201
|
The Role of Microvesicles Derived from Mesenchymal Stem Cells in Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:985814. [PMID: 26064975 PMCID: PMC4443645 DOI: 10.1155/2015/985814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/23/2014] [Indexed: 12/16/2022]
Abstract
Microvesicles (MVs) are membrane vesicles that are released by many types of cells and have recently been considered important mediators of cell-to-cell communication. MVs serve as a vehicle to transfer proteins and messenger RNA and microRNA (miRNA) to distant cells, which alters the gene expression, proliferation, and differentiation of the recipient cells. Several studies have demonstrated that mesenchymal stem cells (MSCs) have the capacity to reverse acute and chronic lung injury in different experimental models through paracrine mechanisms. This paracrine action may be partially accounted for by MVs that are derived from MSCs. MSC-derived MVs may confer a stem cell-like phenotype to injured cells with the consequent activation of self-regenerative programmers. In this review, we summarize the characteristics and biological activities of MSC-derived MVs, and we describe their potential in novel therapeutic approaches in regenerative medicine to repair damaged tissues. Additionally, we provide an overview of studies that have assessed the role of MSC-derived MVs in lung diseases, including the mechanisms that may account for their therapeutic potential. Finally, we discuss the clinical use of MSC-derived MVs with several suggestions for enhancing their therapeutic efficiency.
Collapse
|
202
|
Smoke inhalation injury repaired by a bone marrow-derived mesenchymal stem cell paracrine mechanism: Angiogenesis involving the Notch signaling pathway. J Trauma Acute Care Surg 2015; 78:565-72. [PMID: 25710428 DOI: 10.1097/ta.0000000000000547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Smoke inhalation injury is an acute lung injury induced by smoke exposure characterized by vascular endothelial injury and increased permeability. Cell therapy is an attractive new therapeutic approach, although its underlying mechanism and signaling pathway remain poorly understood. We investigated the effect of systemic transplantation of preconditioned bone marrow-derived mesenchymal stem cells (BMSCs) on angiogenesis in rat model of smoke inhalation injury and explored the underlying mechanism and possible signaling pathway. METHODS After the establishment of a smoke inhalation injury rat model, the animals were further randomized into subgroups that received either a tail vein injection of 2 × 10(6) preconditioned or nonpreconditioned BMSCs in 5-mL phosphate-buffered saline to explore the characteristics of preconditioned BMSCs, pulmonary microvessel quantities in smoke inhalation injury, and its Notch1 expression. RESULTS BMSCs preconditioned by 60Co γ-ray radiation at an appropriate dose were inhibited differentiation potential in vitro without significantly affecting the paracrine activity, the ability of cell proliferation, viability, and homing. Systemic preconditioned BMSC transplantation significantly increased the quantities of microvessels in rat with smoke inhalation injury, improved the lung wet-dry weight ratio, and alleviated lung injury simply through paracrine activity. Immunofluorescence staining and Western blot analysis confirmed that the expression level of Notch microvessel and Notch1 protein increased significantly after systemic transplantation. CONCLUSION Our findings indicate that systemic transplantation of preconditioned BMSCs promotes angiogenesis through paracrine activity after smoke inhalation injury and that the Notch signaling pathway is involved in the angiogenesis process.
Collapse
|
203
|
Ahn SY, Chang YS, Park WS. Stem cell therapy for bronchopulmonary dysplasia: bench to bedside translation. J Korean Med Sci 2015; 30:509-13. [PMID: 25931779 PMCID: PMC4414632 DOI: 10.3346/jkms.2015.30.5.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease affecting very premature infants, is a major cause of mortality and long-term morbidities despite of current progress in neonatal intensive care medicine. Though there has not been any effective treatment or preventive strategy for BPD, recent stem cell research seems to support the assumption that stem cell therapy could be a promising and novel therapeutic modality for attenuating BPD severity. This review summarizes the recent advances in stem cell research for treating BPD. In particular, we focused on the preclinical data about stem cell transplantation to improve the lung injury using animal models of neonatal BPD. These translational research provided the data related with the safety issue, optimal type of stem cells, optimal timing, route, and dose of cell transplantation, and potency marker of cells as a therapeutic agent. Those are essential subjects for the approval and clinical translation. In addition, the successful phase I clinical trial results of stem cell therapies for BPD are also discussed.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
204
|
Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, Zhang S, Xu L, Chen Y. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep 2015; 12:2089-97. [PMID: 25901902 DOI: 10.3892/mmr.2015.3660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
In recent years, bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to exert extensive therapeutic effects on acute liver injury; however, the underlying mechanisms of these effects have remained to be elucidated. The present study focused on the potential anti-apoptotic and pro-regenerative effects of BMSCs in D-galactosamine (D-Gal) and lipopolysaccharide (LPS)-induced acute liver injury in rats. An experimental rat acute liver injury model was established by intraperitoneal injection of D-Gal (400 mg/kg) and LPS (80 μg/kg). BMSCs and an identical volume of saline were administered via the caudal vein 2 h after the D-Gal and LPS challenge. Subsequently, the serum samples were collected to detect the levels of alanine aminotransferase and aspartate aminotransferase. Hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated nick-end labeling assay and immunohistochemical staining were performed to determine apoptosis, regeneration and histological changes of liver sections. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the protein and mRNA expression levels of fibrinogen-like-protein 1 (FGL1), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), STAT3 and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) in liver tissue samples. The results indicated that intravenous transplantation of BMSCs significantly decreased the levels of alanine aminotransferase and aspartate aminotransferase, and reduced hepatocellular necrosis and inflammatory cell infiltration. Additionally, a terminal deoxynucleotidyl transferase-mediated nick-end labeling assay and immunohistochemical staining revealed that BMSC treatment reduced hepatocyte apoptosis and enhanced liver regeneration. Furthermore, Bcl-2 expression was increased, whilst the protein expression of Bax was reduced. The expression of FGL1 and p-STAT3 were elevated concurrently with the improvement of liver function. These results demonstrated that BMSCs may provide a promising potential agent for the prevention of acute liver injury via inhibition of hepatocyte apoptosis and acceleration of liver regeneration. The mechanism may be, a least in part, a consequence of the upregulation of FGL1 expression and the induction of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Zhuolin Zou
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yijing Cai
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Si Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liyuan Liu
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhonghai Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Sainan Zhang
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lanman Xu
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yongping Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
205
|
Ahn SY, Chang YS, Sung DK, Yoo HS, Sung SI, Choi SJ, Park WS. Cell type-dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury. Cytotherapy 2015; 17:1025-35. [PMID: 25863963 DOI: 10.1016/j.jcyt.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. METHODS Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. RESULTS Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. CONCLUSIONS HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
206
|
Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep 2015; 5:8733. [PMID: 25736434 PMCID: PMC4348625 DOI: 10.1038/srep08733] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/22/2015] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have been identified as one possible strategy for the treatment of chronic obstructive pulmonary disease (COPD). Our previous studies have demonstrated that MSC administration has therapeutic potential in airway inflammation and emphysema via a paracrine mechanism. We proposed that MSCs reverse the inflammatory process and restore impaired lung function through their interaction with macrophages. In our study, the rats were exposed to cigarette smoke (CS), followed by the administration of MSCs into the lungs for 5 weeks. Here we show that MSC administration alleviated airway inflammation and emphysema through the down-regulation of cyclooxygenase-2 (COX-2) and COX-2-mediated prostaglandin E2 (PGE2) production, possibly through the effect on alveolar macrophages. In vitro co-culture experiments provided evidence that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-associated phosphorylation of p38 MAPK and ERK. Our data suggest that MSCs may relieve airway inflammation and emphysema in CS-exposed rat models, through the inhibition of COX-2/PGE2 in alveolar macrophages, mediated in part by the p38 MAPK and ERK pathways. This study provides a compelling mechanism for MSC treatment in COPD, in addition to its paracrine mechanism.
Collapse
Affiliation(s)
- Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| | - Lin Song
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| | - Xiao-Ming Li
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| | - Di Wang
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| | - Xue-Jun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| | - Wei-Guo Xu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai 200092, China
| |
Collapse
|
207
|
Zhao YD, Huang X, Yi F, Dai Z, Qian Z, Tiruppathi C, Tran K, Zhao YY. Endothelial FoxM1 mediates bone marrow progenitor cell-induced vascular repair and resolution of inflammation following inflammatory lung injury. Stem Cells 2015; 32:1855-64. [PMID: 24578354 DOI: 10.1002/stem.1690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Using the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in wild type (WT) but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury.
Collapse
Affiliation(s)
- Yidan D Zhao
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA; Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
Preterm birth affects approximately 11% of all newborns worldwide and is a major risk factor for infant mortality and morbidity. A common complication of preterm birth is the chronic lung disease of prematurity called bronchopulmonary dysplasia (BPD). Due to the lack of a specific treatment for BPD, preterm infants surviving with BPD face a lifelong risk of poor lung health. The therapeutic potential of stem cells in regenerative medicine is being harnessed for many diseases, including BPD. Compelling preclinical data using stem cells to prevent/repair lung damage in animal models of experimental BPD has built the basis for its translation into the clinic in preterm infants. This review highlights the exciting translation from bench to bedside that will hopefully lead in the near future to improved pulmonary outcomes in preterm infants.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics, University of Alberta, Edmonton, Alta., Canada
| | | |
Collapse
|
209
|
Antunes MA, Laffey JG, Pelosi P, Rocco PRM. Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem 2014; 115:1023-32. [PMID: 24515922 DOI: 10.1002/jcb.24783] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/06/2014] [Indexed: 01/12/2023]
Abstract
All adult tissues, including the lung, have some capacity to self-repair or regenerate through the replication and differentiation of stem cells resident within these organs. While lung resident stem cells are an obvious candidate cell therapy for lung diseases, limitations exist regarding our knowledge of the biology of these cells. In contrast, there is considerable interest in the therapeutic potential of exogenous cells, particularly mesenchymal stem/stromal cells (MSCs), for lung diseases. Bone marrow derived-MSCs are the most studied cell therapy for these diseases. Preclinical studies demonstrate promising results using MSCs for diverse lung disorders, including emphysema, bronchopulmonary dysplasia, fibrosis, and acute respiratory distress syndrome. This mini-review will summarize ongoing clinical trials using MSCs in lung diseases, critically examine the data supporting their use for this purpose, and discuss the next steps in the translational pathway for MSC therapy of lung diseases.
Collapse
Affiliation(s)
- Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
210
|
Shen Q, Chen B, Xiao Z, Zhao L, Xu X, Wan X, Jin M, Dai J, Dai H. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep 2014; 11:2831-7. [PMID: 25514921 DOI: 10.3892/mmr.2014.3092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
Paracrine factors are currently considered to be the major mechanism through which mesenchymal stem cells (MSCs) exert their actions. The aim of this study was to investigate the protective effects of conditioned medium (CM) from bone marrow mesenchymal stem cells (MSC) on bleomycin (BLM)‑induced lung injury and fibrosis, both in vitro and in vivo. A549 human non‑small cell lung cancer epithelial cells were cultured in serum‑free medium, or MSC‑CM, both with or without BLM. The protective effects of MSC‑CM was determined by MTT assay to assess cell viability and Annexin V‑PE to assess apoptosis. Rats were intratracheally injected with MSC‑CM, saline, or conditioned medium from fibroblasts on day 0 and day 3 after intratracheal administration of BLM, and were sacrificed on day 28. Lung injury and fibrosis were assessed by histological assessment, Ashcroft score, and hydroxyproline assay; lung cell apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In comparison to the control group (0.17±0.01), 8 and 16% MSC‑CM had a significant stimulatory effect on A549 cellular proliferation (0.24±0.03 and 0.24±0.04, respectively, P<0.01). A549 cells cultured with MSC‑CM were protected from BLM‑induced apoptosis, 23.43±3.76% vs. 38.06±4.32%; (P<0.05). In the BLM‑challenged rats, MSC‑CM was shown to protect against lung fibrosis in terms of lung inflammation, fibrotic scores, collagen deposition, and cell apoptosis. This data suggests that MSCs are capable of protecting against lung injury and fibrosis both in vitro and in vivo through a paracrine anti‑inflammatory mechanism. MSC‑CM may provide a novel approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinqin Shen
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bing Chen
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lifen Zhao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuan Wan
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mulan Jin
- Department of Pathology Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jianwu Dai
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huaping Dai
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
211
|
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 2014; 35:797-809. [PMID: 25453426 PMCID: PMC4254691 DOI: 10.1016/j.ccm.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative medicine has entered a rapid phase of discovery, and much has been learned in recent years about the lung's response to injury. This article first summarizes the cellular and molecular mechanisms that damage the alveolar-capillary barrier, producing acute respiratory distress syndrome (ARDS). The latest understanding of endogenous repair processes is discussed, highlighting the diversity of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, the past, present, and future of exogenous cell-based therapies for ARDS is reviewed.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
212
|
Jeanty C, Kunisaki SM, MacKenzie TC. Novel non-surgical prenatal approaches to treating congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19:349-56. [PMID: 25456754 DOI: 10.1016/j.siny.2014.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review focuses on the emerging field of non-surgical in-utero therapies in the management of fetal pulmonary hypoplasia and pulmonary hypertension associated with congenital diaphragmatic hernia (CDH). These experimental approaches include pharmacologic as well as stem-cell-based strategies. Current barriers of non-surgical therapies toward clinical translation are emphasized. As the severity of CDH will likely influence the efficacy of any in-utero therapy, the current status of prenatal imaging and the role of novel biomarkers, especially those related to fetal inflammation, are also reviewed.
Collapse
Affiliation(s)
- Cerine Jeanty
- Department of Surgery, University of California San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Shaun M Kunisaki
- Department of Surgery, C.S. Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, CA, USA.
| |
Collapse
|
213
|
Rossor T, Greenough A. Advances in paediatric pulmonary vascular disease associated with bronchopulmonary dysplasia. Expert Rev Respir Med 2014; 9:35-43. [PMID: 25426585 DOI: 10.1586/17476348.2015.986470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary hypertension (PH) is a common finding in infants with bronchopulmonary dysplasia (BPD). The aim of this review is to describe recent advances in the diagnosis and treatment of PH and discuss whether they will benefit infants and children with BPD related PH. Echocardiography remains the mainstay of diagnosis but has limitations, further developments in diagnostic techniques and identification of biomarkers are required. There are many potential therapies for PH associated with BPD. Inhaled nitric oxide has been shown to improve short term outcomes only. Sidenafil in resource limited settings was shown in three randomized trials to significantly reduce mortality. The efficacy of other therapies including prostacyclin, PDE3 inhibitors and endothelin receptor blockers has only been reported in case reports or case series. Randomized controlled trials with long term follow up are required to appropriately assess the efficacy of therapies aimed at improving the outcome of children with PH.
Collapse
Affiliation(s)
- Thomas Rossor
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, England, UK
| | | |
Collapse
|
214
|
Liu L, Mao Q, Chu S, Mounayar M, Abdi R, Fodor W, Padbury JF, De Paepe ME. Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3344-58. [PMID: 25455688 DOI: 10.1016/j.ajpath.2014.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/19/2022]
Abstract
Clinical trials investigating mesenchymal stromal cell (MSC) therapy for bronchopulmonary dysplasia have been initiated; however, the optimal delivery route and functional effects of MSC therapy in newborns remain incompletely established. We studied the morphologic and functional effects of intranasal versus i.p. MSC administration in a rodent model of neonatal lung injury. Cultured human cord tissue MSCs (0.1, 0.5, or 1 × 10(6) cell per pup) were given intranasally or i.p. to newborn severe combined immunodeficiency-beige mice exposed to 90% O2 from birth; sham controls received an equal volume of phosphate-buffered saline. Lung mechanics, engraftment, lung growth, and alveolarization were evaluated 8 weeks after transplantation. High-dose i.p. MSC administration to newborn mice exposed to 90% O2 resulted in the restoration of normal lung compliance, elastance, and pressure-volume loops (tissue recoil). Histologically, high-dose i.p. MSC administration was associated with alveolar septal widening, suggestive of interstitial matrix modification. Intranasal MSC or lower-dose i.p. administration had no significant effects on lung function or alveolar remodeling. Pulmonary engraftment was rare in all the groups. These findings suggest that high-dose systemic administration of human cultured MSCs can restore normal compliance in neonatally injured lungs, possibly by paracrine modulation of the interstitial matrix. Intranasal delivery had no obvious pulmonary effects.
Collapse
Affiliation(s)
- Liansheng Liu
- Department of Pathology, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Quanfu Mao
- Department of Pathology, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sharon Chu
- Department of Pathology, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Marwan Mounayar
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - James F Padbury
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, Rhode Island; Department of Pediatrics, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
215
|
Abman SH, Conway SJ. Developmental determinants and changing patterns of respiratory outcomes after preterm birth. ACTA ACUST UNITED AC 2014; 100:127-33. [PMID: 24659395 DOI: 10.1002/bdra.23242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Steven H Abman
- Pediatric Heart Lung Center, Pediatric Pulmonary Medicine, University of Colorado Anschutz Medical Center and Children's Hospital Colorado, Aurora, Colorado
| | | |
Collapse
|
216
|
Luan Y, Ding W, Ju ZY, Zhang ZH, Zhang X, Kong F. Bone marrow-derived mesenchymal stem cells protect against lung injury in a mouse model of bronchopulmonary dysplasia. Mol Med Rep 2014; 11:1945-50. [PMID: 25406024 DOI: 10.3892/mmr.2014.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of bone marrow‑derived mesenchymal stem cells (BMSCs) in the treatment of lung injury in a mouse model of bronchopulmonary dysplasia (BPD) and examine the underlying mechanisms. A mouse model of BPD was created using continuous exposure to high oxygen levels for 14 days. BMSCs were isolated, cultured and then labeled with green fluorescent protein. Cells (1x106) were subsequently injected intravenously 1 h prior to high oxygen treatment. Animals were randomly divided into three groups (n=5 in each): Control group, BPD model group and BMSC injection group. At two weeks post‑treatment, the expression of transforming growth factor‑β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF) was detected using immunohistochemical staining and immunofluorescence. Compared with the BPD model group, the body weight, airway structure and levels of TGF‑β1 and VEGF were significantly improved in the BMSC‑treated group. Immunofluorescence observations indicated that BMSCs were able to differentiate into cells expressing vWF and VEGF, which are markers of vascular tissues. The present study demonstrated that intravenous injection of BMSCs significantly improved lung damage in a neonatal mouse model of BPD at 14 days following hyperoxia‑induced injury. This provides novel information which may be used to guide further investigation into the use of stem cells in BPD.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Wei Ding
- Department of Radiology, Rizhao City People's Hospital, Rizhao, Shandong 276807, P.R. China
| | - Zhi-Ye Ju
- Department of Radiology, Rizhao City People's Hospital, Rizhao, Shandong 276807, P.R. China
| | - Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xue Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
217
|
Collins JJP, Thébaud B. Lung mesenchymal stromal cells in development and disease: to serve and protect? Antioxid Redox Signal 2014; 21:1849-62. [PMID: 24350665 DOI: 10.1089/ars.2013.5781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Bronchopulmonary dysplasia (BPD) is a disease of the developing lung that afflicts extreme preterm infants in the neonatal intensive care unit. Follow-up studies into adulthood show that BPD is not merely a problem of the neonatal period, as it also may predispose to early-onset emphysema and poor lung function in later life. RECENT ADVANCES The increasing promise of bone marrow- or umbilical cord-derived mesenchymal stromal cells (MSCs) to repair neonatal and adult lung diseases may for the first time offer the chance to make substantial strides in improving the outcome of extreme premature infants at risk of developing BPD. As more knowledge has been obtained on MSCs over the past decades, it has become clear that each organ has its own reservoir of endogenous MSCs, including the lung. CRITICAL ISSUES We have only barely scratched the surface on what resident lung MSCs exactly are and what their role and function in lung development may be. Moreover, what happens to these putative repair cells in BPD when alveolar development goes awry and why do their counterparts from the bone marrow and umbilical cord succeed in restoring normal alveolar development when they themselves do not? FUTURE DIRECTIONS Much work remains to be carried out to validate lung MSCs, but with the high potential of MSC-based treatment for BPD and other lung diseases, a thorough understanding of the endogenous lung MSC will be pivotal to get to the bottom of these diseases.
Collapse
Affiliation(s)
- Jennifer J P Collins
- 1 Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, Canada
| | | |
Collapse
|
218
|
Sdrimas K, Kourembanas S. MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal 2014; 21:1905-15. [PMID: 24382303 PMCID: PMC4202925 DOI: 10.1089/ars.2013.5784] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Bronchopulmonary dysplasia (BPD), also known as chronic lung disease of infancy, is a major complication of preterm birth that, despite improvements in neonatal respiratory support and perinatal care, remains an important cause of morbidity and mortality, often with severe adverse neurodevelopmental sequelae. Even with major advances in our understanding of the pathogenesis of this disease, BPD remains essentially without adequate treatment. RECENT ADVANCES Cell-based therapies arose as a promising treatment for acute and chronic lung injury in many experimental models of disease. Currently, more than 3000 human clinical trials employing cell therapy for the treatment of diverse diseases, including cardiac, neurologic, immune, and respiratory conditions, are ongoing or completed. Among the treatments, mesenchymal stem cells (MSCs) are the most studied and have been extensively tested in experimental models of BPD, pulmonary hypertension, pulmonary fibrosis, and acute lung injury. CRITICAL ISSUES Despite the promising potential, MSC therapy for human lung disease still remains at an experimental stage and optimal transplantation conditions need to be determined. Although the mechanism of MSC action can be manifold, accumulating evidence suggests a predominant paracrine, immunomodulatory, and cytoprotective effect. FUTURE DIRECTIONS The current review summarizes the effect of MSC treatment in models of lung injury, including BPD, and focuses on the MSC secretome and, specifically, MSC-derived microvesicles as potential key mediators of therapeutic action that can be the focus of future therapies.
Collapse
Affiliation(s)
- Konstantinos Sdrimas
- 1 Division of Newborn Medicine, Boston Children's Hospital , Boston, Massachusetts
| | | |
Collapse
|
219
|
Li Y, Gu C, Xu W, Yan J, Xia Y, Ma Y, Chen C, He X, Tao H. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res 2014; 15:120. [PMID: 25319435 PMCID: PMC4201761 DOI: 10.1186/s12931-014-0120-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and regenerate the lost alveoli. Type II alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair, and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis. Methods We analyzed the phenotypic characteristics, differentiation potential, and karyotype of rAFMSCs, which were isolated from pregnant Sprague–Dawley rats. Moreover, we examined the lung morphology and the expression levels of SPA and SPC in rats with emphysema after cigarette-smoke exposure and intratracheal lipopolysaccharide instillation and rAFMSC transplantation. The ability of rAFMSCs to differentiate was measured, and the apoptosis of AECII was evaluated. Results In rAFMSCs, the surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 were expressed, but CD14, CD19, CD34, and CD45 were not detected; rAFMSCs also strongly expressed the mRNA of octamer-binding transcription factor 4, and the cells could be induced to differentiate into adipocytes and osteocytes. Furthermore, rAFMSC treatment up-regulated the levels of SPA, SPC, and thyroid transcription factor 1 and inhibited AECII apoptosis, and rAFMSCs appeared to be capable of differentiating into AECII-like cells. Lung injury caused by emphysema was alleviated after rAFMSC treatment. Conclusions rAFMSCs might differentiate into AECII-like cells or induce local regeneration of the lung alveolar epithelium in vivo after transplantation and thus could be used in COPD treatment and lung regenerative therapy.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, No, 158, Shangtang Road, Hangzhou 310014, Zhejiang, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
O'Reilly M, Thébaud B. Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L948-58. [PMID: 25305248 DOI: 10.1152/ajplung.00160.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have enabled the survival of infants born as early as 23-24 wk of gestation, the challenge of promoting lung growth while protecting the ever more immature lung from injury is now bigger. Consequently, BPD remains one of the most common complications of extreme prematurity and still lacks specific treatments. Progress in our understanding of BPD and the potential of developing therapeutic strategies have arisen from large (baboons, sheep, and pigs) and small (rabbits, rats, and mice) animal models. This review focuses specifically on the use of the rat to model BPD and summarizes how the model is used in various research studies and the advantages and limitations of this particular model, and it highlights recent therapeutic advances in BPD by using this rat model.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics and Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada; and
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
221
|
Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H. Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1α. Cell Mol Neurobiol 2014; 34:1047-58. [PMID: 25038638 PMCID: PMC11488909 DOI: 10.1007/s10571-014-0082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.
Collapse
Affiliation(s)
- Xiaojing Xu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Guiqin Xie
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ya’nan Hu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Xianyang Li
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ping Huang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Huanxiang Zhang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| |
Collapse
|
222
|
Stammzelltherapien in der Neonatologie. Monatsschr Kinderheilkd 2014. [DOI: 10.1007/s00112-014-3108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
223
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
224
|
Zhu D, Wallace EM, Lim R. Cell-based therapies for the preterm infant. Cytotherapy 2014; 16:1614-28. [PMID: 25154811 DOI: 10.1016/j.jcyt.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
The severely preterm infant receives a multitude of life-saving interventions, many of which carry risks of serious side effects. Cell therapy is an important and promising arm of regenerative medicine that may address a number of these problems. Most forms of cellular therapy use stem/progenitor cells or stem-like cells, which have the capacity to migrate, engraft and exert anti-inflammatory effects. Although some of these cell-based therapies have made their way to clinical trials in adults, little headway has been made in the neonatal patient group. This review discusses the efficacy of cell therapy in preclinical studies to date and their potential applications to diseases that afflict many prematurely born infants. Specifically, we identify the major hurdles that must be overcome before cell therapies can be safely used in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
225
|
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol 2014; 307:L395-406. [PMID: 25038188 DOI: 10.1152/ajplung.00110.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral pneumonia is a major cause of acute respiratory distress syndrome (ARDS). Anti-inflammatory therapies for viral-induced lung injury show promise in preclinical models. Mesenchymal stem/stromal cells (MSCs) are multipotent, self-renewing cells that secrete anti-inflammatory cytokines and epithelial and endothelial growth factors. We inoculated mice intranasally with influenza A (murine-adapted Puerto Rico/8/34) or PBS, and the mice were killed at multiple time points after infection for measures of lung injury and viral load. We report that influenza induces marked, long-lasting dysfunction of the alveolar-capillary barrier peaking at 1 wk but lasting longer than 3 wk postinfection. Weight loss, commonly employed as a criterion for euthanasia (and hence "survival"), was found to be poorly predictive of the severity of lung injury at its peak; rather, persistent weight loss 11 days postinfection identified mice with impaired injury resolution. Murine and human bone marrow-derived MSCs (obtained from the National Institutes of Health repository) were then administered intravenously during the rapid phase of injury progression. Murine MSCs (mMSCs) given two times 24 h apart failed to improve weight loss, lung water, bronchoalveolar lavage inflammation, or histology. However, mMSCs prevented influenza-induced thrombocytosis and caused a modest reduction in lung viral load at day 7. Human MSCs administered intravenously showed a similar lack of efficacy. The results demonstrate that the influenza murine model bears important similarities to the slow resolution of ARDS in patients. Despite their potent therapeutic effects in many models of acute inflammation and lung injury, MSCs do not improve influenza-mediated lung injury in mice.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
226
|
Hansmann G. Interdisciplinary networks for the treatment of childhood pulmonary vascular disease: what pulmonary hypertension doctors can learn from pediatric oncologists. Pulm Circ 2014; 3:792-801. [PMID: 25006395 DOI: 10.1086/674766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023] Open
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) is complex and multifactorial. None of the current therapies has been shown to be universally effective or able to reverse advanced pulmonary vascular disease, characterized by plexiform vascular lesions, or to prevent right ventricular failure in advanced PAH. It is thus unlikely that only one factor, pathway, or gene mutation will explain all forms and cases. Pediatric oncologists recognized a need for intensified, collaborative research within their field more than 40 years ago and implemented major clinical and translational networks worldwide to achieve evidence-based "tailored therapies." The similarities in the pathobiology (e.g., increased proliferation and resistance to apoptosis in vascular cells and perivascular inflammation) and the uncertainties in the proper treatment of both cancer and pulmonary hypertension (PH) have led to the idea of building interdisciplinary networks among PH centers to achieve rapid translation of basic research findings, optimal diagnostic algorithms, and significant, sustained treatment results. Such networks leading to patient registries, clinical trials, drug development, and innovative, effective therapies are urgently needed for the care of children with PH. This article reviews the current status, limitations, and recent developments in the field of pediatric PH. It is suggested that the oncologists' exemplary networks, concepts, and results in the treatment of acute lymphoblastic leukemia are applicable to future networks and innovative therapies for pediatric pulmonary hypertensive vascular disease and right ventricular dysfunction.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| |
Collapse
|
227
|
Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells. J Surg Res 2014; 190:255-63. [DOI: 10.1016/j.jss.2014.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
|
228
|
Borghesi A, Cova C, Gazzolo D, Stronati M. Stem cell therapy for neonatal diseases associated with preterm birth. J Clin Neonatol 2014; 2:1-7. [PMID: 24027735 PMCID: PMC3761956 DOI: 10.4103/2249-4847.109230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the prevention and treatment of neonatal respiratory distress syndrome with antenatal steroids and surfactant replacement allowed the survival of infants born at extremely low gestational ages. These extremely preterm infants are highly vulnerable to the detrimental effects of oxidative stress and infection, and are prone to develop lung and brain diseases that eventually evolve in severe sequelae: The so-called new bronchopulmonary dysplasia (BPD) and the noncystic, diffuse form of periventricular leukomalacia (PVL). Tissue simplification and developmental arrest (larger and fewer alveoli and hypomyelination in the lungs and brain, respectively) appears to be the hallmark of these emerging sequelae, while fibrosis is usually mild and contributes to a lesser extent to their pathogenesis. New data suggest that loss of stem/progenitor cell populations in the developing brain and lungs may underlie tissue simplification. These observations constitute the basis for the application of stem cell-based protocols following extremely preterm birth. Transplantation of different cell types (including, but not limited to, mesenchymal stromal cells, endothelial progenitor cells, human amnion epithelial cells) could be beneficial in preterm infants for the prevention and/or treatment of BPD, PVL and other major sequelae of prematurity. However, before this new knowledge can be translated into clinical practice, several issues still need to be addressed in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit and Laboratory of Neonatal Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | |
Collapse
|
229
|
Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc 2014; 10:S25-44. [PMID: 23869447 DOI: 10.1513/annalsats.201304-089aw] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
230
|
Abstract
PURPOSE OF REVIEW Advances in medical therapy have increased survival of extremely premature infants and changed the pathology of bronchopulmonary dysplasia (BPD) from one of acute lung injury to a disease of disrupted lung development. With this evolution, new questions emerge regarding the molecular mechanisms that control postnatal lung development, the effect of early disruptions of postnatal lung development on long-term lung function, and the existence of endogenous mechanisms that permit lung regeneration after injury. RECENT FINDINGS Recent data demonstrate that a significant component of alveolarization, the final stage of lung development, occurs postnatally. Further, clinical and experimental studies demonstrate that premature birth disrupts alveolarization, decreasing the gas exchange surface area of the lung and causing BPD. BPD is associated with significant short-term morbidity, and new longitudinal, clinical data demonstrate that survivors of BPD have long-standing deficits in lung function and may be at risk for the development of additional lung disease as adults. Unfortunately, current care is mainly supportive with few effective therapies that prevent or treat established BPD. These studies underscore the need to further elucidate the mechanisms that direct postnatal lung growth and develop innovative strategies to stimulate lung regeneration. SUMMARY Despite significant improvements in the care and survival of extremely premature infants, BPD remains a major clinical problem. Although efforts should remain focused on the prevention of preterm labor and BPD, novel research aimed at promoting postnatal alveolarization offers a unique opportunity to develop effective strategies to treat established BPD.
Collapse
|
231
|
Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 2014; 49:859-64; discussion 864-5. [PMID: 24888823 DOI: 10.1016/j.jpedsurg.2014.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE Recent experimental work suggests the therapeutic role of mesenchymal stromal cells (MSCs) during lung morphogenesis. The purpose of this study was to investigate the potential paracrine effects of amniotic fluid-derived MSCs (AF-MSCs) on fetal lung growth in a nitrofen explant model. METHODS Pregnant Sprague-Dawley dams were gavage fed nitrofen on gestational day 9.5 (E9.5). E14.5 lung explants were subsequently harvested and cultured ex vivo for three days on filter membranes in conditioned media from rat AF-MSCs isolated from control (AF-Ctr) or nitrofen-exposed (AF-Nitro) dams. The lungs were analyzed morphometrically and by quantitative gene expression. RESULTS Although there were no significant differences in total lung surface area among hypoplastic lungs, there were significant increases in terminal budding among E14.5+3 nitrofen explants exposed to AF-Ctr compared to explants exposed to medium alone (58.8±8.4 vs. 39.0±10.0 terminal buds, respectively; p<0.05). In contrast, lungs cultured in AF-Nitro medium failed to augment terminal budding. Nitrofen explants exposed to AF-Ctr showed significant upregulation of surfactant protein C to levels observed in normal fetal lungs. CONCLUSIONS AF-MSCs can augment branching morphogenesis and lung epithelial maturation in a fetal explant model of pulmonary hypoplasia. Cell therapy using donor-derived AF-MSCs may represent a novel strategy for the treatment of fetal congenital diaphragmatic hernia.
Collapse
Affiliation(s)
- Julie Di Bernardo
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael M Maiden
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
232
|
Tibboel J, Keijzer R, Reiss I, de Jongste JC, Post M. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD 2014; 11:310-8. [PMID: 24295402 PMCID: PMC4046870 DOI: 10.3109/15412555.2013.854322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.
Collapse
Affiliation(s)
- Jeroen Tibboel
- Department of Physiology and Experimental Medicine, Hospital for Sick Children,Toronto,Canada
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Richard Keijzer
- Department of Pediatric General Surgery, Manitoba Institute of Child Health,Winnipeg,Canada
| | - Irwin Reiss
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Johan C. de Jongste
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Martin Post
- Department of Physiology and Experimental Medicine, Hospital for Sick Children,Toronto,Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto,Toronto,Canada
| |
Collapse
|
233
|
Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 2014; 164:966-972.e6. [PMID: 24508444 DOI: 10.1016/j.jpeds.2013.12.011] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/13/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess the safety and feasibility of allogeneic human umbilical cord blood (hUCB)-derived mesenchymal stem cell (MSC) transplantation in preterm infants. STUDY DESIGN In a phase I dose-escalation trial, we assessed the safety and feasibility of a single, intratracheal transplantation of hUCB-derived MSCs in preterm infants at high risk for bronchopulmonary dysplasia (BPD). The first 3 patients were given a low dose (1 × 10(7) cells/kg) of cells, and the next 6 patients were given a high dose (2 × 10(7) cells/kg). We compared their adverse outcomes, including BPD severity, with those of historical case-matched comparison group. RESULTS Intratracheal MSC transplantation was performed in 9 preterm infants, with a mean gestational age of 25.3 ± 0.9 weeks and a mean birth weight of 793 ± 127 g, at a mean of 10.4 ± 2.6 days after birth. The treatments were well tolerated, without serious adverse effects or dose-limiting toxicity attributable to the transplantation. Levels of interleukin-6, interleukin-8, matrix metalloproteinase-9, tumor necrosis factor α, and transforming growth factor β1 in tracheal aspirates at day 7 were significantly reduced compared with those at baseline or at day 3 posttransplantation. BPD severity was lower in the transplant recipients, and rates of other adverse outcomes did not differ between the comparison group and transplant recipients. CONCLUSION Intratracheal transplantation of allogeneic hUCB-derived MSCs in preterm infants is safe and feasible, and warrants a larger and controlled phase II study.
Collapse
|
234
|
Kourembanas S. Stem cell-based therapy for newborn lung and brain injury: feasible, safe, and the next therapeutic breakthrough? J Pediatr 2014; 164:954-6. [PMID: 24630358 DOI: 10.1016/j.jpeds.2014.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
235
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
236
|
Vadivel A, Alphonse RS, Etches N, van Haaften T, Collins JJP, O'Reilly M, Eaton F, Thébaud B. Hypoxia-inducible factors promote alveolar development and regeneration. Am J Respir Cell Mol Biol 2014; 50:96-105. [PMID: 23962064 DOI: 10.1165/rcmb.2012-0250oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.
Collapse
Affiliation(s)
- Arul Vadivel
- 1 Department of Pediatrics, School of Human Development, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, Lesk MR, Roy DC. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 2014; 31:1136-48. [PMID: 23495088 DOI: 10.1002/stem.1364] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
Among bone marrow cells, hematopoietic and mesenchymal components can contribute to repair damaged organs. Such cells are usually used in acute diseases but few options are available for the treatment of chronic disorders. In this study, we have used a laser-induced model of open angle glaucoma (OAG) to evaluate the potential of bone marrow cell populations and the mechanisms involved in tissue repair. In addition, we investigated laser-induced tissue remodeling as a method of targeting effector cells into damaged tissues. We demonstrate that among bone marrow cells, mesenchymal stem cells (MSC) induce trabecular meshwork regeneration. MSC injection into the ocular anterior chamber leads to far more efficient decrease in intraocular pressure (IOP) (p < .001) and healing than hematopoietic cells. This robust effect was attributable to paracrine factors from stressed MSC, as injection of conditioned medium from MSC exposed to low but not to normal oxygen levels resulted in an immediate decrease in IOP. Moreover, MSC and their secreted factors induced reactivation of a progenitor cell pool found in the ciliary body and increased cellular proliferation. Proliferating cells were observed within the chamber angle for at least 1 month. Laser-induced remodeling was able to target MSC to damaged areas with ensuing specific increases in ocular progenitor cells. Thus, our results identify MSC and their secretum as crucial mediators of tissue repair in OAG through reactivation of local neural progenitors. In addition, laser treatment could represent an appealing strategy to promote MSC-mediated progenitor cell recruitment and tissue repair in chronic diseases.
Collapse
Affiliation(s)
- Renaud Manuguerra-Gagné
- Division of Hematology-Oncology, Hopital Maisonneuve-Rosemont Research Center, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, O'Reilly M, Ohls RK, McConaghy S, Eaton F, Zhong S, Yoder M, Thébaud B. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation 2014; 129:2144-57. [PMID: 24710033 DOI: 10.1161/circulationaha.114.009124] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. METHODS AND RESULTS Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. CONCLUSIONS Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.
Collapse
Affiliation(s)
- Rajesh S Alphonse
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Arul Vadivel
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Moses Fung
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - William Chris Shelley
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Paul John Critser
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Lavinia Ionescu
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Megan O'Reilly
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Robin K Ohls
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Suzanne McConaghy
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Farah Eaton
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Shumei Zhong
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Merv Yoder
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Bernard Thébaud
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.). bthebaud@ohri
| |
Collapse
|
239
|
|
240
|
Collins JJP, Thébaud B. Progenitor cells of the distal lung and their potential role in neonatal lung disease. ACTA ACUST UNITED AC 2014; 100:217-26. [PMID: 24619857 DOI: 10.1002/bdra.23227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common adverse outcome in extreme preterm neonates (born before 28 weeks gestation). BPD is characterized by interrupted lung growth and may predispose to early-onset emphysema and poor lung function in later life. At present, there is no treatment for BPD. Recent advances in stem/progenitor cell biology have enabled the exploration of endogenous lung progenitor populations in health and disease. In parallel, exogenous stem/progenitor cell administration has shown promise in protecting the lung from injury in the experimental setting. This review will provide an outline of the progenitor populations that have currently been identified in all tissue compartments of the distal lung and how they may be affected in BPD. A thorough understanding of the lung's endogenous progenitor populations during normal development, injury and repair may one day allow us to harness their regenerative capacity.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
241
|
Vadivel A, Alphonse RS, Ionescu L, Machado DS, O’Reilly M, Eaton F, Haromy A, Michelakis ED, Thébaud B. Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury. PLoS One 2014; 9:e90965. [PMID: 24603989 PMCID: PMC3946270 DOI: 10.1371/journal.pone.0090965] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/05/2014] [Indexed: 01/02/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. Methods We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. Results In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. Conclusions H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.
Collapse
Affiliation(s)
- Arul Vadivel
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Rajesh S. Alphonse
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Lavinia Ionescu
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Desiree S. Machado
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Megan O’Reilly
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Farah Eaton
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Al Haromy
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Evangelos D. Michelakis
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
242
|
Ahlfeld SK, Conway SJ. Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:168-79. [PMID: 24604816 DOI: 10.1002/bdra.23226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar-capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar-capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air-blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar-capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long-term impact of BPD on alveolar-capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
243
|
Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Med Hypotheses 2014; 82:670-3. [PMID: 24679668 DOI: 10.1016/j.mehy.2014.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/24/2014] [Indexed: 12/21/2022]
Abstract
The treatment of Interstinal Cystitisis (IC) is still challenge for urologist. Available therapies do not result in long-term control of symptoms and do not provide pain relive to patients. Unique abilities of mesenchymal stem cells (MSC) could be used to develop new treatment approaches for Interstitial Cystitis. Conditioned Medium (CM) derived from MSC culture is rich in plenty of growth factors, cytokines and trophic agents which were widely reported to enhance regeneration of urinary bladder in different conditions. This ready mixture of growth factors could be used to develop intravesical therapy for patients with IC. MSC-CM has anti-apoptotic, anti-inflammatory, supportive, angiogenic, immunosuppressive and immunomodulative properties and seems to be ideal substance to prevent IC recurrence and to create favorable environment for regeneration of damaged bladder wall.
Collapse
|
244
|
Baker CD, Abman SH, Mourani PM. Pulmonary Hypertension in Preterm Infants with Bronchopulmonary Dysplasia. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2014; 27:8-16. [PMID: 24669351 DOI: 10.1089/ped.2013.0323] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/16/2014] [Indexed: 01/02/2023]
Abstract
Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is a significant contributor to perinatal morbidity and mortality. Premature birth disrupts pulmonary vascular growth and initiates a cascade of events that result in impaired gas exchange, abnormal vasoreactivity, and pulmonary vascular remodeling that may ultimately lead to pulmonary hypertension (PH). Even infants who appear to have mild BPD suffer from varying degrees of pulmonary vascular disease (PVD). Although recent studies have enhanced our understanding of the pathobiology of PVD and PH in BPD, much remains unknown with respect to how PH should be properly defined, as well as the most accurate methods for the diagnosis and treatment of PH in infants with BPD. This article will provide neonatologists and primary care providers, as well as pediatric cardiologists and pulmonologists, with a review of the pathophysiology of PH in preterm infants with BPD and a summary of current clinical recommendations for managing PH in this population.
Collapse
Affiliation(s)
- Christopher D Baker
- Section of Pulmonary Medicine, University of Colorado School of Medicine , Aurora, Colarado. ; Pediatric Heart Lung Center, University of Colorado School of Medicine , Aurora, Colarado
| | - Steven H Abman
- Section of Pulmonary Medicine, University of Colorado School of Medicine , Aurora, Colarado. ; Pediatric Heart Lung Center, University of Colorado School of Medicine , Aurora, Colarado
| | - Peter M Mourani
- Pediatric Heart Lung Center, University of Colorado School of Medicine , Aurora, Colarado. ; Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colarado
| |
Collapse
|
245
|
Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:189-201. [PMID: 24578018 DOI: 10.1002/bdra.23220] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/18/2022]
Abstract
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
246
|
Zhao YF, Xiong W, Wu XL. Mesenchymal stem cell-based developmental endothelial locus-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. Mol Med Rep 2014; 9:1583-9. [PMID: 24573341 DOI: 10.3892/mmr.2014.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/11/2014] [Indexed: 11/06/2022] Open
Abstract
Studies have suggested that bone marrow-derived mesenchymal stem cells (MSCs) may be used as a tool for gene therapy. Developmental endothelial locus-1 (Del-1) is a critical factor for cell migration and infiltration via the inhibition of the function of a major leukocyte adhesion receptor LFA-1 which prevents leukocyte adhesion to the endothelium. In the present study, we hypothesized that MSC-based Del-1 gene therapy may have potential therapeutic applications for lipopolysaccharide (LPS)-induced lung injury. The MSCs in the present assay were isolated from 6 week-old male mice. In order to investigate the therapeutic effect of the Del-1 gene on LPS-induced ALI mice, a lentivirus vector containing the Del-1 gene was constructed and transduced into the MSCs. In the in vivo assay, we induced lung injury with LPS injection and treated mice with different groups of MSCs, and compared with groups treated with MSCs alone, we observed that the administration with MSCs carrying Del-1 (MSCs-Del1) markedly alleviated the LPS-induced lung injury. There were significant decreases in the number of neutrophils in bronchoalveolar lavage (BAL) and the serum levels of TNF-α and IL-6 in the Del-1-expressed MSC-treated mice. Furthermore, compared with MSCs treated alone, Del1-MSC-treated mice also exhibited low lung injury scores, high protein concentrations and myeloperoxidase activity. In conclusion, treatment with Del-1-expressed MSCs significantly decreases the severity of endotoxin-induced acute lung injury and the level of inflammatory cytokines in mice.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Wei Xiong
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Xue-Ling Wu
- Institute of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
247
|
Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 2014; 9:488-503. [PMID: 24493315 DOI: 10.1002/term.1870] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.
Collapse
Affiliation(s)
- Nikolaos K Paschos
- Department of Biomedical Engineering and Orthopedic Surgery, University of California at Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
248
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be a significant cause of morbidity and mortality for premature infants. Currently, most treatment strategies are mainly palliative and do not address the underlying structural changes of the lungs leading to the symptoms. New research and ongoing experiments with mesenchymal stem cells are showing capabilities to mitigate structural damage and promote vascular growth that leads to normal lung architecture in animal models. Looking at the pathophysiology that contributes to BPD and assessing current treatment options available, there still appears to be a gap in treatment that addresses the structural issues within the lungs. This article reviews the findings of several mesenchymal stem cell experiments and the potential for future treatment to help repair the lungs in infants with BPD.
Collapse
|
249
|
O'Reilly M, Harding R, Sozo F. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. Neonatology 2014; 105:39-45. [PMID: 24281398 DOI: 10.1159/000355641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Supplemental oxygen is necessary in the respiratory support of very preterm infants, but it may contribute to bronchopulmonary dysplasia and an increased risk of poor lung function in later life. It is well established that hyperoxia can inhibit alveolarization, but effects on the developing conducting airways, which are important determinants of lung function, are poorly understood. It is possible that prolonged exposure of the immature lung to hyperoxic gas alters the development of small conducting airways (bronchioles), and that these effects may persist throughout life. OBJECTIVES To examine the effects of neonatal inhalation of hyperoxic gas on the bronchiolar walls in adulthood. METHODS Neonatal mice (C57BL/6J) born at term inhaled 65% O2 from birth until postnatal day 7; thereafter, they were raised in room air until 10 months postnatal age (P10mo), which is advanced adulthood. Age-matched controls inhaled room air from birth. We investigated small conducting airways with a diameter between 105-310 µm. RESULTS At P10mo, bronchiolar walls of hyperoxia-exposed mice contained ∼18% more smooth muscle than controls (p < 0.05), although there was no effect on bronchiolar epithelium or collagen. Neonatal hyperoxia resulted in significantly fewer bronchiolar-alveolar attachments at P10mo (p < 0.05); this was accompanied by persistent simplification of the lung parenchyma, as indicated by greater mean linear intercept and less parenchymal tissue (p < 0.05). CONCLUSIONS Neonatal exposure to hyperoxia induces remodeling of the bronchiolar walls and loss of bronchiolar-alveolar attachments in adulthood, both of which could contribute to impaired lung function and airway hyper-reactivity.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
250
|
Pawelec K, Gładysz D, Demkow U, Boruczkowski D. Stem cell experiments moves into clinic: new hope for children with bronchopulmonary dysplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 839:47-53. [PMID: 25252892 DOI: 10.1007/5584_2014_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease with long-term complications that affects mainly preterm born children with low birth weights, especially those treated with mechanical ventilation and oxygen therapy. Successful treatment of BPD could reduce the incidence of other diseases of prematurity such as periventricular leukomalacia and retinopathy. The effects of current therapies are unsatisfactory; thus, searching for novel therapeutic is underway. One promising approach seems administration of mesenchymal stem cells (MSC). Preclinical data strongly support the role of progenitor cells in the preservation of lung structure. MSC can be found more often in pre-term than term umbilical cord and its isolation from Wharton's jelly carries a potential in treating diseases of prematurity. Several questions concerning the use of MSC in BPD remain to be answered, including the amount of transferred cells, intervals between infusions, the best route for administration and the timing. MSC can be administered as a treatment or prophylaxis. However, having in mind that not all prematurely born children are at risk of developing bronchopulmonary dysplasia, a search for laboratory markers identifying potential patients should be conducted. This review summarizes the latest achievements in MSC therapy in the context of BPD.
Collapse
Affiliation(s)
- K Pawelec
- Polish Stem Cell Bank, Warsaw, Poland,
| | | | | | | |
Collapse
|