional characteristics can now be shown. Increasingly positron emission tomography/computed tomography (PET/CT) imaging with (18)F fluorodexoyglucose (FDG) and other radionuclides is being used to determine culprit plaques in complex clinically scenarios. Clinically, this information may prove extremely valuable in the assessment of stable and unstable patients and its use in prime time medical practice is eagerly awaited. We will discuss the current clinical applications of functional atheroma imaging in the aorta and highlight the promising preclinical data on novel image biomarkers of plaque instability. If clinical science is able to successfully translate these advances in vascular imaging from the bench to the bedside, a new paradigm will be achieved in cardiovascular diagnostics.
Collapse
Affiliation(s)
- Gary R Small
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | | |
Collapse
|
212
|
Sharif F, Lohan DG, Wijns W. Non-invasive detection of vulnerable coronary plaque. World J Cardiol 2011; 3:219-29. [PMID: 21860703 PMCID: PMC3158870 DOI: 10.4330/wjc.v3.i7.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 02/06/2023] Open
Abstract
Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identify these high-risk plaques. Non-invasive imaging with magnetic resonance imaging, computed tomography and positron emission tomography holds the potential to differentiate between low- and high-risk plaques. There have been significant technological advances in non-invasive imaging modalities, and the aim is to achieve a diagnostic sensitivity for these technologies similar to that of the invasive modalities. Molecular imaging with the use of novel targeted nanoparticles may help in detecting high-risk plaques that will ultimately cause acute myocardial infarction. Moreover, nanoparticle-based imaging may even provide non-invasive treatments for these plaques. However, at present none of these imaging modalities are able to detect vulnerable plaque nor have they been shown to definitively predict outcome. Further trials are needed to provide more information regarding the natural history of high-risk but non-flow-limiting plaque to establish patient specific targeted therapy and to refine plaque stabilizing strategies in the future.
Collapse
Affiliation(s)
- Faisal Sharif
- Faisal Sharif, Department of Cardiology, Regional Hospital Galway, and Regenerative Medicine Institute, National University of Ireland Galway, County Galway, Ireland
| | | | | |
Collapse
|
213
|
Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JLJ. Imaging the vulnerable plaque. J Am Coll Cardiol 2011; 57:1961-79. [PMID: 21565634 DOI: 10.1016/j.jacc.2011.02.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 02/09/2011] [Accepted: 02/15/2011] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases are still the primary causes of mortality in the United States and in Western Europe. Arterial thrombosis is triggered by a ruptured atherosclerotic plaque and precipitates an acute vascular event, which is responsible for the high mortality rate. These rupture-prone plaques are called "vulnerable plaques." During the past decades, much effort has been put toward accurately detecting the presence of vulnerable plaques with different imaging techniques. In this review, we provide an overview of the currently available invasive and noninvasive imaging modalities used to detect vulnerable plaques. We will discuss the upcoming challenges in translating these techniques into clinical practice and in assigning them their exact place in the decision-making process.
Collapse
Affiliation(s)
- David Vancraeynest
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Cliniques, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
214
|
Hu L, Zhang L, Chen J, Lanza GM, Wickline SA. Diffusional mechanisms augment the fluorine MR relaxation in paramagnetic perfluorocarbon nanoparticles that provides a "relaxation switch" for detecting cellular endosomal activation. J Magn Reson Imaging 2011; 34:653-61. [PMID: 21761488 DOI: 10.1002/jmri.22656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 04/28/2011] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To develop a physical model for the (19)F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a "(19)F relaxation switch" phenomenon. MATERIALS AND METHODS An explicit expression for (19)F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium-induced magnetic field inhomogeneity inside the PFC NP. Field-dependent T(1) measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, (19)F and (1)H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. RESULTS The theoretical description was confirmed experimentally by field-dependent T(1) measurements. The shortening of (19)F T(1) was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of (19)F T(1) was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. CONCLUSION The proposed first-principle analysis of (19)F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated "(19)F relaxation switch" phenomenon is potentially useful for monitoring cellular endosomal functionality.
Collapse
Affiliation(s)
- Lingzhi Hu
- Department of Physics, Washington University in St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
215
|
Abstract
Molecular MRI plays an important role in studying molecular and cellular processes associated with heart disease. Targeted probes that recognize important biomarkers of atherosclerosis, apoptosis, necrosis, angiogenesis, thrombosis and inflammation have been developed. This review discusses the properties of chemically different contrast agents including iron oxide nanoparticles, gadolinium-based nanoparticles or micelles, discrete peptide conjugates and activatable probes. Numerous examples of contrast agents based on these approaches have been used in preclinical MRI of cardiovascular diseases. Clinical applications are still under investigation for some selected agents with highly promising initial results. Molecular MRI shows great potential for the detection and characterization of a wide range of cardiovascular diseases, as well as for monitoring response to therapy.
Collapse
|
216
|
Myerson J, He L, Lanza G, Tollefsen D, Wickline S. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J Thromb Haemost 2011; 9:1292-300. [PMID: 21605330 PMCID: PMC3686484 DOI: 10.1111/j.1538-7836.2011.04339.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND As a regulator of the penultimate step in the coagulation cascade, thrombin represents a principal target of direct and specific anticoagulants. OBJECTIVE A potent thrombin inhibitor complexed with a colloidal nanoparticle was devised as a first-in-class anticoagulant with prolonged and highly localized therapeutic impact conferred by its multivalent thrombin-absorbing particle surface. METHODS PPACK (Phe[D]-Pro-Arg-Chloromethylketone) was secured covalently to the surface of perfluorocarbon-core nanoparticle structures. PPACK and PPACK nanoparticle inhibition of thrombin were assessed in vitro via thrombin activity against a chromogenic substrate. In vivo antithrombotic activity of PPACK, heparin, non-functionalized nanoparticles and PPACK nanoparticles was assessed through intravenous (i.v.) administration prior to acute photochemical injury of the common carotid artery. Perfluorocarbon particle retention in extracted carotid arteries from injured mice was assessed via (19) F magnetic resonance spectroscopy (MRS) and imaging (MRI) at 11.7 T. Activated partial thromboplastin time (APTT) measurements determined the systemic effects of the PPACK nanoparticles at various times after injection. RESULTS An optical assay verified that PPACK nanoparticles exceeded PPACK's intrinsic activity against thrombin. Application of an in vivo acute arterial thrombosis model demonstrated that PPACK nanoparticles outperformed both heparin (P=0.001) and uncomplexed PPACK (P = 0.0006) in inhibiting thrombosis. (19) F MRS confirmed that PPACK nanoparticles specifically bound to sites of acute thrombotic injury. APTT normalized within 20 min of PPACK nanoparticles injection. CONCLUSIONS PPACK nanoparticles present thrombin-inhibiting surfaces at sites of acutely forming thrombi that continue to manifest local clot inhibition even as systemic effects rapidly diminish and thus represent a new platform for localized control of acute thrombosis.
Collapse
Affiliation(s)
- J Myerson
- Washington University, Saint Louis, MO, USA
| | | | | | | | | |
Collapse
|
217
|
Pan D, Caruthers SD, Senpan A, Yalaz C, Stacy AJ, Hu G, Marsh JN, Gaffney PJ, Wickline SA, Lanza GM. Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. J Am Chem Soc 2011; 133:9168-71. [PMID: 21599030 PMCID: PMC3124378 DOI: 10.1021/ja201918u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new site-targeted molecular imaging contrast agent based on a nanocolloidal suspension of lipid-encapsulated, organically soluble divalent copper has been developed. Concentrating a high payload of divalent copper ions per nanoparticle, this agent provides a high per-particle r1 relaxivity, allowing sensitive detection in T1-weighted magnetic resonance imaging when targeted to fibrin clots in vitro. The particle also exhibits a defined clearance and safety profile in vivo.
Collapse
Affiliation(s)
- Dipanjan Pan
- C-TRAIN and Division of Cardiology, Washington University School of Medicine, 4320 Forest Park Avenue, Saint Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Young VEL, Degnan AJ, Gillard JH. Advances in contrast media for vascular imaging of atherosclerosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
219
|
Cormode DP, Fayad ZA. Nanoparticle contrast agents for CT: their potential and the challenges that lie ahead. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
220
|
Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011; 6:715-28. [PMID: 21718180 PMCID: PMC3217316 DOI: 10.2217/nnm.11.19] [Citation(s) in RCA: 1448] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and purification. Strategies to incorporate targeting ligands are also prevalent. This article presents a background to investigators new to stealth nanoparticles, and suggests some key considerations needed prior to designing a nanoparticle PEGylation protocol and characterizing the performance features of the product.
Collapse
Affiliation(s)
- Jesse V Jokerst
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, CA 94305-5427 USA
| | - Tatsiana Lobovkina
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080 USA
- Bioengineering, Materials Science & Engineering, Bio-Xc, Stanford University, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, CA 94305-5427 USA
- Bioengineering, Materials Science & Engineering, Bio-Xc, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
221
|
Gupta AS. Nanomedicine approaches in vascular disease: a review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:763-79. [PMID: 21601009 DOI: 10.1016/j.nano.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/11/2011] [Accepted: 04/05/2011] [Indexed: 01/26/2023]
Abstract
UNLABELLED Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. FROM THE CLINICAL EDITOR Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
222
|
Tardif JC, Lesage F, Harel F, Romeo P, Pressacco J. Imaging Biomarkers in Atherosclerosis Trials. Circ Cardiovasc Imaging 2011; 4:319-33. [DOI: 10.1161/circimaging.110.962001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jean-Claude Tardif
- From the Departments of Medicine (J.-C.T.), Radiology (J.P.), Nuclear Medicine (F.H.), and Pathology (P.R.) and the Research Center (F.L.), Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Frédéric Lesage
- From the Departments of Medicine (J.-C.T.), Radiology (J.P.), Nuclear Medicine (F.H.), and Pathology (P.R.) and the Research Center (F.L.), Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - François Harel
- From the Departments of Medicine (J.-C.T.), Radiology (J.P.), Nuclear Medicine (F.H.), and Pathology (P.R.) and the Research Center (F.L.), Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Romeo
- From the Departments of Medicine (J.-C.T.), Radiology (J.P.), Nuclear Medicine (F.H.), and Pathology (P.R.) and the Research Center (F.L.), Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Josephine Pressacco
- From the Departments of Medicine (J.-C.T.), Radiology (J.P.), Nuclear Medicine (F.H.), and Pathology (P.R.) and the Research Center (F.L.), Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
223
|
Winer JL, Kim PE, Law M, Liu CY, Apuzzo ML. Visualizing the Future: Enhancing Neuroimaging with Nanotechnology. World Neurosurg 2011; 75:626-37; discussion 618-9. [DOI: 10.1016/j.wneu.2011.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/04/2011] [Indexed: 11/30/2022]
|
224
|
Jacobin-Valat MJ, Deramchia K, Mornet S, Hagemeyer CE, Bonetto S, Robert R, Biran M, Massot P, Miraux S, Sanchez S, Bouzier-Sore AK, Franconi JM, Duguet E, Clofent-Sanchez G. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR IN BIOMEDICINE 2011; 24:413-424. [PMID: 21192086 DOI: 10.1002/nbm.1606] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/02/2010] [Accepted: 07/26/2010] [Indexed: 05/30/2023]
Abstract
The noninvasive imaging of atherosclerotic plaques at an early stage of atherogenesis remains a major challenge for the evaluation of the pathologic state of patients at high risk of acute coronary syndromes. Recent studies have emphasized the importance of platelet-endothelial cell interactions in atherosclerosis-prone arteries at early stages, and the prominent role of P-selectin in the initial loose contact between platelets and diseased vessel walls. A specific MR contrast agent was developed here for the targeting, with high affinity, of P-selectin expressed in large amounts on activated platelets and endothelial cells. For this purpose, PEGylated dextran/iron oxide nanoparticles [PEG, poly(ethylene glycol)], named versatile ultrasmall superparamagnetic iron oxide (VUSPIO) particles, labeled with rhodamine were coupled to an anti-human P-selectin antibody (VH10). Flow cytometry and microscopy experiments on human activated platelets were highly correlated with MRI (performed at 4.7 and 0.2 T), with a 50% signal decrease in T(2) and T(1) values corresponding to the strong labeling of activated vs resting platelets. The number of 1000 VH10-VUSPIO nanoparticles attained per activated platelet appeared to be optimal for the detection of hypo- and hyper-signals in the platelet pellet on T(2) - and T(1) -weighted MRI. Furthermore, in vivo imaging of atherosclerotic plaques in ApoE mice at 4.7 T showed a spatial resolution adapted to the imaging of intimal thickening and a hypo-signal at 4.7 T, as a result of the accumulation of VH10-VUSPIO nanoparticles in the plaque. Our work provides support for the further assessment of the use of VH10-VUSPIO nanoparticles as a promising imaging modality able to identify the early stages of atherosclerosis with regard to the pertinence of both the target and the antibody-conjugated contrast agent used.
Collapse
|
225
|
Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:400-20. [PMID: 21523920 DOI: 10.1002/wnan.145] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the atheroinflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to atheroinflammatory lesions and atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
226
|
Montet-Abou K, Viallon M, Hyacinthe JN, Delattre B, Vallee JP, Didier D, Croisille P, Montet X. The role of imaging and molecular imaging in the early detection of metabolic and cardiovascular dysfunctions. Int J Obes (Lond) 2011; 34 Suppl 2:S67-81. [PMID: 21151150 DOI: 10.1038/ijo.2010.242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite intense effort, obesity is still rising throughout the world. Links between obesity and cardiovascular diseases are now well established. Most of the cardiovascular changes related to obesity can be followed by magnetic resonance imaging (MRI) or by magnetic resonance spectroscopy (MRS). In particular, we will see in this review that MRI/MRS is extremely well suited to depict (1) changes in cardiac mass and function, (2) changes in stroke volume, (3) accumulation of fat inside the mediastinum or even inside the cardiomyocytes, (4) cell viability and (5) molecular changes during early cardiovascular diseases.
Collapse
Affiliation(s)
- K Montet-Abou
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Fitzgerald KT, Holladay CA, McCarthy C, Power KA, Pandit A, Gallagher WM. Standardization of models and methods used to assess nanoparticles in cardiovascular applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:705-717. [PMID: 21319299 DOI: 10.1002/smll.201001347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Nanotechnology has the potential to revolutionize the management and treatment of cardiovascular disease. Controlled drug delivery and nanoparticle-based molecular imaging agents have advanced cardiovascular disease therapy and diagnosis. However, the delivery vehicles (dendrimers, nanocrystals, nanotubes, nanoparticles, nanoshells, etc.), as well as the model systems that are used to mimic human cardiac disease, should be questioned in relation to their suitability. This review focuses on the variations of the biological assays and preclinical models that are currently being used to study the biocompatibility and suitability of nanomaterials in cardiovascular applications. There is a need to standardize appropriate models and methods that will promote the development of novel nanomaterial-based cardiovascular therapies.
Collapse
Affiliation(s)
- Kathleen T Fitzgerald
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
228
|
Keupp J, Rahmer J, Grässlin I, Mazurkewitz PC, Schaeffter T, Lanza GM, Wickline SA, Caruthers SD. Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn Reson Med 2011; 66:1116-22. [PMID: 21394779 DOI: 10.1002/mrm.22877] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/06/2022]
Abstract
Fluorine MRI offers broad potential for specific detection and quantification of molecularly targeted agents in diagnosis and therapy planning or monitoring. Because non-proton MRI applications lack morphological information, accompanying proton images are needed to elucidate the spatial tissue context. Furthermore, low concentrations typical of targeted molecular imaging agents require long examinations for signal averaging during which physiological motion may lead to blurring, underestimation in signal quantification, and erroneous localization of the agent distribution. Novel methods for truly simultaneous acquisition of dual-nuclei MR data are presented that offer efficient and precise anatomical localization of fluorine signals using accurate motion correction based on contemporaneous proton signals. The feasibility of simultaneous dual-nuclei MRI motion correction and corresponding dual-resolution reconstruction, providing nuclei-specific spatial resolution to retrospectively optimize the balance between signal-to-noise ratio and resolution, is shown on a clinical 3 T MR system.
Collapse
Affiliation(s)
- Jochen Keupp
- Philips Technologie GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Leuschner F, Nahrendorf M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ Res 2011; 108:593-606. [PMID: 21372291 PMCID: PMC3397211 DOI: 10.1161/circresaha.110.232678] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/29/2010] [Indexed: 11/16/2022]
Abstract
Motivated by the promise to transform preclinical research and clinical care, cardiovascular molecular imaging has made advances toward targeting coronary atherosclerosis and heart failure. Here, we discuss recent progress in the field, highlight how molecular imaging may facilitate preventive patient care, and review specific challenges associated with coronary and heart failure imaging. Practical considerations stress the potential of fluorescence imaging for basic research and discuss hybrid protocols such as FMT-CT and PET-MRI.
Collapse
|
230
|
te Boekhorst BCM, Bovens SM, Rodrigues-Feo J, Sanders HMHF, van de Kolk CWA, de Kroon AIPM, Cramer MJM, Doevendans PAFM, ten Hove M, Pasterkamp G, van Echteld CJA. Characterization and in vitro and in vivo testing of CB2-receptor- and NGAL-targeted paramagnetic micelles for molecular MRI of vulnerable atherosclerotic plaque. Mol Imaging Biol 2011; 12:635-51. [PMID: 20376565 DOI: 10.1007/s11307-010-0323-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Atherosclerotic plaque macrophages express the peripheral cannabinoid receptor (CB2-R) and promote fibrous cap degradation by secretion of neutrophil gelatinase-associated lipocalin 2 (NGAL). In this study, we report the preparation, characterization, and in vitro and in vivo testing of double-labeled (MR and fluorescent) CB2-R- and NGAL-targeted micelles. PROCEDURES/RESULTS Specific CB2-R agonists or antibodies directed to 24p3 (mouse homolog of NGAL) were incorporated into di-oleoyl-polyethylene glycol-phosphatidylethanolamine 1000 (DOPE-PEG1000) micelles or di-stearoyl-polyethylene glycol-phosphatidylethanolamine 2000 (DSPE-PEG2000) micelles. The hydrodynamic diameter, determined by dynamic light scattering, was 16.5 and 19.0 nm for CB2-R-targeted DOPE-PEG1000 and DSPE-PEG2000 micelles, respectively, and 23.0 nm for Ab-conjugated DSPE-PEG2000 micelles. In vitro and in vivo MRI and fluorescence microscopy showed specific binding of CB2-R-targeted and 24p3-targeted micelles to in vitro systems and to aortic plaque in apoE(-/-)/eNOS(-/-) mice, respectively. CONCLUSIONS CB2-R- and NGAL-targeted micelles show promise as tools for in vivo characterization of vulnerable plaque.
Collapse
|
231
|
Abstract
Over the last decade, integrin αvβ3 has been studied with every single molecular imaging modality. Since no single modality is perfect and sufficient to obtain all the necessary information for a particular question, combination of certain molecular imaging modalities can offer synergistic advantages over any modality alone. This review will focus on multimodality imaging of integrin αvβ3 expression, where the contrast agent used can be detected by two or more imaging modalities, such as combinations of PET and optical, SPECT and fluorescence, PET and MRI, SPECT and MRI, and lastly, MRI and fluorescence. Most of these agents are based on certain type(s) of nanoparticles. Contrast agents that can be detected by more than two imaging modalities are expected to emerge in the future and a PET/MRI/fluorescence agent will likely find the most future biomedical/clinical applications. Big strides have been made over the last decade for imaging integrin αvβ3 expression and several PET/SPECT probes have been tested in human studies. For dualmodality and multimodality imaging applications, a number of proof-of-principle studies have been reported which opened up many new avenues for future research. The next decade will likely witness further growth and continued prosperity of molecular imaging studies focusing on integrin αvβ3, which can eventually impact patient management.
Collapse
|
232
|
Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, Hertzberg VS, McIff EB, Moore WS, Panagos PD, Riles TS, Rosenwasser RH, Taylor AJ. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease. J Am Coll Cardiol 2011; 57:e16-94. [PMID: 21288679 DOI: 10.1016/j.jacc.2010.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
233
|
Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, Hertzberg VS, McIff EB, Moore WS, Panagos PD, Riles TS, Rosenwasser RH, Taylor AJ. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. Stroke 2011; 42:e464-540. [PMID: 21282493 DOI: 10.1161/str.0b013e3182112cc2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
234
|
Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell 2011; 3:3. [PMID: 21349160 PMCID: PMC3039831 DOI: 10.1186/2045-824x-3-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/31/2011] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is disregulated in many diseased states, most notably in cancer. An emerging strategy for the development of therapies targeting tumor-associated angiogenesis is to harness the potential of nanotechnology to improve the pharmacology of chemotherapeutics, including anti-angiogenic agents. Nanoparticles confer several advantages over that of free drugs, including their capability to carry high payloads of therapeutic agents, confer increased half-life and reduced toxicity to the drugs, and provide means for selective targeting of the tumor tissue and vasculature. The plethora of nanovectors available, in addition to the various methods available to combine them with anti-angiogenic drugs, allows researchers to fine-tune the pharmacological profile of the drugs ad infinitum. Use of nanovectors has also opened up novel avenues for non-invasive imaging of tumor angiogenesis. Herein, we review the types of nanovector and therapeutic/diagnostic agent combinations used in targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Deboshri Banerjee
- BWH-HST Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Science and Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
235
|
van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, Reutelingsperger CPM, Fayad ZA, Mulder WJM, Nicolay K. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem 2011; 21:1794-803. [PMID: 20804153 DOI: 10.1021/bc100091q] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis and macrophage burden are believed to correlate with atherosclerotic plaque vulnerability and are therefore considered important diagnostic and therapeutic targets for atherosclerosis. These cell types are characterized by the exposure of phosphatidylserine (PS) at their surface. In the present study, we developed and applied a small micellar fluorescent annexin A5-functionalized nanoparticle for noninvasive magnetic resonance imaging (MRI) of PS exposing cells in atherosclerotic lesions. Annexin A5-mediated target-specificity was confirmed with ellipsometry and in vitro binding to apoptotic Jurkat cells. In vivo T(1)-weighted MRI of the abdominal aorta in atherosclerotic ApoE(-/-) mice revealed enhanced uptake of the annexin A5-micelles as compared to control-micelles, which was corroborated with ex vivo near-infrared fluorescence images of excised whole aortas. Confocal laser scanning microscopy (CLSM) demonstrated that the targeted agent was associated with macrophages and apoptotic cells, whereas the nonspecific control agent showed no clear uptake by such cells. In conclusion, the annexin A5-conjugated bimodal micelles displayed potential for noninvasive assessment of cell types that are considered to significantly contribute to plaque instability and therefore may be of great value in the assessment of atherosclerotic lesion phenotype.
Collapse
Affiliation(s)
- Geralda A F van Tilborg
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, Hertzberg VS, McIff EB, Moore WS, Panagos PD, Riles TS, Rosenwasser RH, Taylor AJ. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation 2011; 124:e54-130. [PMID: 21282504 DOI: 10.1161/cir.0b013e31820d8c98] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
237
|
Mehrmohammadi M, Yoon KY, Qu M, Johnston KP, Emelianov SY. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters. NANOTECHNOLOGY 2011; 22:045502. [PMID: 21157009 PMCID: PMC3059156 DOI: 10.1088/0957-4484/22/4/045502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.
Collapse
Affiliation(s)
- M Mehrmohammadi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - KY Yoon
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - M Qu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - KP Johnston
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - SY Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
238
|
Grosu ID, Toms MA, Toms SA. Nanoimaging and neurological surgery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 2:601-17. [PMID: 20669333 DOI: 10.1002/wnan.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over 32 million surgical procedures are performed in the United States each year. Increasingly, image guidance is used in order to aid in the surgical localization of pathology, minimization of incisions, and improvement of surgical intervention outcomes. A variety of imaging modalities using different portions of the electromagnetic spectrum are used in neurological surgery. These include wavelengths used in ultrasonography, optical, infrared, ionizing radiation, and magnetic resonance. The use of currently available image-guidance tools for neurological surgery is reviewed. Advances in nanoparticulates and their integration into the neurosurgical operating room environment are discussed.
Collapse
Affiliation(s)
- Ion Dan Grosu
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA 17822, USA
| | | | | |
Collapse
|
239
|
Winter PM, Caruthers SD, Allen JS, Cai K, Williams TA, Lanza GM, Wickline SA. Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn Reson Med 2011; 64:369-76. [PMID: 20665780 DOI: 10.1002/mrm.22447] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Noninvasive molecular imaging of angiogenesis could play a critical role in the clinical management of peripheral vascular disease patients. The alpha(nu)beta(3)-integrin, a well-established biomarker of neovascular proliferation, is an ideal target for molecular imaging of angiogenesis. This study investigates whether MR molecular imaging with alpha(nu)beta(3)-integrin-targeted perfluorocarbon nanoparticles can detect the neovascular response to angiogenic therapy. Hypercholesterolemic rabbits underwent femoral artery ligation followed by no treatment or angiogenic therapy with dietary L-arginine. MR molecular imaging performed 10 days after vessel ligation revealed increased signal enhancement in L-arginine-treated animals compared to controls. Furthermore, specifically targeted nanoparticles produced two times higher MRI signal enhancement compared to nontargeted particles, demonstrating improved identification of angiogenic vasculature with biomarker targeting. X-ray angiography performed 40 days postligation revealed that L-arginine treatment increased the development of collateral vessels. Histologic staining of muscle capillaries revealed a denser pattern of microvasculature in L-arginine-treated animals, confirming the MR and X-ray imaging results. The clinical application of noninvasive molecular imaging of angiogenesis could lead to earlier and more accurate detection of therapeutic response in peripheral vascular disease patients, enabling individualized optimization for a variety of treatment strategies.
Collapse
|
240
|
McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:563-601. [PMID: 22093229 DOI: 10.1016/b978-0-12-416020-0.00014-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanomedicine seeks to manufacture drugs and other biologically relevant molecules that are packaged into nanoscale systems for improved delivery. This includes known drugs, proteins, enzymes, and antibodies that have limited clinical efficacy based on delivery, circulating half-lives, or toxicity profiles. The <100 nm nanoscale physical properties afford them a unique biologic potential for biomedical applications. Hence they are attractive systems for treatment of cancer, heart and lung, blood, inflammatory, and infectious diseases. Proposed clinical applications include tissue regeneration, cochlear and retinal implants, cartilage and joint repair, skin regeneration, antimicrobial therapy, correction of metabolic disorders, and targeted drug delivery to diseased sites including the central nervous system. The potential for cell and immune side effects has necessitated new methods for determining formulation toxicities. To realize the potential of nanomedicine from the bench to the patient bedside, our laboratories have embarked on developing cell-based carriage of drug nanoparticles to improve clinical outcomes in infectious and degenerative diseases. The past half decade has seen the development and use of cells of mononuclear phagocyte lineage, including dendritic cells, monocytes, and macrophages, as Trojan horses for carriage of anti-inflammatory and anti-infective medicines. The promise of this new technology and the perils in translating it for clinical use are developed and discussed in this chapter.
Collapse
Affiliation(s)
- JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
241
|
|
242
|
Lanza GM, Caruthers SD, Winter PM, Hughes MS, Schmieder AH, Hu G, Wickline SA. Angiogenesis imaging with vascular-constrained particles: the why and how. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1:S114-26. [PMID: 20617434 DOI: 10.1007/s00259-010-1502-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In cancer, first-generation antiangiogenic therapeutic approaches have demonstrated survival benefit in subsets of patients, but their high cost and notable adverse side effect risk have fueled alternative development efforts to personalize patient selection and reduce off-target effects. In parallel, rapid advances in cost-effective genomic profiling and sensitive early detection of high-risk biomarkers for cancer, atherosclerosis, and other angiogenesis-related pathologies will challenge the medical imaging community to identify, characterize, and risk stratify patients early in the natural history of these disease processes. Conventional diagnostic imaging techniques were not intended for such sensitive and specific detection, which has led to the emergence of novel noninvasive biomedical imaging approaches. The overall intent of molecular imaging is to achieve greater quantitative characterization of pathologies based on microanatomical, biochemical, or functional assessments; in many approaches, the capacity to deliver effective therapy, e.g., antiangiogenic therapy, can be combined. Agents with both diagnostic and therapy attributes have acquired the moniker "theranostics." This review will explore biomedical imaging options being pursued to better segment and treat patients with angiogenesis-influenced disease using vascular-constrained contrast platform technologies.
Collapse
Affiliation(s)
- Gregory M Lanza
- Washington University Medical School, St. Louis, MO 63146, USA.
| | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
The process of angiogenesis, an essential hallmark for tumour development as well as for several inflammatory diseases and physiological phenomena, is of growing interest for diagnosis and therapy in oncology. In the context of biochemical characterisation of key molecules involved in angiogenesis, several targets for imaging and therapy could be identified in the last decade. Optical imaging (OI) relies on the visualisation of near infrared (NIR) light, either its absorption and scattering in tissue (non-enhanced OI) or using fluorescent contrast agents. OI offers excellent signal to noise ratios due to virtually absent background fluorescence in the NIR range and is thus a versatile tool to image specific molecular target structures in vivo. This work intends to provide a survey of the different approaches to imaging of angiogenesis using OI methods in preclinical research as well as first clinical trials. Different imaging modalities as well as various optical contrast agents are briefly discussed.
Collapse
|
244
|
Abstract
Vessel wall imaging of large vessels has the potential to identify culprit atherosclerotic plaques that lead to cardiovascular events. Comprehensive assessment of atherosclerotic plaque size, composition, and biological activity is possible with magnetic resonance imaging (MRI). Magnetic resonance imaging of the atherosclerotic plaque has demonstrated high accuracy and measurement reproducibility for plaque size. The accuracy of in vivo multicontrast MRI for identification of plaque composition has been validated against histological findings. Magnetic resonance imaging markers of plaque biological activity such as neovasculature and inflammation have been demonstrated. In contrast to other plaque imaging modalities, MRI can be used to study multiple vascular beds noninvasively over time. In this review, we compare the status of in vivo plaque imaging by MRI to competing imaging modalities. Recent MR technological improvements allow fast, accurate, and reproducible plaque imaging. An overview of current MRI techniques required for carotid plaque imaging including hardware, specialized pulse sequences, and processing algorithms are presented. In addition, the application of these techniques to coronary, aortic, and peripheral vascular beds is reviewed.
Collapse
|
245
|
Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, Lanza GM, Winter PM. MR molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging 2010; 3:824-32. [PMID: 20705262 DOI: 10.1016/j.jcmg.2010.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/12/2010] [Accepted: 03/04/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The objectives of this study were to use magnetic resonance (MR) molecular imaging to 1) characterize the aortic neovascular development in a rat model of atherosclerosis and 2) monitor the effects of an appetite suppressant on vascular angiogenesis progression. BACKGROUND The James C. Russell:LA corpulent rat strain (JCR:LA-cp) is a model of metabolic syndrome characterized by obesity, insulin resistance, hyperlipidemia, and vasculopathy, although plaque neovascularity has not been reported in this strain. MR molecular imaging with alpha(nu)beta(3)-targeted nanoparticles can serially map angiogenesis in the aortic wall and monitor the progression of atherosclerosis. METHODS Six-week old JCR:LA-cp (+/?; lean, n = 5) and JCR:LA-cp (cp/cp; obese, n = 5) rats received standard chow, and 6 obese rats were fed the appetite suppressant benfluorex over 16 weeks. Body weight and food consumption were recorded at baseline and weeks 4, 8, 12, and 16. MR molecular imaging with alpha(nu)beta(3)-targeted paramagnetic nanoparticles was performed at weeks 0, 8, and 16. Fasted plasma triglyceride, cholesterol, and glucose were measured immediately before MR scans. Plasma insulin and leptin levels were assayed at weeks 8 and 16. RESULTS Benfluorex reduced food consumption (p < 0.05) to the same rate as lean animals, but had no effect on serum cholesterol or triglyceride levels. MR (3-T) aortic signal enhancement with alpha(nu)beta(3)-targeted nanoparticles was initially equivalent between groups, but increased (p < 0.05) in the untreated obese animals over 16 weeks. No signal change (p > 0.05) was observed in the benfluorex-treated or lean rat groups. MR differences paralleled adventitial microvessel counts, which increased (p < 0.05) among the obese rats and were equivalently low in the lean and benfluorex-treated animals (p > 0.05). Body weight, insulin, and leptin were decreased (p < 0.05) from the untreated obese animals by benfluorex, but not to the lean control levels (p < 0.05). CONCLUSIONS Neovascular expansion is a prominent feature of the JCR:LA-cp model. MR imaging with alpha(nu)beta(3)-targeted nanoparticles provided a noninvasive assessment of angiogenesis in untreated obese rats, which was suppressed by benfluorex.
Collapse
Affiliation(s)
- Kejia Cai
- Washington University, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Lee SJ, Olsen B, Schlesinger PH, Baker NA. Characterization of perfluorooctylbromide-based nanoemulsion particles using atomistic molecular dynamics simulations. J Phys Chem B 2010; 114:10086-96. [PMID: 20684632 DOI: 10.1021/jp103228c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Perfluorocarbon-based nanoemulsion particles have arisen as promising platforms for the cellular delivery of imaging and therapeutic agents to specific targets. However, current knowledge of the agent delivery mechanism is limited to qualitative and phenomenological models. Lack of detail at the molecular level has hence delayed optimizing or customizing nanoemulsion particles for therapeutic and imaging applications. Here we report the first atomistic structural details of a perfluorooctylbromide-based (PFOB-based) nanoemulsion particle (NEP) with a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) lipid emulsifier. Newly developed PFOB force-field parameters were used in molecular dynamics simulations to model the PFOB-NEP interface in a planar configuration. These PFOB force field parameters were developed and tested to reproduce the characteristics of bulk PFOB as well as PFOB at interfaces with water and emulsifying phospholipids. The modeled PFOB-NEP interface demonstrated significant intercalation of PFOB into the emulsifying lipid monolayer and consequent changes in the structural, electrostatic, and mechanical properties of the POPC monolayer and PFOB. This intercalation provides an explanation for experimental data demonstrating melittin tryptophan fluorescence quenching upon binding to the nanoemulsion particles through the observation of direct contact between the melittin tryptophan and the PFOB bromine. Additionally, the atomistic details of the PFOB-NEP interface structure provided by our simulations are used to suggest the influence of each component on PFOB-NEP delivery function which will be tested in future coarse-grained simulations.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Biochemistry and Molecular Biophysics, Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
247
|
Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. NANO LETTERS 2010; 10:4607-13. [PMID: 20939602 PMCID: PMC3170660 DOI: 10.1021/nl102623x] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a new method for coating superparamagnetic iron oxide nanoparticles (SPIOs) and demonstrate that, by fine-tuning the core size and PEG coating of SPIOs, the T2 relaxivity per particle can be increased by >200-fold. With 14 nm core and PEG1000 coating, SPIOs can have T2 relaxivity of 385 s-1 mM-1, which is among the highest per-Fe atom relaxivities. In vivo tumor imaging results demonstrated the potential of the SPIOs for clinical applications.
Collapse
Affiliation(s)
| | | | - Zhilan Zheng
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jun Zhou
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
248
|
Lobatto ME, Fayad ZA, Silvera S, Vucic E, Calcagno C, Mani V, Dickson SD, Nicolay K, Banciu M, Schiffelers RM, Metselaar JM, van Bloois L, Wu HS, Fallon JT, Rudd JH, Fuster V, Fisher EA, Storm G, Mulder WJM. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 2010; 7:2020-9. [PMID: 21028895 DOI: 10.1021/mp100309y] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is an inflammatory disease causing great morbidity and mortality in the Western world. To increase the anti-inflammatory action and decrease adverse effects of glucocorticoids (PLP), a nanomedicinal liposomal formulation of this drug (L-PLP) was developed and intravenously applied at a dose of 15 mg/kg PLP to a rabbit model of atherosclerosis. Since atherosclerosis is a systemic disease, emerging imaging modalities for assessing atherosclerotic plaque are being developed. (18)F-Fluoro-deoxy-glucose positron emission tomography and dynamic contrast enhanced magnetic resonance imaging, methods commonly used in oncology, were applied to longitudinally assess therapeutic efficacy. Significant anti-inflammatory effects were observed as early as 2 days that lasted up to at least 7 days after administration of a single dose of L-PLP. No significant changes were found for the free PLP treated animals. These findings were corroborated by immunohistochemical analysis of macrophage density in the vessel wall. In conclusion, this study evaluates a powerful two-pronged strategy for efficient treatment of atherosclerosis that includes nanomedical therapy of atherosclerotic plaques and the application of noninvasive and clinically approved imaging techniques to monitor delivery and therapeutic responses. Importantly, we demonstrate unprecedented rapid anti-inflammatory effects in atherosclerotic lesions after the nanomedical therapy.
Collapse
Affiliation(s)
- Mark E Lobatto
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2336-2357. [PMID: 20878632 DOI: 10.1002/smll.201000523] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cancer accounted for 13% of all deaths worldwide in 2005. Although early detection is critical for the successful treatment of many cancers, there are sensitivity limitations associated with current detection methodologies. Furthermore, many traditional anticancer drug treatments exhibit limited efficacy and cause high morbidity. The unique physical properties of nanoscale materials can be utilized to produce novel and effective sensors for cancer diagnosis, agents for tumor imaging, and therapeutics for cancer treatment. Functionalizing inorganic nanoparticles with biocompatible polymers and natural or rationally designed biomolecules offers a route towards engineering responsive and multifunctional composite systems. Although only a few such innovations have reached human clinical trial to date, nanocomposite materials based on functionalized metal and semiconductor nanoparticles promise to transform the way cancer is diagnosed and treated. This review summarizes the current state-of-the-art in the development of inorganic nanocomposites for cancer-related applications.
Collapse
Affiliation(s)
- Caterina Minelli
- Department of Materials & Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, UK
| | | | | |
Collapse
|
250
|
Kerwin WS. Noninvasive Imaging of Plaque Inflammation. JACC Cardiovasc Imaging 2010; 3:1136-8. [DOI: 10.1016/j.jcmg.2010.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 11/24/2022]
|