201
|
Roberts TJM, Chapman AC, Cipolla MJ. PPAR-gamma agonist rosiglitazone reverses increased cerebral venous hydraulic conductivity during hypertension. Am J Physiol Heart Circ Physiol 2009; 297:H1347-53. [PMID: 19666838 DOI: 10.1152/ajpheart.00630.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists have been shown to protect the cerebral vasculature, including the blood-brain barrier. In the present study, we investigated the effect of the PPAR-gamma agonist rosiglitazone on changes in venous permeability during chronic hypertension induced by nitric oxide synthase inhibition. Female Sprague-Dawley rats were either treated with N(G)-nitro-L-arginine methyl ester (L-NAME; 0.5 g/l in drinking water) for 5 wk (HTN; n = 8), L-NAME for 5 wk plus the PPAR-gamma agonist rosiglitazone (20 mg/kg in food) for the last 3 wk (HTN + Rosi; n = 5), L-NAME for 5 wk plus the superoxide dismutase mimetic Tempol (1 mmol/l in drinking water) for the last 3 wk (HTN + Tempol; n = 8), or were untreated controls (n = 9). Fluid filtration (J(v)/S) and hydraulic conductivity (L(p)) of cerebral veins were compared in vitro between groups after a step increase in pressure from 10 to 25 mmHg to mimic the change in hydrostatic pressure during acute hypertension. Hypertension increased J(v)/S by 2.2-fold and L(p) by 3.2-fold. Rosiglitazone treatment after 2 wk of hypertension completely reversed the increased J(v)/S and L(p) that occurred during hypertension, whereas Tempol had no effect. These results demonstrate that rosiglitazone was effective at reversing changes in venous permeability that occurred during chronic hypertension, an effect that does not appear to be related to its antioxidant properties. Our findings suggest that PPAR-gamma may be a key regulator of blood-brain barrier permeability and a potential therapeutic target during hypertension.
Collapse
Affiliation(s)
- Tim J M Roberts
- 1Departments of Neurology, Obstetrics, Gynecology and Reproductive Sciences, and Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
202
|
Kleinhenz JM, Kleinhenz DJ, You S, Ritzenthaler JD, Hansen JM, Archer DR, Sutliff RL, Hart CM. Disruption of endothelial peroxisome proliferator-activated receptor-gamma reduces vascular nitric oxide production. Am J Physiol Heart Circ Physiol 2009; 297:H1647-54. [PMID: 19666848 DOI: 10.1152/ajpheart.00148.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vascular endothelial cells express the ligand-activated transcription factor, peroxisome proliferator-activated receptor-gamma (PPARgamma), which participates in the regulation of metabolism, cell proliferation, and inflammation. PPARgamma ligands attenuate, whereas the loss of function mutations in PPARgamma stimulate, endothelial dysfunction, suggesting that PPARgamma may regulate vascular endothelial nitric oxide production. To explore the role of endothelial PPARgamma in the regulation of vascular nitric oxide production in vivo, mice expressing Cre recombinase driven by an endothelial-specific promoter were crossed with mice carrying a floxed PPARgamma gene to produce endothelial PPARgamma null mice (ePPARgamma(-/-)). When compared with littermate controls, ePPARgamma(-/-) animals were hypertensive at baseline and demonstrated comparable increases in systolic blood pressure in response to angiotensin II infusion. When compared with those of control animals, aortic ring relaxation responses to acetylcholine were impaired, whereas relaxation responses to sodium nitroprusside were unaffected in ePPARgamma(-/-) mice. Similarly, intact aortic segments from ePPARgamma(-/-) mice released less nitric oxide than those from controls, whereas endothelial nitric oxide synthase expression was similar in control and ePPARgamma(-/-) aortas. Reduced nitric oxide production in ePPARgamma(-/-) aortas was associated with an increase in the parameters of oxidative stress in the blood and the activation of nuclear factor-kappaB in aortic homogenates. These findings demonstrate that endothelial PPARgamma regulates vascular nitric oxide production and that the disruption of endothelial PPARgamma contributes to endothelial dysfunction in vivo.
Collapse
Affiliation(s)
- Jennifer M Kleinhenz
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Combination therapy of angiotensin receptor blocker with statin or thiazolidinediones as promising therapeutic strategy for metabolic syndrome and atherosclerosis. Hypertens Res 2009; 32:639-40. [DOI: 10.1038/hr.2009.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
204
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
205
|
Liang P, Jiang B, Huang X, Xiao W, Zhang P, Yang X, Long J, Xiao X, Huang X. Anti-apoptotic role of EGF in HaCaT keratinocytes via a PPARbeta-dependent mechanism. Wound Repair Regen 2009; 16:691-8. [PMID: 19128264 DOI: 10.1111/j.1524-475x.2008.00419.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epidermal growth factor (EGF) plays an important role in epithelial cell proliferation and apoptosis. Our recent studies found that EGF-attenuated tumor necrosis factor-alpha induced HaCaT keratinocyte apoptosis, and this effect was accompanied by up-regulation of the expression of peroxisome proliferator-activated receptor beta (PPARbeta). However, little is known about whether PPARbeta is functionally involved in the inhibition of keratinocyte apoptosis by EGF. Here, we showed that EGF up-regulated the DNA-binding and transcriptional regulation activities of PPARbeta. Antisense phosphorothioate oligonucleotides against PPARbeta markedly inhibited de novo synthesis of PPARbeta and attenuated the protective effect of EGF on tumor necrosis factor-alpha-induced apoptosis. L165041, a specific PPARbeta ligand, significantly enhanced the transcriptional regulation activity of PPARbeta and increased the protective effect of EGF. These results suggest a molecular mechanism by which EGF protects HaCaT keratinocytes against apoptosis in a PPARbeta-dependent manner.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Yousefipour Z, Oyekan A, Newaz M. Role of G protein-coupled receptor kinase-2 in peroxisome proliferator-activated receptor gamma-mediated modulation of blood pressure and renal vascular reactivity in SHR. Am J Nephrol 2009; 30:201-8. [PMID: 19420904 DOI: 10.1159/000218061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/19/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear transcription factor, modulates the expression/activity of G protein-coupled receptors (GPCRs), but its role in GPCR signaling is not clear. Increased GPCR kinase-2 (GRK-2) activity and receptor desensitization have been reported in hypertension. METHOD In this study we investigated the role of GRK-2 in PPARgamma-mediated blood pressure regulation in hypertension. SHR or WKY rats were treated with GW1929, a selective PPARgamma ligand (0.5 mg/kg/day), or vehicle for 2 months. Systolic blood pressure (tail cuff plethysmography), whole kidney perfusion (laser scanner) and renal vascular reactivity (isolated perfused kidney) was determined. RESULTS GW1929 significantly reduced blood pressure (20 +/- 1%) and increased renal perfusion (61 +/- 3%) in SHR compared to WKY rats. Vasoconstriction to phenylephrine (100 microg) in the isolated perfused kidney was greater in SHRs (29 +/- 1%) compared to WKY rats and this was abolished by GW1929. GW1929 enhanced acetylcholine-induced (30-300 microg) and sodium nitroprusside-induced vasodilatation in SHR by 46 +/- 2% (p < 0.05) and 33 +/- 2% (p < 0.05), respectively. Isoprenalin-induced (5-30 microg) vasodilatation was 43 +/- 2% lower in SHR compared to WKY and GW1929 enhanced this vasodilatation by 55 +/- 2%. In SHR kidney, GW1929 enhanced expression of PPARgamma mRNA (34 +/- 1%) but reduced that of GRK-2 (31 +/- 3%). CONCLUSION We suggest that downregulation of PPARgamma but upregulation of GRK-2 increases blood pressure and impaired renal vascular reactivity in SHR and that PPARgamma-mediated improvement in hypertension may involve transcriptional regulation of GRK-2 function.
Collapse
Affiliation(s)
- Zivar Yousefipour
- Center for Cardiovascular Diseases, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|
207
|
Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TWB. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. Am J Physiol Renal Physiol 2009; 296:F1146-57. [DOI: 10.1152/ajprenal.90732.2008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TNF-α and NF-κB play important roles in the development of inflammation in chronic renal failure (CRF). In hepatic cells, curcumin is shown to antagonize TNF-α-elicited NF-κB activation. In this study, we hypothesized that if inflammation plays a key role in renal failure then curcumin should be effective in improving CRF. The effectiveness of curcumin was compared with enalapril, a compound known to ameliorate human and experimental CRF. Investigation was conducted in Sprague-Dawley rats where CRF was induced by 5/6 nephrectomy (Nx). The Nx animals were divided into untreated (Nx), curcumin-treated (curcumin), and enalapril-treated (enalapril) groups. Sham-operated animals served as a control. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was significantly reduced by curcumin and enalapril treatment. However, only enalapril significantly improved blood pressure. Compared with the control, the Nx animals had significantly higher plasma and kidney TNF-α, which was associated with NF-κB activation and macrophage infiltration in the kidney. These changes were effectively antagonized by curcumin and enalapril treatment. The decline in the anti-inflammatory peroxisome proliferator-activated receptor γ (PPARγ) seen in Nx animals was also counteracted by curcumin and enalapril. Studies in mesangial cells were carried out to further establish that the anti-inflammatory effect of curcumin in vivo was mediated essentially by antagonizing TNF-α. Curcumin dose dependently antagonized the TNF-α-mediated decrease in PPARγ and blocked transactivation of NF-κB and repression of PPARγ, indicating that the anti-inflamatory property of curcumin may be responsible for alleviating CRF in Nx animals.
Collapse
|
208
|
Time-dependent vascular effects of Endocannabinoids mediated by peroxisome proliferator-activated receptor gamma (PPARγ). PPAR Res 2009; 2009:425289. [PMID: 19421417 PMCID: PMC2676321 DOI: 10.1155/2009/425289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/05/2009] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to examine whether endocannabinoids cause PPARγ-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA), but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours). Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 μM), and vasorelaxation to both anandamide and NADA was inhibited by PPARγ antagonism (GW9662, 1 μM). Pharmacological inhibition of
de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 μM) inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPARγ-mediated vasorelaxation. Activation of PPARγ in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.
Collapse
|
209
|
Chang L, Villacorta L, Zhang J, Garcia-Barrio MT, Yang K, Hamblin M, Whitesall SE, D'Alecy LG, Chen YE. Vascular smooth muscle cell-selective peroxisome proliferator-activated receptor-gamma deletion leads to hypotension. Circulation 2009; 119:2161-9. [PMID: 19364979 DOI: 10.1161/circulationaha.108.815803] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists are commonly used to treat diabetes, although their PPARgamma-dependent effects transcend their role as insulin sensitizers. Thiazolidinediones lower blood pressure (BP) in diabetic patients, whereas results from conventional/tissue-specific PPARgamma experimental models suggest an important pleiotropic role for PPARgamma in BP control. Little evidence is available on the molecular mechanisms underlying the role of vascular smooth muscle cell-specific PPARgamma in basal vascular tone. METHODS AND RESULTS We show that vascular smooth muscle cell-selective deletion of PPARgamma impairs vasoactivity with an overall reduction in BP. Aortic contraction in response to norepinephrine is reduced and vasorelaxation is enhanced in response to beta-adrenergic receptor (beta-AdR) agonists in vitro. Similarly, vascular smooth muscle cell-selective PPARgamma knockout mice display a biphasic response to norepinephrine in BP, reversible on administration of beta-AdR blocker, and enhanced BP reduction on treatment with beta-AdR agonists. Consistent with enhanced beta2-AdR responsiveness, we found that the absence of PPARgamma in vascular smooth muscle cells increased beta2-AdR expression, possibly leading to the hypotensive phenotype during the rest phase. CONCLUSIONS These data uncovered the beta2-AdR as a novel target of PPARgamma transcriptional repression in vascular smooth muscle cells and indicate that PPARgamma regulation of beta2-adrenergic signaling is important in the modulation of BP.
Collapse
Affiliation(s)
- Lin Chang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Averill MM, Bornfeldt KE. Lipids versus glucose in inflammation and the pathogenesis of macrovascular disease in diabetes. Curr Diab Rep 2009; 9:18-25. [PMID: 19192420 PMCID: PMC3148110 DOI: 10.1007/s11892-009-0005-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 and type 2 diabetes both accelerate cardiovascular disease, yet the triggers are likely different for the two types of diabetes. Results from large-scale clinical trials suggest that intense blood glucose control can reduce cardiovascular events many years later in patients with type 1 diabetes. In type 2 diabetes, mechanisms related to insulin resistance and obesity may be more prominent in promoting atherosclerosis. In this article, we discuss the potential effects of hyperglycemia and diabetes-induced lipid abnormalities on atherosclerosis, particularly focusing on advanced stages of atherosclerosis and evidence from mouse models. In addition, we discuss new research findings in monocyte/macrophage biology that may present intriguing new areas of research related to diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Michelle M Averill
- Department of Pathology and Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109, USA
| | | |
Collapse
|
211
|
Meredith D, Panchatcharam M, Miriyala S, Tsai YS, Morris AJ, Maeda N, Stouffer GA, Smyth SS. Dominant-negative loss of PPARgamma function enhances smooth muscle cell proliferation, migration, and vascular remodeling. Arterioscler Thromb Vasc Biol 2009; 29:465-71. [PMID: 19179641 DOI: 10.1161/atvbaha.109.184234] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The peroxisome proliferator activated receptor-gamma (PPARgamma) protein is a nuclear transcriptional activator with importance in diabetes management as the molecular target for the thiazolidinedione (TZD) family of drugs. Substantial evidence indicates that the TZD family of PPARgamma agonists may retard the development of atherosclerosis. However, recent clinical data have suggested that at least one TZD may increase the risk of myocardial infarction and death from cardiovascular disease. In this study, we used a genetic approach to disrupt PPARgamma signaling to probe the protein's role in smooth muscle cell (SMC) responses that are important for atherosclerosis. METHODS AND RESULTS SMC isolated from transgenic mice harboring the dominate-negative P465L mutation in PPARgamma (PPARgamma(L/+)) exhibited greater proliferation and migration then did wild-type cells. Upregulation of ETS-1, but not ERK activation, correlated with enhanced proliferative and migratory responses PPARgamma(L/+) SMCs. After arterial injury, PPARgamma(L/+) mice had a approximately 4.3-fold increase in the development of intimal hyperplasia. CONCLUSIONS These findings are consistent with a normal role for PPARgamma in inhibiting SMC migration and proliferation in the context of restenosis or atherosclerosis.
Collapse
Affiliation(s)
- Dane Meredith
- Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Vallon V, Hummler E, Rieg T, Pochynyuk O, Bugaj V, Schroth J, Dechenes G, Rossier B, Cunard R, Stockand J. Thiazolidinedione-induced fluid retention is independent of collecting duct alphaENaC activity. J Am Soc Nephrol 2009; 20:721-9. [PMID: 19158355 DOI: 10.1681/asn.2008040415] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Thiazolidinediones are agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) that can induce fluid retention and weight gain through unclear mechanisms. To test a proposed role for the epithelial sodium channel ENaC in thiazolidinedione-induced fluid retention, we used mice with conditionally inactivated alphaENaC in the collecting duct (Scnn1a(loxloxCre) mice). In control mice, rosiglitazone did not alter plasma aldosterone levels or protein expression of ENaC subunits in the kidney, but did increase body weight, plasma volume, and the fluid content of abdominal fat pads, and decreased hematocrit. Scnn1a(loxloxCre) mice provided functional evidence for blunted Na+ uptake in the collecting duct, but still exhibited rosiglitazone-induced fluid retention. Moreover, treatment with rosiglitazone or pioglitazone did not significantly alter the open probability or number of ENaC channels per patch in isolated, split-open cortical collecting ducts of wild-type mice. Finally, patch-clamp studies in primary mouse inner medullary collecting duct cells did not detect ENaC activity but did detect a nonselective cation channel upregulated by pioglitazone. These data argue against a primary and critical role of ENaC in thiazolidinedione-induced fluid retention.
Collapse
Affiliation(s)
- Volker Vallon
- Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive (9151), San Diego, California 92161, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Schiffrin EL, Paradis P. Suppression of peroxisome proliferator-activated receptor-gamma activity by angiotensin II in vascular smooth muscle involves Bcr kinase: the fire that drowns the water. Circ Res 2009; 104:4-6. [PMID: 19118280 DOI: 10.1161/circresaha.108.191155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
214
|
Tsuchiya K, Akaza I, Yoshimoto T, Hirata Y. Pioglitazone improves endothelial function with increased adiponectin and high-density lipoprotein cholesterol levels in type 2 diabetes. Endocr J 2009; 56:691-8. [PMID: 19506330 DOI: 10.1507/endocrj.k08e-308] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endothelial dysfunction is considered to be an early event in the development of atherosclerosis. The present study was undertaken to evaluate endothelial function and biochemical markers in type 2 diabetes mellitus (T2DM) patients before and after treatment with or without pioglitazone (PIO). Forty-one T2DM patients without macroangiopathy were randomized to treatment with (n=20) or without (control, n=21) PIO for 12 weeks. Endothelial function was assessed by flow-mediated vasodilation (FMD) using a high-resolution ultrasound method before and after treatment. After treatment, HbA1c levels equally decreased in both groups, but PIO-treated group had significantly increased high-density lipoprotein cholesterol (HDL-C) levels, and decreased triglyceride, fasting insulin levels and HOMA-R. After treatment, increases in %FMD, plasma HDL-C and adiponectin (APN) levels were significantly greater in PIO-treated group than those in control group. Changes of %FMD showed significant positive correlations with those of plasma APN and HDL-C levels. In conclusion, the present study showed that treatment of T2DM improved endothelial function with greater increases in %FMD, APN and HDL-C levels in PIO-treated group than those in control group, suggesting the beneficial effect of PIO on endothelial function in T2DM.
Collapse
Affiliation(s)
- Kyoichiro Tsuchiya
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | |
Collapse
|
215
|
Ho TC, Chen SL, Yang YC, Lo TH, Hsieh JW, Cheng HC, Tsao YP. Cytosolic phospholipase A2-{alpha} is an early apoptotic activator in PEDF-induced endothelial cell apoptosis. Am J Physiol Cell Physiol 2008; 296:C273-84. [PMID: 19091957 DOI: 10.1152/ajpcell.00432.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an intrinsic antiangiogenic factor and a potential therapeutic agent. Previously, we discovered the mechanism of PEDF-induced apoptosis of human umbilical vein endothelial cells (HUVECs) as sequential induction/activation of p38 mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor gamma (PPAR-gamma), and p53. In the present study, we investigated the signaling role of cytosolic calcium-dependent phospholipase A(2)-alpha (cPLA(2)-alpha) to bridge p38 MAPK and PPAR-gamma activation. PEDF induced cPLA(2)-alpha activation in HUVECs and in endothelial cells in chemical burn-induced vessels on mouse cornea. The cPLA(2)-alpha activation is evident from the phosphorylation and nuclear translocation of cPLA(2)-alpha as well as arachidonic acid release and the cleavage of PED6, a synthetic PLA(2) substrate. Such activation can be abolished by p38 MAPK inhibitor. The PEDF-induced PPAR-gamma activation, p53 expression, caspase-3 activity, and apoptosis can be abolished by both cPLA(2) inhibitor and small interfering RNA targeting cPLA(2)-alpha. Our observation not only establishes the signaling role of cPLA(2)-alpha but also for the first time demonstrates the sequential activation of p38 MAPK, cPLA(2)-alpha, PPAR-gamma, and p53 as the mechanism of PEDF-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Dept. of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
216
|
Dentelli P, Trombetta A, Togliatto G, Zeoli A, Rosso A, Uberti B, Orso F, Taverna D, Pegoraro L, Brizzi MF. Formation of STAT5/PPARgamma transcriptional complex modulates angiogenic cell bioavailability in diabetes. Arterioscler Thromb Vasc Biol 2008; 29:114-20. [PMID: 18927468 DOI: 10.1161/atvbaha.108.172247] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Circulating angiogenic cells (CACs) expansion is a multistage process requiring sequential activation of transcriptional factors, including STAT5. STAT5, in concert with peroxisome proliferator-activated receptors (PPARs), seems to induce discrete biological responses in different tissues. In the present study we investigated the role of STAT5 and PPARgamma in regulating CAC expansion in normal and diabetic settings. METHODS AND RESULTS Normal and diabetic CACs were used. siRNA technology, EMSA, and chromatin immunoprecipitation (ChIP) assay as well as site-directed mutagenesis of the STAT5 response element in the PPARgamma promoter enabled us to demonstrate that STAT5 transcriptional activity controls PPARgamma expression. Moreover, FACS analysis, coimmunoprecipitation experiments, and ChIP assay revealed that a STAT5/PPARgamma transcriptional complex controls cyclin D1 expression and CAC progression into the cell-cycle. Conversely, PPARgamma agonists, by preventing the expression of STAT5 and the formation of the STAT5/PPARgamma heterodimeric complex failed to promote CAC expansion. Finally, we demonstrated that diabetic CAC functional capability can be recovered by molecules able to activate the STAT5/PPARgamma transcriptional complex. CONCLUSIONS Our data identify the STAT5/PPARgamma heterodimers as landmark of CAC expansion and provide evidences for a mechanism that partially rescues CAC bioavailability in diabetic setting.
Collapse
Affiliation(s)
- Patrizia Dentelli
- Department of Internal Medicine, University of Torino, Corso Dogliotti 14, 10126, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Ning Y, Bai Q, Lu H, Li X, Pandak WM, Zhao F, Chen S, Ren S, Yin L. Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis 2008; 204:114-20. [PMID: 18945429 DOI: 10.1016/j.atherosclerosis.2008.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/29/2008] [Accepted: 09/01/2008] [Indexed: 02/06/2023]
Abstract
Hyperlipidemia is one of the most important risk factors for atherosclerosis. This can be amplified by a localized inflammatory response mediated by macrophages. Macrophages are capable of taking up excess cholesterol, and it is well known that delivery of cholesterol to the mitochondria by steroidogenic acute regulatory (StAR) protein is the rate-limiting step for cholesterol degradation in the liver. It has also been shown that overexpression of StAR in hepatocytes dramatically increases the amount of regulatory oxysterols in the nucleus, which play an important role in the maintenance of intracellular lipid homeostasis. The goal of the present study was to determine whether StAR plays a similar role in macrophages. We have found that overexpression of StAR in human THP-1 monocyte-derived macrophages decreases intracellular lipid levels, activates liver X receptor alpha (LXRalpha) and proliferation peroxysome activator receptor gamma (PPARgamma), and increases ABCG1 and CYP27A1 expression. Furthermore, it reduces the secretion of inflammatory factors, and prevents apoptosis. These results suggest that StAR delivers cholesterol to mitochondria where regulatory oxysterols are generated. Regulatory oxysterols can in turn activate nuclear receptors, which increase expression of cholesterol efflux transporters, and decrease secretion of inflammatory factors. These effects can prevent macrophage apoptosis. These results imply a potential role of StAR in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Yanxia Ning
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ho TC, Chen SL, Yang YC, Chen CY, Feng FP, Hsieh JW, Cheng HC, Tsao YP. 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 2008; 283:30273-88. [PMID: 18718914 DOI: 10.1074/jbc.m804196200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a potent anti-angiogenic factor and induces endothelial cell apoptosis, although the mechanism remains unclear. In this study, 15d-PGJ(2) was found to increase p53 levels of the human umbilical vein endothelial cells by stabilizing p53. Both 15d-PGJ(2)-induced apoptosis and the induction of p21(Waf1) and Bax can be abolished by p53 small interfering RNA but not by peroxisome proliferator-activated receptor gamma inhibitors. Moreover, 15d-PGJ(2) activated JNK and p38 MAPK while inducing p53 phosphorylation at sites responsible for p53 activity. JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) pretreatment attenuated 15d-PGJ(2)-mediated apoptosis and suppressed the p21(Waf1) and Bax expressions without affecting p53 protein accumulation. Pretreatment with SP600125 partially prevented the phosphorylation of p53 at serines 33 and 392 induced by 15d-PGJ(2). 15d-PGJ(2) was also found to induce reactive oxygen species generation and partially blocked nuclear factor-kappaB activity. Pretreatment with antioxidant N-acetylcysteine prevented the p53 accumulation, the phosphorylations of JNK and p38 MAPK, the inhibition of NF-kappaB activity, as well as the apoptosis induced by 15d-PGJ(2). Using a mouse model of corneal neovascularization, it was demonstrated in vivo that 15d-PGJ(2) induced reactive oxygen species generation, activated JNK and p38 MAPK, induced p53 accumulation/phosphorylation, and induced vascular endothelial cell apoptosis, which could be abolished by N-acetylcysteine, SP600125, SB203580, or a virus-derived amphipathic peptides-based p53 small interfering RNA. This is the first study that 15d-PGJ(2) induces vascular endothelial cell apoptosis through the signaling of JNK and p38 MAPK-mediated p53 activation both in vitro and in vivo, further establishing the potential of 15d-PGJ(2) as an anti-angiogenesis agent.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008; 29:367-74. [PMID: 18579222 DOI: 10.1016/j.tips.2008.05.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 02/07/2023]
Abstract
Angiotensin (Ang) II, the main effector of the renin-angiotensin system (RAS), is one of the major mediators of vascular remodeling in hypertension. Besides being a potent vasoactive peptide, Ang II exerts proinflammatory effects on the vasculature by inducing integrins, adhesion molecules, cytokines and growth and profibrotic mediators through activation of redox-sensitive pathways and transcription factors. Clinical findings suggest that inflammation participates in the mechanisms involved in the pathophysiology of hypertension and its complications. Antagonists of the RAS have been shown to exert cardiovascular protection, in part through their vascular anti-inflammatory effects. However, further studies are needed to better understand whether inflammatory biomarkers might be clinically useful for cardiovascular risk stratification and whether targeting inflammation pharmacologically will improve cardiovascular outcomes beyond blood pressure reduction. The present review addresses recent findings regarding the pathophysiology of vascular inflammation in hypertension, focusing specifically on the role of Ang II.
Collapse
Affiliation(s)
- Chiara Marchesi
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
220
|
Kang YJ, Kim HS, Choi HC. Troglitazone Increases IL-1.BETA. Induced Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression via Enhanced Phosphorylation of I.KAPPA.B.ALPHA. in Vascular Smooth Muscle Cells from Wistar-Kyoto Rats and Spontaneously Hypertensive Rats. Biol Pharm Bull 2008; 31:1955-8. [DOI: 10.1248/bpb.31.1955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Young Jin Kang
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hee Sun Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hyoung Chul Choi
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| |
Collapse
|
221
|
Pozzi A, Capdevila JH. PPARalpha Ligands as Antitumorigenic and Antiangiogenic Agents. PPAR Res 2008; 2008:906542. [PMID: 18725983 PMCID: PMC2517125 DOI: 10.1155/2008/906542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/01/2008] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor family of ligand-activated transcription factors. This subfamily is composed of three members-PPARalpha, PPARdelta, and PPARgamma-that differ in their cell and tissue distribution as well as in their target genes. PPARalpha is abundantly expressed in liver, brown adipose tissue, kidney, intestine, heart, and skeletal muscle; and its ligands have been used to treat diseases such as obesity and diabetes. The recent finding that members of the PPAR family, including the PPARalpha, are expressed by tumor and endothelial cells together with the observation that PPAR ligands regulate cell growth, survival, migration, and invasion, suggested that PPARs also play a role in cancer. In this review, we focus on the contribution of PPARalpha to tumor and endothelial cell functions and provide compelling evidence that PPARalpha can be viewed as a new class of ligand activated tumor "suppressor" gene with antiangiogenic and antitumorigenic activities. Given that PPAR ligands are currently used in medicine as hypolipidemic drugs with excellent tolerance and limited toxicity, PPARalpha activation might offer a novel and potentially low-toxic approach for the treatment of tumor-associated angiogenesis and cancer.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, S-3223 Medical Center North, Vanderbilt University, Nashville, TN 37232, USA
| | - Jorge H. Capdevila
- Department of Medicine, Division of Nephrology and Hypertension, S-3223 Medical Center North, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|