201
|
Jiagang D, Li C, Wang H, Hao E, Du Z, Bao C, Lv J, Wang Y. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem Biophys Res Commun 2011; 411:523-9. [DOI: 10.1016/j.bbrc.2011.06.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/27/2011] [Indexed: 12/20/2022]
|
202
|
Chen CL, Tetri LH, Neuschwander-Tetri BA, Huang SS, Huang JS. A mechanism by which dietary trans fats cause atherosclerosis. J Nutr Biochem 2011; 22:649-55. [PMID: 21036587 PMCID: PMC3125015 DOI: 10.1016/j.jnutbio.2010.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/19/2010] [Accepted: 05/13/2010] [Indexed: 01/11/2023]
Abstract
Dietary trans fats (TFs) have been causally linked to atherosclerosis, but the mechanism by which they cause the disease remains elusive. Suppressed transforming growth factor (TGF)-β responsiveness in aortic endothelium has been shown to play an important role in the pathogenesis of atherosclerosis in animals with hypercholesterolemia. We investigated the effects of a high TF diet on TGF-β responsiveness in aortic endothelium and integration of cholesterol in tissues. Here, we show that normal mice fed a high TF diet for 24 weeks exhibit atherosclerotic lesions and suppressed TGF-β responsiveness in aortic endothelium. The suppressed TGF-β responsiveness is evidenced by markedly reduced expression of TGF-β type I and II receptors and profoundly decreased levels of phosphorylated Smad2, an important TGF-β response indicator, in aortic endothelium. These mice exhibit greatly increased integration of cholesterol into tissue plasma membranes. These results suggest that dietary TFs cause atherosclerosis, at least in part, by suppressing TGF-β responsiveness. This effect is presumably mediated by the increased deposition of cholesterol into cellular plasma membranes in vascular tissue, as in hypercholesterolemia.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 S. Grand Blvd., St. Louis, MO 63104
| | - Laura H. Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Doisy Research Center, 1100 S. Grand Blvd., St. Louis, MO 63104
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Doisy Research Center, 1100 S. Grand Blvd., St. Louis, MO 63104
| | | | - Jung San Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 S. Grand Blvd., St. Louis, MO 63104
| |
Collapse
|
203
|
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. A tale of two plaques: convergent mechanisms of T-cell-mediated inflammation in psoriasis and atherosclerosis. Exp Dermatol 2011; 20:544-9. [DOI: 10.1111/j.1600-0625.2011.01308.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
204
|
Peng Z, Zhan L, Chen S, Xu E. Association of transforming growth factor-β1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: a case-control study. Lipids Health Dis 2011; 10:100. [PMID: 21679448 PMCID: PMC3129580 DOI: 10.1186/1476-511x-10-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022] Open
Abstract
Background Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine involved in inflammation and pathogenesis of atherosclerosis. There is scant information on the relation between variations within the TGF-β1 gene polymorphisms and risks of ischemic cerebrovascular diseases. Therefore, this case-controlled study was carried out to investigate the possible association of the TGF-β1 gene C-509T and T869C polymorphisms, and their combined genotypes with the risk of atherosclerotic cerebral infarction (CI) in the Chinese population. Results We recruited 164 CI patients and 167 healthy control subjects who were frequency-matched for age and gender. The frequencies of the -509TT genotype and T allele gene were significantly higher in the CI group (P = 0.007, P = 0.006). The frequencies of +869CC genotype and C allele were higher in the CI group (P = 0.002, P = 0.004). In the CI group, the individuals with -509TT genotype had a significantly higher level of plasma triglyceride (TG) (P = 0.017). +869CC genotype correlated significantly with higher level of plasma low density lipoprotein cholesterol (LDL-c) in the CI group (P = 0.015). With haplotype analysis, the frequency of the -509T/+869C combined genotype was significantly higher in the CI group than in controls (P < 0.001). Conclusions Our study suggests that C-509T and T869C gene polymorphisms in TGF-β1 may be a critical risk factor of genetic susceptibility to CI in the Chinese population.
Collapse
Affiliation(s)
- Zhongxing Peng
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical College, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, P.R. China
| | | | | | | |
Collapse
|
205
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
206
|
Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 2011; 8:348-58. [PMID: 21502963 DOI: 10.1038/nrcardio.2011.62] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis, and adaptive immunity is deeply involved in this process. Initial studies attributed a pathogenic role to T cells in atherosclerosis, mainly owing to the proatherogenic role of the T-helper (T(H))-1 cell subset, whereas the influence of T(H)2 and T(H)17 subsets is still debated. Today we know that T regulatory cells play a critical role in the protection against atherosclerotic lesion development and inflammation. In contrast to T cells, B cells were initially considered to be protective in atherosclerosis, assumingly through the production of protective antibodies against oxidized LDL. This concept has now been refined and proatherogenic roles of certain mature B cell subsets have been identified. We review the current knowledge about the role of various lymphocyte subsets in the development and progression of atherosclerosis and highlight future targets for immunomodulatory therapy.
Collapse
Affiliation(s)
- Charlotte Lahoute
- French National Institute of Health and Medical Research, Paris Cardiovascular Research Center, Université Paris Descartes, 56 rue Leblanc, Paris, France
| | | | | | | |
Collapse
|
207
|
Giannakopoulos TG, Avgerinos ED, Moulakakis KG, Kadoglou NP, Preza O, Papapetrou A, Papasideris C, Liapis CD. Biomarkers for diagnosis of the vulnerable atherosclerotic plaque. Interv Cardiol 2011. [DOI: 10.2217/ica.11.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
208
|
de Jager SCA, Bermúdez B, Bot I, Koenen RR, Bot M, Kavelaars A, de Waard V, Heijnen CJ, Muriana FJG, Weber C, van Berkel TJC, Kuiper J, Lee SJ, Abia R, Biessen EAL. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. ACTA ACUST UNITED AC 2011; 208:217-25. [PMID: 21242297 PMCID: PMC3039852 DOI: 10.1084/jem.20100370] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The TGF-β family member GDF-15 promotes lesion formation and plaque instability in atherosclerosis-prone LDLr-deficient mice. Growth differentiation factor (GDF) 15 is a member of the transforming growth factor β (TGF-β) superfamily, which operates in acute phase responses through a currently unknown receptor. Elevated GDF-15 serum levels were recently identified as a risk factor for acute coronary syndromes. We show that GDF-15 expression is up-regulated as disease progresses in murine atherosclerosis and primarily colocalizes with plaque macrophages. Hematopoietic GDF-15 deficiency in low density lipoprotein receptor−/− mice led to impaired initial lesion formation and increased collagen in later lesions. Although lesion burden in GDF-15−/− chimeras was unaltered, plaques had reduced macrophage infiltrates and decreased necrotic core formation, all features of improved plaque stability. In vitro studies pointed to a TGFβRII-dependent regulatory role of GDF-15 in cell death regulation. Importantly, GDF-15−/− macrophages displayed reduced CCR2 expression, whereas GDF-15 promoted macrophage chemotaxis in a strictly CCR2- and TGFβRII-dependent manner, a phenomenon which was not observed in G protein–coupled receptor kinase 2+/− macrophages. In conclusion, GDF-15 deletion has a beneficial effect both in early and later atherosclerosis by inhibition of CCR2-mediated chemotaxis and by modulating cell death. Our study is the first to identify GDF-15 as an acute phase modifier of CCR2/TGFβRII-dependent inflammatory responses to vascular injury.
Collapse
Affiliation(s)
- Saskia C A de Jager
- Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Chekeni FB, Ravichandran KS. The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. J Mol Med (Berl) 2011; 89:13-22. [PMID: 20809090 PMCID: PMC3248694 DOI: 10.1007/s00109-010-0673-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/02/2010] [Accepted: 07/29/2010] [Indexed: 12/20/2022]
Abstract
Apoptosis occurs in many tissues, during both normal and pathogenic processes. Normally, apoptotic cells are rapidly cleared, either by neighboring or recruited phagocytes. The prompt clearance of apoptotic cells requires that the apoptotic cells announce their presence through the release of chemotactic factors, known as "find-me" signals, to recruit phagocytes to the site of death, and through the exposure of so-called "eat-me" signals, which are ligands for phagocytic uptake. The importance of prompt apoptotic cell clearance is revealed by findings that decreasing the efficiency of engulfment results in the persistence of apoptotic cells, which is often associated with chronic inflammation and autoimmunity. Additionally, the proper clearance of apoptotic cells is actively anti-inflammatory, which is thought to play a crucial role in immunologic tolerance. Therefore, defects associated with clearance of apoptotic cells may contribute to the pathogenesis of several inflammatory diseases, including autoimmunity and atherosclerosis. Here, we review the role of nucleotides in the apoptotic cell clearance process and discuss their implications for disease pathogenesis.
Collapse
Affiliation(s)
- Faraaz B Chekeni
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
210
|
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:43-99. [PMID: 21482410 DOI: 10.1016/b978-0-12-386041-5.00002-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
Collapse
|
211
|
Strasky Z, Vecerova L, Rathouska J, Slanarova M, Brcakova E, Kudlackova Z, Andrys C, Micuda S, Nachtigal P. Cholesterol Effects on Endoglin and Its Downstream Pathways in ApoE/LDLR Double Knockout Mice. Circ J 2011; 75:1747-55. [DOI: 10.1253/circj.cj-10-1285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zbynek Strasky
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Lenka Vecerova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Jana Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Martina Slanarova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Eva Brcakova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Zdenka Kudlackova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital Hradec Kralove
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| |
Collapse
|
212
|
Groenendijk BC, Benus GF, Klous A, Pacheco YM, Volger OL, Fledderus JO, Ferreira V, Engelse MA, Pannekoek H, ten Dijke P, Horrevoets AJ, de Vries CJ. Activin A induces a non-fibrotic phenotype in smooth muscle cells in contrast to TGF-β. Exp Cell Res 2011; 317:131-42. [DOI: 10.1016/j.yexcr.2010.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/16/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
|
213
|
Aihara KI, Ikeda Y, Yagi S, Akaike M, Matsumoto T. Transforming Growth Factor-β1 as a Common Target Molecule for Development of Cardiovascular Diseases, Renal Insufficiency and Metabolic Syndrome. Cardiol Res Pract 2010; 2011:175381. [PMID: 21234356 PMCID: PMC3018616 DOI: 10.4061/2011/175381] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/08/2010] [Indexed: 01/25/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a polypeptide member of the transforming growth factor β superfamily of cytokines. It is a secreted protein that performs many cellular functions including control of cell growth, cell proliferation, cell differentiation and apoptosis. In the cardiovascular system, TGF-β1 plays pivotal roles in the pathogenesis of hypertension, restenosis after percutaneous coronary intervention, atherosclerosis, cardiac hypertrophy and heart failure. In addition, TGF-β1 has been shown to be increased in adipose tissue of obese subjects with insulin resistance. Furthermore, TGF-β1 is a potent initiator of proliferation of renal mesangial cells leading to chronic kidney disease. Some currently available agents can manipulate TGF-β1 expression leading to amelioration of cardiovascular diseases. Thus, an understanding of interactions between chronic kidney disease and metabolic syndrome and the development of cardiovascular diseases is an important issue, and attention should be given to TGF-β1 as a crucial factor for regulation and modulation of those pathological conditions.
Collapse
Affiliation(s)
- Ken-Ichi Aihara
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima, Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
214
|
Deng HB, Jiang CQ, Tomlinson B, Liu B, Lin JM, Wong KS, Cheung BMY, Lam TH, Thomas GN. A polymorphism in transforming growth factor-β1 is associated with carotid plaques and increased carotid intima-media thickness in older Chinese men: the Guangzhou Biobank Cohort Study-Cardiovascular Disease Subcohort. Atherosclerosis 2010; 214:391-6. [PMID: 21167485 DOI: 10.1016/j.atherosclerosis.2010.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Polymorphisms of the transforming growth factor-β1 (TGFB1) gene have not been associated with asymptomatic atherosclerosis previously. We investigated the relationship between a single nucleotide polymorphism (SNP) rs4803455 in TGFB1 and atherosclerosis identified by the presence of carotid plaque and increased intima-media thickness (IMT) in an older Chinese population. METHODS 1996 subjects (992 (49.7%) men aged 50-85 years) from the Guangzhou Biobank Cohort Study-Cardiovascular Subcohort (GBCS-CVD) were genotyped. Carotid plaque and IMT were assessed by B-mode ultrasonography. RESULTS In male subjects, the C allele of TGFB1 rs4803455 was significantly associated with prevalence of carotid plaque (adjusted OR: 2.49, 95% CI: 1.16-5.36, P = 0.03). The C allele was related to increased number of common carotid artery (CCA) plaques (P=0.03) and larger carotid plaque area (P = 0.02) in men. The homozygous carriers of allele C in male subjects also had a higher risk of having carotid IMT ≥ 1 mm (adjusted OR: 1.75, 95% CI: 1.05-2.93, P = 0.03). These associations were independent of age, smoking, physical activity, body mass index, blood pressure, lipid profile, fasting glucose and high sensitivity C-reactive protein. CONCLUSION This is the first study to show that the C allele in TGFB1 was associated with increased risk of atherosclerosis in older Chinese men. Further investigations on the linkage between the TGFB1 gene and progression of atherosclerosis in asymptomatic populations are warranted.
Collapse
Affiliation(s)
- Han-Bing Deng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Yuan SM, Jing H. Cardiac pathologies in relation to Smad-dependent pathways. Interact Cardiovasc Thorac Surg 2010; 11:455-60. [DOI: 10.1510/icvts.2010.234773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
216
|
Kulach A, Dabek J, Wilczok T, Gasior Z. Changes in transforming growth factor β and its receptors' mRNA expression in monocytes from patients with acute coronary syndromes. Arch Med Sci 2010; 6:526-32. [PMID: 22371795 PMCID: PMC3284066 DOI: 10.5114/aoms.2010.14463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/05/2010] [Accepted: 01/24/2010] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Transforming growth factor β (TGF-β) is thought to be a vasoprotective cytokine. Numerous reports confirm its significance in blood and plaques. There is, however, a lack of information on the molecular mechanisms involving TGF-β in circulating inflammatory cells in atherogenesis. sThe aim of the study was to assess gene expression of TGF-β and its receptors in monocytes from patients with acute coronary syndromes (ACS) and the effect of standard treatment on the studied genes. MATERIAL AND METHODS The study was carried out in 32 patients with ACS and 15 healthy subjects. Gene expression of TGF-β and receptors TGF-βRI and TGF-βRII was evaluated on day 1 and 5 in the study group and once in controls. The number of mRNA copies isolated from monocytes was assessed by QRT-PCR. RESULTS Monocytes of ACS patients showed slightly elevated transcriptional activity of TGF-β1 and its receptors RI and RII genes (0.29 ±0.043 vs. 0.08 ±0.020, p = 0.05; 0.071 ±0.022 vs. 0.036 ±0.023, p < 0.05; 0.134 ±0.020 vs. 0.048 ±0.016, p < 0.05, respectively). After 5-day standard treatment modest reduction of TGF-βRI expression was observed. The studied genes' expression was unrelated to ejection fraction, myocardial necrosis markers, GRACE score, time from the onset of pain to percutaneous coronary intervention and angiographic findings. Among risk factors family history of CAD was associated with increased TGF-βRI expression. Moreover, the presence of 4 or more classic risk factors correlated with higher TGF-βRI expression. CONCLUSIONS Monocytes of ACS patients demonstrate overexpression of TGF-β1 and its receptors' genes. Five-day standard treatment downregulated the TGF-βRI gene but did not affect TGF-β1 and TGF-βRII.
Collapse
Affiliation(s)
- Andrzej Kulach
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Jozefa Dabek
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Tadeusz Wilczok
- Department of Molecular Biology and Medical Genetics, Medical University of Silesia, Sosnowiec, Poland
| | - Zbigniew Gasior
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
217
|
Zhang G, Marshall AL, Thomas AL, Kernan KA, Su Y, LeBoeuf RC, Dong XR, Tchao BNA. In vivo knockdown of nicotinic acetylcholine receptor α1 diminishes aortic atherosclerosis. Atherosclerosis 2010; 215:34-42. [PMID: 20810113 DOI: 10.1016/j.atherosclerosis.2010.07.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/10/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Nicotinic acetylcholine receptor α1 (nAChRα1) was recently identified as a functional cell receptor for urokinase, a potent atherogenic molecule. Here, we test the hypothesis that nAChRα1 plays a role in the pathogenesis of atherosclerosis. METHODS Apolipoprotein E-deficient mice were initially fed a Western diet for 8 wks. Plasmid DNA encoding scramble RNA (pscr) or siRNA (psir2) for nAChRα1 was injected into the mice (n=16) using an aortic hydrodynamic gene transfer protocol. Four mice from each group were sacrificed 7 days after the DNA injection to confirm the nAChRα1 gene silencing. The remaining mice continued on a Western diet for an additional 16 wks. RESULTS The nAChRα1 was up-regulated in aortic atherosclerotic lesions. A 78% knockdown of the nAChRα1 gene resulted in remarkably less severe aortic plaque growth and neovascularization at 16 wks (both P<0.05). In addition, significantly fewer macrophages (60% less) and myofibroblasts (80% less) presented in the atherosclerotic lesion of the psir2-treated mice. The protective mechanisms of the nAChRα1 knockdown may involve up-regulating interferon-γ/Y box protein-1 activity and down-regulating transforming growth factor-β expression. CONCLUSIONS The nAChRα1 gene plays a significant role at the artery wall, and reducing its expression decreases aortic plaque development.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Buday A, Orsy P, Godó M, Mózes M, Kökény G, Lacza Z, Koller A, Ungvári Z, Gross ML, Benyó Z, Hamar P. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(-/-) mice. Am J Physiol Heart Circ Physiol 2010; 299:H386-95. [PMID: 20511416 DOI: 10.1152/ajpheart.01042.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of circulating, systemic TGF-beta levels in endothelial function is not clear. TGF-beta(1) may cause endothelial dysfunction in apolipoprotein E-deficient (apoE(-/-)) mice via stimulation of reactive oxygen species (ROS) production by the NADPH oxidase (NOX) system and aggravate aortic and heart remodeling and hypertension. Thoracic aorta (TA) were isolated from 4-mo-old control (C57Bl/6), apoE(-/-), TGF-beta(1)-overexpressing (TGFbeta(1)), and crossbred apoE(-/-) x TGFbeta(1) mice. Endothelium-dependent relaxation was measured before and after incubation with apocynin (NOX inhibitor) or superoxide dismutase (SOD; ROS scavenger). Superoxide production within the vessel wall was determined by dihydroethidine staining under confocal microscope. In 8-mo-old mice, aortic and myocardial morphometric changes, plaque formation by en face fat staining, and blood pressure were determined. Serum TGF-beta(1) levels (ELISA) were elevated in TGFbeta(1) mice without downregulation of TGF-beta-I receptor (immunohistochemistry). In the aortic wall, superoxide production was enhanced and NO-dependent relaxation diminished in apoE(-/-) x TGFbeta(1) mice but improved significantly after apocynin or SOD. Myocardial capillary density was reduced, fibrocyte density increased, aortic wall was thicker, combined lesion area was greater, and blood pressure was higher in the apoE(-/-) x TGFbeta vs. C57Bl/6 mice. Our results demonstrate that elevated circulating TGF-beta(1) causes endothelial dysfunction through NOX activation-induced oxidative stress, accelerating atherosclerosis and hypertension in apoE(-/-) mice. These findings may provide a mechanism explaining accelerated atherosclerosis in patients with elevated plasma TGFbeta(1).
Collapse
Affiliation(s)
- Anna Buday
- Institute of Pathophysiology, Dept. of Medicine, Semmelweis Univ., Budapest, 1089 Nagyvárad tér 4, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Chen S, Crother TR, Arditi M. Emerging role of IL-17 in atherosclerosis. J Innate Immun 2010; 2:325-33. [PMID: 20505315 PMCID: PMC2895754 DOI: 10.1159/000314626] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/13/2010] [Indexed: 12/14/2022] Open
Abstract
The IL-23-IL-17 axis is emerging as a critical regulatory system that bridges the innate and adaptive arms of the immune system. Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in various stages of atherogenesis remains poorly understood and is only beginning to be elucidated. While IL-17 is a predominantly proinflammatory cytokine, it has a pleiotropic function and it has been implicated both as an instigator in the pathogenesis of several inflammatory disorders as well as being protective in certain inflammatory disease models. Therefore, it is not surprising that the current literature is conflicting on the role of IL-17 during atherosclerotic lesion development. Various approaches have been used by several groups to discern the involvement of IL-17 in atherosclerosis. While one study found that IL-17 is protective against atherosclerosis, several other recent studies have suggested that IL-17 plays a proatherogenic role. Thus, the function of IL-17 remains controversial and awaits more direct studies to address the issue. In this review, we will highlight all the latest studies involving IL-17 and atherosclerosis, including both clinical and experimental research.
Collapse
Affiliation(s)
| | | | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, Calif., USA
| |
Collapse
|
220
|
Inflammatory and autoimmune reactions in atherosclerosis and vaccine design informatics. J Biomed Biotechnol 2010; 2010:459798. [PMID: 20414374 PMCID: PMC2858284 DOI: 10.1155/2010/459798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/15/2010] [Accepted: 01/28/2010] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the leading pathological contributor to cardiovascular morbidity and mortality worldwide. As its complex pathogenesis has been gradually unwoven, the regime of treatments and therapies has increased with still much ground to cover. Active research in the past decade has attempted to develop antiatherosclerosis vaccines with some positive results. Nevertheless, it remains to develop a vaccine against atherosclerosis with high affinity, specificity, efficiency, and minimal undesirable pathology. In this review, we explore vaccine development against atherosclerosis by interpolating a number of novel findings in the fields of vascular biology, immunology, and bioinformatics. With recent technological breakthroughs, vaccine development affords precision in specifying the nature of the desired immune response—useful when addressing a disease as complex as atherosclerosis with a manifold of inflammatory and autoimmune components. Moreover, our exploration of available bioinformatic tools for epitope-based vaccine design provides a method to avoid expenditure of excess time or resources.
Collapse
|
221
|
Bu DX, Rai V, Shen X, Rosario R, Lu Y, D'Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM. Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ Res 2010; 106:1040-51. [PMID: 20133903 DOI: 10.1161/circresaha.109.201103] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE The multiligand RAGE (receptor for advanced glycation end products) contributes to atherosclerosis in apolipoprotein (Apo)E-null mice. OBJECTIVE To delineate the specific mechanisms by which RAGE accelerated atherosclerosis, we performed Affymetrix gene expression arrays on aortas of nondiabetic and diabetic ApoE-null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. METHODS AND RESULTS We report that there is very little overlap of the genes that are differentially expressed both in the onset of diabetes in ApoE-null mice, and in the effect of RAGE deletion in diabetic ApoE-null mice. Pathway-Express analysis revealed that the transforming growth factor-beta pathway and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE-null mice, and the mechanism by which deletion of RAGE ameliorates this effect. Quantitative polymerase chain reaction studies, Western blotting, and confocal microscopy in aortic tissue and in primary cultures of murine aortic smooth muscle cells supported these findings. CONCLUSIONS Taken together, our work suggests that RAGE-dependent acceleration of atherosclerosis in ApoE-null mice is dependent, at least in part, on the action of the ROCK1 (rho-associated protein kinase 1) branch of the transforming growth factor-beta pathway.
Collapse
Affiliation(s)
- De-xiu Bu
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia L, Johnson JL, Tharaux PL, Tedgui A, Mallat Z. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 2010; 120:422-32. [PMID: 20101093 DOI: 10.1172/jci38136] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/04/2009] [Indexed: 12/16/2022] Open
Abstract
Complicated abdominal aortic aneurysm (AAA) is a major cause of mortality in elderly men. Ang II-dependent TGF-beta activity promotes aortic aneurysm progression in experimental Marfan syndrome. However, the role of TGF-beta in experimental models of AAA has not been comprehensively assessed. Here, we show that systemic neutralization of TGF-beta activity breaks the resistance of normocholesterolemic C57BL/6 mice to Ang II-induced AAA formation and markedly increases their susceptibility to the disease. These aneurysms displayed a large spectrum of complications on echography, including fissuration, double channel formation, and rupture, leading to death from aneurysm complications. The disease was refractory to inhibition of IFN-gamma, IL-4, IL-6, or TNF-alpha signaling. Genetic deletion of T and B cells or inhibition of the CX3CR1 pathway resulted in partial protection. Interestingly, neutralization of TGF-beta activity enhanced monocyte invasiveness, and monocyte depletion markedly inhibited aneurysm progression and complications. Finally, TGF-beta neutralization increased MMP-12 activity, and MMP-12 deficiency prevented aneurysm rupture. These results clearly identify a critical role for TGF-beta in the taming of the innate immune response and the preservation of vessel integrity in C57BL/6 mice, which contrasts with its reported pathogenic role in Marfan syndrome.
Collapse
Affiliation(s)
- Yu Wang
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes and Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Chung IM, Kim J, Pak YK, Jang Y, Yang WI, Han I, Park SJ, Park SW, Huh J, Wight TN, Ueno H. Blockade of TGF-β by catheter-based local intravascular gene delivery does not alter the in-stent neointimal response, but enhances inflammation in pig coronary arteries. Int J Cardiol 2010; 145:468-75. [PMID: 20053468 DOI: 10.1016/j.ijcard.2009.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/16/2009] [Accepted: 11/29/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND Extracellular matrix (ECM) accumulation significantly contributes to in-stent restenosis. In this regard, transforming growth factor (TGF)-β, a positive regulator of ECM deposition, may be implicated in in-stent restenosis. The goal of this study was to assess the effect of blockade of TGF-β on stent-induced restenosis in porcine coronary arteries. METHODS An adenovirus expressing the ectodomain of the TGF-β type II receptor (AdTβ-ExR) was applied onto a coronary arterial segment of a pig (n=10) using an Infiltrator, followed by stent deployment. Controls consisted of adenoviruses expressing β-galactosidase (AdLacZ) or phosphate-buffered saline (PBS) applied onto the other segment (n=10) of the same pig. RESULTS Computer-based pathological morphometric analysis of stented coronary arteries, performed 4 weeks after stenting, demonstrated no significant difference in morphometric parameters such as in-stent neointimal area and % area stenosis between the AdTβ-ExR group and control (n=7 for each). However the AdTβ-ExR group had increased neointimal cell density, infiltration of inflammatory cells mostly consisting of CD3+ T cell, accumulation of hyaluronan, cell proliferation rate, and adventitial matrix metalloproteinase-1 (MMP-1) expression compared with control. The expression of connective tissue growth factor mRNA, measured by reverse transcription PCR, in cultured rat arterial smooth muscle cells was inhibited by AdTβ-ExR at moi 60. CONCLUSIONS Blockade of TGF-β by catheter-based local intravascular gene delivery does not reduce stent-induced neointima formation 4 weeks after stenting in spite of modest inhibition of ECM accumulation, but it induces vascular inflammation and associated pathological changes that may potentially aggravate lesion progression.
Collapse
Affiliation(s)
- Ick-Mo Chung
- Division of Cardiology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2009; 10:36-46. [PMID: 19960040 DOI: 10.1038/nri2675] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A key event in atherosclerosis is a maladaptive inflammatory response to subendothelial lipoproteins. A crucial aspect of this response is a failure to resolve inflammation, which normally involves the suppression of inflammatory cell influx, effective clearance of apoptotic cells and promotion of inflammatory cell egress. Defects in these processes promote the progression of atherosclerotic lesions into dangerous plaques, which can trigger atherothrombotic vascular disease, the leading cause of death in industrialized societies. In this Review I provide an overview of these concepts, with a focus on macrophage death and defective apoptotic cell clearance, and discuss new therapeutic strategies designed to boost inflammation resolution in atherosclerosis.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
225
|
Xu S, Liu AC, Gotlieb AI. Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 2009; 19:236-47. [PMID: 19942455 DOI: 10.1016/j.carpath.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic stenosis and atherosclerosis have been investigated separately in experimental in vitro and in vivo studies and in clinical studies. The similarities identified in both diseases suggest that similar pathogenic pathways are involved in both conditions. Most current therapeutic studies are focused on statins. The evidence suggests that statin effects on valves may, in large part, be independent of the lipid lowering effects of the drug. There are several molecules that play significant regulatory roles on the development and progression of valve sclerosis and calcification and on growth and complications of atherosclerotic plaques. The purpose of this review is to discuss the pathogenic features of the two conditions, highlight the important similarities, and then review the data that suggest that transforming growth factor-beta may play a key regulatory role in both diseases and that this is worthy of study as a potential therapeutic target for both conditions.
Collapse
Affiliation(s)
- Songyi Xu
- Toronto General Research Institute and Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
226
|
Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res 2009; 40:285-93. [PMID: 19608018 DOI: 10.1016/j.arcmed.2009.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/25/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS There is an imbalance between Th1 and Th2 in the development and progression of atherosclerosis and in patients with acute coronary syndrome (ACS) including acute myocardial infarction (AMI) and unstable angina. T helper cell type 3 (Th3), which primarily secretes transforming growth factor beta-1 (TGF-beta1), has been shown to inhibit both Th1 and Th2 cells. The present study was designed to investigate whether Th3 cells are involved in plaque destabilization and the onset of ACS. METHODS Ninety one patients who underwent diagnostic catheterization were classified into four groups (AMI group, unstable angina group, stable angina group and chest pain syndrome group). The cell frequencies of Th1, Th2 and Th3 were detected using flow cytometry, and the concentrations of their related cytokines IFN-gamma, IL-4 and TGF-beta1 were studied by ELISA. RESULTS Apart from the imbalance between Th1 and Th2, results revealed a significant decrease in peripheral Th3 number and levels of TGF-beta1 in patients with ACS as compared with those in patients with stable angina and chest pain syndrome (p<0.01). CONCLUSIONS Downregulation of Th3 cells in patients with ACS may play a potential role in plaque destabilization and the onset of ACS.
Collapse
|
227
|
Nishimura SL. Integrin-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1362-70. [PMID: 19729474 DOI: 10.2353/ajpath.2009.090393] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A subset of integrins function as cell surface receptors for the profibrotic cytokine transforming growth factor-beta (TGF-beta). TGF-beta is expressed in an inactive or latent form, and activation of TGF-beta is a major mechanism that regulates TGF-beta function. Indeed, important TGF-beta activation mechanisms involve several of the TGF-beta binding integrins. Knockout mice suggest essential roles for integrin-mediated TGF-beta activation in vessel and craniofacial morphogenesis during development and in immune homeostasis and the fibrotic wound healing response in the adult. Amplification of integrin-mediated TGF-beta activation in fibrotic disorders and data from preclinical models suggest that integrins may therefore represent novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Stephen L Nishimura
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
228
|
Frutkin AD, Otsuka G, Stempien-Otero A, Sesti C, Du L, Jaffe M, Dichek HL, Pennington CJ, Edwards DR, Nieves-Cintrón M, Minter D, Preusch M, Hu JH, Marie JC, Dichek DA. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2009; 29:1251-7. [PMID: 19325140 PMCID: PMC2740721 DOI: 10.1161/atvbaha.109.186593] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Impairment of transforming growth factor (TGF)-beta1 signaling accelerates atherosclerosis in experimental mice. However, it is uncertain whether increased TGF-beta1 expression would retard atherosclerosis. The role of TGF-beta1 in aneurysm formation is also controversial. We tested whether overexpression of active TGF-beta1 in hyperlipidemic mice affects atherogenesis and aortic dilation. METHODS AND RESULTS We generated apolipoprotein E-null mice with transgenes that allow regulated overexpression of active TGF-beta1 in their hearts. Compared to littermate controls, these mice had elevated cardiac and plasma TGF-beta1, less aortic root atherosclerosis (P< or =0.002), fewer lesions in the thoracic and abdominal aortae (P< or =0.01), less aortic root dilation (P<0.001), and fewer pseudoaneurysms (P=0.02). Mechanistic studies revealed no effect of TGF-beta1 overexpression on plasma lipids or cytokines, or on peripheral lymphoid organ cells. However, aortae of TGF-beta1-overexpressing mice had fewer T-lymphocytes, more collagen, less lipid, lower expression of inflammatory cytokines and matrix metalloproteinase-13, and higher expression of tissue inhibitor of metalloproteinase-2. CONCLUSIONS When overexpressed in the heart and plasma, TGF-beta1 is an antiatherogenic, vasculoprotective cytokine that limits atherosclerosis and prevents aortic dilation. These actions are associated with significant changes in cellularity, collagen and lipid accumulation, and gene expression in the artery wall.
Collapse
Affiliation(s)
- Andrew D Frutkin
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195-7710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol 2009; 134:33-46. [PMID: 19635683 DOI: 10.1016/j.clim.2009.07.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/12/2022]
Abstract
Atherosclerosis involves the formation of inflammatory arterial lesions and is one of the most common causes of death globally. It has been evident for more than 20 years that adaptive immunity and T cells in particular regulate the magnitude of the atherogenic pro-inflammatory response. T cells also influence the stability of the atherosclerotic lesion and thus the propensity for thrombus formation and the clinical outcome of disease. This review summarizes our current understanding of T cells in atherogenesis, including which antigens they recognize, the role of T cell costimulation/coinhibition, and their secretion of pro- and anti-inflammatory mediators. Furthermore, we outline future areas of research and potential clinical intervention strategies.
Collapse
Affiliation(s)
- John Andersson
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden.
| | | | | |
Collapse
|
230
|
Cao Z, Wara AK, Icli B, Sun X, Packard RRS, Esen F, Stapleton CJ, Subramaniam M, Kretschmer K, Apostolou I, von Boehmer H, Hansson GK, Spelsberg TC, Libby P, Feinberg MW. Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells. J Biol Chem 2009; 284:24914-24. [PMID: 19602726 DOI: 10.1074/jbc.m109.000059] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD4(+)CD25(+) regulatory T cells (T regs) play a major role in the maintenance of self-tolerance and immune suppression, although the mechanisms controlling T reg development and suppressor function remain incompletely understood. Herein, we provide evidence that Kruppel-like factor 10 (KLF10/TIEG1) constitutes an important regulator of T regulatory cell suppressor function and CD4(+)CD25(-) T cell activation through distinct mechanisms involving transforming growth factor (TGF)-beta1 and Foxp3. KLF10 overexpressing CD4(+)CD25(-) T cells induced both TGF-beta1 and Foxp3 expression, an effect associated with reduced T-Bet (Th1 marker) and Gata3 (Th2 marker) mRNA expression. Consistently, KLF10(-/-) CD4(+)CD25(-) T cells have enhanced differentiation along both Th1 and Th2 pathways and elaborate higher levels of Th1 and Th2 cytokines. Furthermore, KLF10(-/-) CD4(+)CD25(-) T cell effectors cannot be appropriately suppressed by wild-type T regs. Surprisingly, KLF10(-/-) T reg cells have reduced suppressor function, independent of Foxp3 expression, with decreased expression and elaboration of TGF-beta1, an effect completely rescued by exogenous treatment with TGF-beta1. Mechanistic studies demonstrate that in response to TGF-beta1, KLF10 can transactivate both TGF-beta1 and Foxp3 promoters, implicating KLF10 in a positive feedback loop that may promote cell-intrinsic control of T cell activation. Finally, KLF10(-/-) CD4(+)CD25(-) T cells promoted atherosclerosis by approximately 2-fold in ApoE(-/-)/scid/scid mice with increased leukocyte accumulation and peripheral pro-inflammatory cytokines. Thus, KLF10 is a critical regulator in the transcriptional network controlling TGF-beta1 in both CD4(+)CD25(-) T cells and T regs and plays an important role in regulating atherosclerotic lesion formation in mice.
Collapse
Affiliation(s)
- Zhuoxiao Cao
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
OBJECTIVE Vascular remodeling is a physiological process that occurs in response to long-term changes in hemodynamic conditions, but may also contribute to the pathophysiology of intima-media thickening (IMT) and vascular disease. Shear stress detection by the endothelium is thought to be an important determinant of vascular remodeling. Previous work showed that platelet endothelial cell adhesion molecule-1 (PECAM-1) is a component of a mechanosensory complex that mediates endothelial cell (EC) responses to shear stress. METHODS AND RESULTS We tested the hypothesis that PECAM-1 contributes to vascular remodeling by analyzing the response to partial carotid artery ligation in PECAM-1 knockout mice and wild-type littermates. PECAM-1 deficiency resulted in impaired vascular remodeling and significantly reduced IMT in areas of low flow. Inward remodeling was associated with PECAM-1-dependent NFkappaB activation, surface adhesion molecule expression, and leukocyte infiltration as well as Akt activation and vascular cell proliferation. CONCLUSIONS PECAM-1 plays a crucial role in the activation of the NFkappaB and Akt pathways and inflammatory cell accumulation during vascular remodeling and IMT. Elucidation of some of the signals that drive vascular remodeling represent pharmacologically tractable targets for the treatment of restenosis after balloon angioplasty or stent placement.
Collapse
Affiliation(s)
- Zhongming Chen
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | |
Collapse
|
232
|
Lemaître V, Kim HE, Forney-Prescott M, Okada Y, D’Armiento J. Transgenic expression of matrix metalloproteinase-9 modulates collagen deposition in a mouse model of atherosclerosis. Atherosclerosis 2009; 205:107-12. [DOI: 10.1016/j.atherosclerosis.2008.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 11/18/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
233
|
Fleenor BS, Bowles DK. Exercise training decreases the size and alters the composition of the neointima in a porcine model of percutaneous transluminal coronary angioplasty (PTCA). J Appl Physiol (1985) 2009; 107:937-45. [PMID: 19556453 DOI: 10.1152/japplphysiol.91444.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exercise training (EX) following percutaneous transluminal coronary angiography (PTCA) reduces progression to restenosis and increases event-free survival rates. Our aim was to determine whether EX inhibits lesion development and/or alters the extracellular matrix (ECM) composition of the neointima (NI) in a porcine PTCA model. Miniature Yucatan swine were assigned to cage confinement (SED) or EX for 20 wk. After 16 wk, all animals underwent a PTCA procedure of the left anterior descending artery (LAD) and left circumflex artery (LCX), with subsequent placement of an externalized jugular catheter. Animals recovered for 2 days and then resumed the previous protocol of SED or EX. Twelve days following PTCA, all animals received an intravenous bromodeoxyuridine (BrdU) injection to label proliferating cells. At 28 days following PTCA, the animals were euthanized, the LAD and LCX excised, and underwent standard histological processing for total collagen, type I collagen, fibronectin, BrdU, and Verhoeff-van Gieson stain. Our results demonstrate that EX significantly decreased lesion size and NI proliferation (-48%) in the LAD (P < 0.05) but not the LCX. Furthermore, EX attenuated type I collagen expression only in LAD, whereas total collagen was increased (5.9%) and fibronectin was decreased (-7.9%) in the NI of both vessels (P < 0.05). In conclusion, EX following PTCA may increase event-free survival rates following PTCA by decreasing lesion size and altering ECM composition.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
234
|
Packard RRS, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol 2009; 31:5-22. [PMID: 19449008 PMCID: PMC2823132 DOI: 10.1007/s00281-009-0153-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/04/2009] [Indexed: 12/21/2022]
Abstract
Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the immune response that mediate the initiation, progression, and ultimate thrombotic complications of atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the atheroma, processes that occur in inflammatorily active, rupture-prone plaques. Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive protein as a biomarker of cardiovascular risk and the characterization of the anti-inflammatory and immunomodulatory actions of the statin class of drugs. An improved understanding of the pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for the development of future strategies directed toward better risk stratification of patients as well as the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets involved in innate and adaptive immunity and their contributions to atherogenesis.
Collapse
Affiliation(s)
- René R S Packard
- Leducq Center for Cardiovascular Research, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 7, Boston, MA 02115, USA
| | | | | |
Collapse
|
235
|
|
236
|
Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009; 58:537-52. [PMID: 19381780 DOI: 10.1007/s00011-009-0037-3] [Citation(s) in RCA: 608] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/09/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.
Collapse
|
237
|
Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83:131-9. [PMID: 19377067 DOI: 10.1093/cvr/cvp121] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS The inflammatory responses of monocytes/macrophages and the stimulation of lipid uptake into these cells by oxidized low density lipoprotein (oxLDL) are critical to the initiation and development of atherosclerosis. Increasing evidence has demonstrated that many microRNAs play important roles in the cell proliferation, apoptosis, and differentiation that accompany inflammatory responses. However, whether microRNAs are associated with monocyte/macrophage inflammatory responses or oxLDL stimulation is not yet known. The aim of the present study is to investigate microRNAs in monocytes/macrophages and their potential role in oxLDL-stimulation of lipid uptake and other atherosclerotic responses. METHODS AND RESULTS Microarrays were used to analyse the global expression of microRNAs in oxLDL-stimulated human primary peripheral blood monocytes. Expression profiles of the microRNAs were verified using TaqMan real-time PCR. Five microRNAs (microRNA-125a-5p, microRNA-9, microRNA-146a, microRNA-146b-5p, and microRNA-155) were aberrantly expressed after oxLDL treatment of human primary monocytes. Bioinformatics analysis suggested that microRNA-125a-5p is related to a protein similar to ORP9 (oxysterol binding protein-like 9) and this was confirmed by a luciferase reporter assay. MicroRNA-125a-5p was found to mediate lipid uptake and to decrease the secretion of some inflammatory cytokines (interleukin-2, interleukin-6, tumour necrosis factor-alpha, transforming growth factor-beta) in oxLDL-stimulated monocyte-derived macrophages. CONCLUSION MicroRNA-125a-5p may partly provide post-transcriptional regulation of the proinflammatory response, lipid uptake, and expression of ORP9 in oxLDL-stimulated monocyte/macrophages.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
238
|
Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Cytokine network and T cell immunity in atherosclerosis. Semin Immunopathol 2009; 31:23-33. [PMID: 19340429 DOI: 10.1007/s00281-009-0143-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/20/2009] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall where both innate and adaptive immune responses contribute to disease initiation and progression. Recent studies established that subtypes of T cells, regulatory T cells (Tregs), actively involved in the maintenance of immunological tolerance, inhibit the development and progression of atherosclerosis. Here, we review the current knowledge on the Treg response and the major cytokines involved in its modulation in the context of atherosclerosis.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- Paris Cardiovascular Research Center, INSERM and Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | | | | | | |
Collapse
|
239
|
Gargiulo S, Gamba P, Sottero B, Biasi F, Chiarpotto E, Serviddio G, Vendemiale G, Poli G, Leonarduzzi G. The core-aldehyde 9-oxononanoyl cholesterol increases the level of transforming growth factor beta1-specific receptors on promonocytic U937 cell membranes. Aging Cell 2009; 8:77-87. [PMID: 19302374 DOI: 10.1111/j.1474-9726.2009.00454.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among the broad variety of compounds generated via oxidative reactions in low-density lipoproteins (LDL) and subsequently found in the atherosclerotic plaque are aldehydes that are still esterified to the parent lipid, termed core aldehydes. The most represented cholesterol core aldehyde in LDL is 9-oxononanoyl cholesterol (9-ONC), an oxidation product of cholesteryl linoleate. 9-ONC, at a concentration detectable in biological material, markedly up-regulates mRNA expression and protein level of both the pro-fibrogenic and pro-apoptotic cytokine transforming growth factor beta1 (TGF-beta1) and the TGF-beta receptor type I (TbetaRI) in human U937 promonocytic cells. We also observed increased membrane presentation of TGF-beta receptor type II (TbetaRII). Experiments employing the TbetaRI inhibitor SB431542, or the TGFbeta antagonist DANFc chimera, have shown that the effect on TbetaRI is directly induced by 9-ONC, while TbetaRII up-regulation seems stimulated by its specific ligand, i.e. TGFbeta1, over-secreted meanwhile by treated cells. Increased levels of the cytokine and of its specific receptors in 9-ONC-treated cells clearly occurs through stimulation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), as demonstrated by ERK1/2 knockdown experiments using mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MEK1 and MEK2) siRNAs, or PD98059, a selective MEK1/2 inhibitor. 9-ONC might thus sustain further vascular remodeling due to atherosclerosis, not simply by stimulating synthesis of the pro-fibrogenic cytokine TGF-beta1 in vascular cells, but also and chiefly by enhancing the TGF-beta1 autocrine loop, because of the marked up-regulation of the cytokine's specific receptors TbetaRI and TbetaRII.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Rodríguez-Vita J, Sánchez-Galán E, Santamaría B, Sánchez-López E, Rodrigues-Díez R, Blanco-Colio LM, Egido J, Ortiz A, Ruiz-Ortega M. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation. PLoS One 2008; 3:e3959. [PMID: 19088845 PMCID: PMC2597201 DOI: 10.1371/journal.pone.0003959] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/14/2008] [Indexed: 01/01/2023] Open
Abstract
Background The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins) exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-β (TGF-β) in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-β/Smad pathway in atherosclerosis and vascular cells. Methodology In cultured vascular smooth muscle cells (VSMCs) statins enhanced Smad pathway activation caused by TGF-β. In addition, statins upregulated TGF-β receptor type II (TRII), and increased TGF-β synthesis and TGF-β/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-β induced apoptosis and increased TGF-β-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-β/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. Conclusions Statins enhance TGF-β/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-β/Smad pathway is essential for statins-dependent actions in VSMCs.
Collapse
MESH Headings
- Animals
- Anticholesteremic Agents/pharmacology
- Anticholesteremic Agents/therapeutic use
- Apolipoproteins E/genetics
- Apoptosis/drug effects
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atorvastatin
- Cells, Cultured
- Heptanoic Acids/pharmacology
- Heptanoic Acids/therapeutic use
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Mice
- Mice, Knockout
- Models, Biological
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Smad Proteins/metabolism
- Smad Proteins/physiology
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/physiology
- rho-Associated Kinases/physiology
- rhoA GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Juan Rodríguez-Vita
- Cellular Biology in Renal Diseases Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Eva Sánchez-Galán
- Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Beatriz Santamaría
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Elsa Sánchez-López
- Cellular Biology in Renal Diseases Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Cellular Biology in Renal Diseases Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Luís Miguel Blanco-Colio
- Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Alberto Ortiz
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
241
|
Furuichi K, Gao JL, Horuk R, Wada T, Kaneko S, Murphy PM. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8670-6. [PMID: 19050287 PMCID: PMC2633769 DOI: 10.4049/jimmunol.181.12.8670] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils and macrophages rapidly infiltrate the kidney after renal ischemia-reperfusion injury, however specific molecular recruitment mechanisms have not been fully delineated for these cell types. Here we provide genetic and pharmacologic evidence supporting a positive role for the chemokine receptor CCR1 in macrophage and neutrophil infiltration in a 7 day mouse model of renal ischemia-reperfusion injury. By day 7, injured kidneys from mice lacking CCR1 contained 35% fewer neutrophils and 45% fewer macrophages than injured kidneys from wild-type control mice. Pretreatment of wild-type mice with the specific CCR1 antagonist BX471 also suppressed neutrophil and macrophage infiltration in the model. Injured kidneys from mice lacking CCR1 also had reduced content of the CCR1 ligands CCL3 (MIP-1alpha) and CCL5 (RANTES) compared with injured kidneys from wild-type controls, suggesting a leukocyte source for these inflammatory chemokines and existence of a CCR1-dependent positive feedback loop for leukocyte infiltration in the model. Local leukocyte proliferation and apoptosis were detected after injury, but were not dependent on CCR1. Also, the extent of necrotic and fibrotic damage and decline in renal function in injured kidneys was similar in wild-type and CCR1-deficient mice. Thus, CCR1 appears to regulate trafficking of macrophages and neutrophils to kidney in a mouse model of renal ischemia-reperfusion injury, however this activity does not appear to affect tissue injury.
Collapse
MESH Headings
- Animals
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Kidney Tubular Necrosis, Acute/genetics
- Kidney Tubular Necrosis, Acute/immunology
- Kidney Tubular Necrosis, Acute/pathology
- Kidney Tubular Necrosis, Acute/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, CCR1/deficiency
- Receptors, CCR1/genetics
- Receptors, CCR1/physiology
- Reperfusion Injury/genetics
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
Collapse
Affiliation(s)
- Kengo Furuichi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Division of Blood Purification, Disease Control and Homeostasis, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard Horuk
- Dept of Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Takashi Wada
- Division of Blood Purification, Disease Control and Homeostasis, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Division of Blood Purification, Disease Control and Homeostasis, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
242
|
Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res 2008; 50 Suppl:S364-9. [PMID: 19050311 DOI: 10.1194/jlr.r800092-jlr200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is now solid evidence that T cell adaptive immunity is involved in atherogenesis. While initial studies have focused on the pathogenic arm of the immune response, more recent work clearly suggests an important role for several subsets of regulatory T cells in the protection against lesion development. Here, we review the current knowledge on the role of both pathogenic and regulatory adaptive T cell immunity in atherosclerosis, generated mainly from the study of mouse models of the disease.
Collapse
Affiliation(s)
- Ziad Mallat
- Paris Cardiovascular Research Center, INSERM and Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | | | | | | |
Collapse
|
243
|
Wilson PG, Thompson JC, Webb NR, de Beer FC, King VL, Tannock LR. Serum amyloid A, but not C-reactive protein, stimulates vascular proteoglycan synthesis in a pro-atherogenic manner. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1902-10. [PMID: 18974302 PMCID: PMC2626400 DOI: 10.2353/ajpath.2008.080201] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
Abstract
Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P < 0.0001), increased glycosaminoglycan chain length, and increased low-density lipoprotein (LDL) binding affinity (K(d), 29 microg/ml LDL versus 90 microg/ml LDL for SAA versus control proteoglycans; P < 0.005). Furthermore, SAA up-regulated biglycan via the induction of endogenous transforming growth factor (TGF)-beta. To determine whether SAA stimulated proteoglycan synthesis in vivo, ApoE(-/-) mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-beta concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-beta and may play a causal role in the development of atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/metabolism
- Biglycan
- C-Reactive Protein/metabolism
- Cells, Cultured
- Extracellular Matrix Proteins/metabolism
- Glycosaminoglycans/chemistry
- Glycosaminoglycans/metabolism
- Haplorhini
- Humans
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/chemistry
- Proteoglycans/metabolism
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/metabolism
- Serum Amyloid A Protein/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Evidence from many human and rodent studies has established that T lymphocytes enhance inflammation in atherosclerotic plaques and contribute to lesion progression and remodeling. Recent work also indicates that regulatory T cells are important in limiting proatherogenic T-cell responses. Given the important role of T cells in atherosclerosis, there is a need to fully understand how proatherogenic T cells are activated and regulated. Antigen-dependent activation of naïve T cells, leading to clonal expansion and effector T-cell differentiation, and effector and memory T cells, is enhanced by signals provided by costimulatory molecules expressed by antigen presenting cells, which bind to receptors on the T cells. In addition, T-cell responses to antigen are negatively regulated by coinhibitory molecules expressed by antigen-presenting cells, which bind to receptors on T cells. Two major families of costimulatory molecules include the B7 and the tumor necrosis factor (TNF) families. These molecules bind to receptors on T cells belonging to the CD28 or TNF receptor families, respectively. The best-defined coinhibitors and their receptors belong to the B7 and CD28 families. Recent work has begun to define how these T-cell costimulatory and coinhibitory pathways influence atherosclerosis, largely in mouse models of the disease. Profound effects are attributable to molecules in both the B7/CD28 (B7-1/2, ICOS, and PDL-1/2) and the TNF/TNF receptor (CD40, OX40, and CD137) families. One emerging theme is that both pathogenic effector T-cell responses and regulatory T cells are influenced by overlapping sets of costimulators and coinhibitors. These complexities must be considered as immunotherapeutic approaches for atherosclerotic disease are developed.
Collapse
Affiliation(s)
- Israel Gotsman
- Heart Institute, Hadassah University Hospital, Jerusalem
| | - Arlene H. Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Andrew H. Lichtman
- Immunology and Vascular Research Divisions, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
245
|
Lutgens E, Tjwa M, Garcia de Frutos P, Wijnands E, Beckers L, Dahlbäck B, Daemen MJAP, Carmeliet P, Moons L. Genetic loss of Gas6 induces plaque stability in experimental atherosclerosis. J Pathol 2008; 216:55-63. [PMID: 18570189 DOI: 10.1002/path.2381] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growth arrest-specific gene 6 (Gas6) plays a role in pro-atherogenic processes such as endothelial and leukocyte activation, smooth muscle cell migration and thrombosis, but its role in atherosclerosis remains uninvestigated. Here, we report that Gas6 is expressed in all stages of human and mouse atherosclerosis, in plaque endothelial cells, smooth muscle cells and macrophages. Gas6 expression is most abundant in lesions containing high amounts of macrophages, ie thin fibrous cap atheroma and ruptured plaque. Genetic loss of Gas6 does not affect the number and size of initial and advanced plaques in ApoE(-/-) mice, but alters its plaque composition. Compared to Gas6(+/+): ApoE(-/-) mice, initial and advanced plaques of Gas6(-/-): ApoE(-/-) mice contained more smooth muscle cells and more collagen and developed smaller lipid cores, while the expression of TGFbeta was increased. In addition, fewer macrophages were found in advanced plaques of Gas6(-/-): ApoE(-/-) mice. Hence, loss of Gas6 promotes the formation of more stable atherosclerotic lesions by increasing plaque fibrosis and by attenuating plaque inflammation. These findings identify a role for Gas6 in plaque composition and stability.
Collapse
Affiliation(s)
- E Lutgens
- Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Hansson GK. Atherosclerosis--an immune disease: The Anitschkov Lecture 2007. Atherosclerosis 2008; 202:2-10. [PMID: 18951547 DOI: 10.1016/j.atherosclerosis.2008.08.039] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/13/2008] [Accepted: 08/21/2008] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is an inflammatory disease. This article reviews the emergence of this concept from studies of patients and their lesions, experimental animal models, and epidemiological cohorts. Immunohistochemical studies identified immune cells and mediators and provided evidence for inflammatory activation in the atherosclerotic lesion. In parallel, cell culture studies demonstrated the capacity of vascular cells to interact with immune cells. Subsequent studies of clinical and epidemiological materials have identified inflammatory markers and immunoregulatory genes as contributors of risk for myocardial infarction and stroke. Finally, experiments using gene-targeted mice have provided mechanistic understanding of the disease process. It is now thought that the atherosclerotic process is initiated when low-density lipoproteins accumulate in the intima, activate the endothelium, and promote recruitment of monocytes and T cells. Monocytes differentiate into macrophages, internalize modified lipoproteins, and end up as foam cells. T cells in lesions recognize local antigens and mount T helper-1 responses that contribute to local inflammation and plaque growth. This atherogenic pathway is counterbalanced by anti-inflammatory signals provided by regulatory immunity. Intensified inflammatory activation may lead to local proteolysis, plaque rupture, thrombus formation, ischemia and infarction. Novel therapeutic opportunities may emerge from understanding the role of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Göran K Hansson
- Center for Molecular Medicine and Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
247
|
Rodríguez C, Martínez-González J, Raposo B, Alcudia JF, Guadall A, Badimon L. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 2008; 79:7-13. [PMID: 18469024 DOI: 10.1093/cvr/cvn102] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysyl oxidase (LOX) plays a crucial role in the maintenance of extracellular matrix stability and could participate in vascular remodelling associated with cardiovascular diseases. Evidence from in vitro and in vivo studies shows that LOX downregulation is associated with the endothelial dysfunction characteristic of earlier stages of the atherosclerotic process. Conversely, upregulation of this enzyme in vascular cells could induce neointimal thickening in atherosclerosis and restenosis. In fact, LOX is chemotactic for vascular smooth muscle cells and monocytes, is modulated by proliferative stimulus in these cells, and could control other cellular processes such as gene expression and cell transformation. Furthermore, it is conceivable that LOX downregulation could underlie plaque instability and contribute to the destructive remodelling that takes place during aneurysm development. Overall, LOX could play a key role in vascular homeostasis and, hence, it emerges as a new player in cardiovascular diseases. This review addresses the experimental evidence related to the role of LOX in vascular disorders and the potential benefits of controlling its expression and function.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Antoni Ma Claret 167, 08025 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
248
|
Belmadani S, Zerfaoui M, Boulares HA, Palen DI, Matrougui K. Microvessel vascular smooth muscle cells contribute to collagen type I deposition through ERK1/2 MAP kinase, alphavbeta3-integrin, and TGF-beta1 in response to ANG II and high glucose. Am J Physiol Heart Circ Physiol 2008; 295:H69-76. [PMID: 18456735 DOI: 10.1152/ajpheart.00341.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study determines that vascular smooth muscle cell (VSMC) signaling through extracellular signal-regulated kinase (ERK) 1/2-mitogen-activated protein (MAP) kinase, alphavbeta(3)-integrin, and transforming growth factor (TGF)-beta1 dictates collagen type I network induction in mesenteric resistance arteries (MRA) from type 1 diabetic (streptozotocin) or hypertensive (HT; ANG II) mice. Isolated MRA were subjected to a pressure-passive-diameter relationship. To delineate cell types and mechanisms, cultured VSMC were prepared from MRA and stimulated with ANG II (100 nM) and high glucose (HG, 22 mM). Pressure-passive-diameter relationship reduction was associated with increased collagen type I deposition in MRA from HT and diabetic mice compared with control. Treatment of HT and diabetic mice with neutralizing TGF-beta1 antibody reduced MRA stiffness and collagen type I deposition. Cultured VSMC stimulated with HG or ANG II for 5 min increased ERK1/2-MAP kinase phosphorylation, whereas a 48-h stimulation induced latent TGF-beta1, alphavbeta(3)-integrin, and collagen type 1 release in the conditioned media. TGF-beta1 bioactivity and Smad2 phosphorylation were alphavbeta(3)-integrin-dependent, since beta(3)-integrin antibody and alphavbeta(3)-integrin inhibitor (SB-223245, 10 microM) significantly prevented TGF-beta1 bioactivity and Smad2 phosphorylation. Pretreatment of VSMC with ERK1/2-MAP kinase inhibitor (U-0126, 1 microM) reduced alphavbeta(3)-integrin, TGF-beta1, and collagen type 1 content. Additionally, alphavbeta(3)-integrin antibody, SB-223245, TGF-beta1-small-intefering RNA (siRNA), and Smad2-siRNA (40 nM) prevented collagen type I network formation in response to ANG II and HG. Together, these data provide evidence that resistance artery fibrosis in type 1 diabetes and hypertension is a consequence of abnormal collagen type I release by VSMC and involves ERK1/2, alphavbeta(3)-integrin, and TGF-beta1 signaling. This pathway could be a potential target for overcoming small artery complications in diabetes and hypertension.
Collapse
Affiliation(s)
- Souad Belmadani
- Dept. of Physiology, Hypertension & Renal Center of Excellence, Tulane Univ., School of Medicine, Health Sciences Center, New Orleans, Louisana, USA
| | | | | | | | | |
Collapse
|
249
|
Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:812-9. [PMID: 18276911 PMCID: PMC2734458 DOI: 10.1161/atvbaha.107.159327] [Citation(s) in RCA: 616] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The initiation of atherosclerosis results from complex interactions of circulating factors and various cell types in the vessel wall, including endothelial cells, lymphocytes, monocytes, and smooth muscle cells (SMCs). Recent reviews highlight the role of activated endothelium and inflammatory cell recruitment in the initiation of and progression of early atherosclerosis. Yet, human autopsy studies, in vitro mechanistic studies, and in vivo correlative data suggest an important role for SMCs in the initiation of atherosclerosis. SMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli can modify the type of matrix proteins produced. In turn, the type of matrix present can affect the lipid content of the developing plaque and the proliferative index of the cells that are adherent to it. SMCs are also capable of functions typically attributed to other cell types. Like macrophages, SMCs can express a variety of receptors for lipid uptake and can form foam-like cells, thereby participating in the early accumulation of plaque lipid. Like endothelial cells, SMCs can also express a variety of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which monocytes and lymphocytes can adhere and migrate into the vessel wall. In addition, through these adhesion molecules, SMCs can also stabilize these cells against apoptosis, thus contributing to the early cellularity of the lesion. Like many cells within the developing plaque, SMCs also produce many cytokines such as PDGF, transforming growth factor-beta, IFNgamma, and MCP-1, all of which contribute to the initiation and propagation of the inflammatory response to lipid. Recent advances in SMC-specific gene modulation have enhanced our ability to determine the role of SMCs in early atherogenesis.
Collapse
Affiliation(s)
- Amanda C Doran
- Cardiovascular Division/Department of Medicine, the Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
250
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall where both innate and adaptive immune responses contribute to disease initiation and progression. Recent studies from several groups suggest that subtypes of T cells, called regulatory T cells, previously shown to maintain immunological tolerance, inhibit the development and progression of atherosclerosis. Here, we review the current knowledge on the regulatory T-cell response and the major cytokines involved in its modulation in the context of atherosclerosis.
Collapse
Affiliation(s)
- S Taleb
- Centre de Recherche Cardiovasculaire Lariboisière, Inserm U689, Paris, France
| | | | | |
Collapse
|