201
|
Kimura BJ, Mansour CM. The RVEIO and RV function: More, please. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:14-16. [PMID: 35043438 DOI: 10.1002/jcu.23078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Early proof of the value of RVEIO is currently limited by acquisition biases in specific patient populations. More research is needed on this potentially important index.
Collapse
Affiliation(s)
- Bruce J Kimura
- Department of Medicine, Scripps Mercy Hospital, San Diego, California, USA
| | | |
Collapse
|
202
|
Cheron C, McBride SA, Antigny F, Girerd B, Chouchana M, Chaumais MC, Jaïs X, Bertoletti L, Sitbon O, Weatherald J, Humbert M, Montani D. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/200330. [PMID: 34750113 DOI: 10.1183/16000617.0330-2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterised by pulmonary vascular remodelling and elevated pulmonary pressure, which eventually leads to right heart failure and death. Registries worldwide have noted a female predominance of the disease, spurring particular interest in hormonal involvement in the disease pathobiology. Several experimental models have shown both protective and deleterious effects of oestrogens, suggesting that complex mechanisms participate in PAH pathogenesis. In fact, oestrogen metabolites as well as receptors and enzymes implicated in oestrogen signalling pathways and associated conditions such as BMPR2 mutation contribute to PAH penetrance more specifically in women. Conversely, females have better right ventricular function, translating to a better prognosis. Along with right ventricular adaptation, women tend to respond to PAH treatment differently from men. As some young women suffer from PAH, contraception is of particular importance, considering that pregnancy in patients with PAH is strongly discouraged due to high risk of death. When contraception measures fail, pregnant women need a multidisciplinary team-based approach. This article aims to review epidemiology, mechanisms underlying the higher female predominance, but better prognosis and the intricacies in management of women affected by PAH.
Collapse
Affiliation(s)
- Céline Cheron
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Susan Ainslie McBride
- Internal Medicine Residency Program, Dept of Medicine, University of Calgary, Calgary, Canada
| | - Fabrice Antigny
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Margot Chouchana
- Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Marie-Camille Chaumais
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay Malabry, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Bertoletti
- Centre Hospitalier Universitaire de Saint-Etienne, Service de Médecine Vasculaire et Thérapeutique, Saint-Etienne, France.,INSERM U1059 et CIC1408, Université Jean-Monnet, Saint-Etienne, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jason Weatherald
- Division of Respirology, Dept of Medicine, University of Calgary, Calgary, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
203
|
Richter MJ, Zedler D, Berliner D, Douschan P, Gall H, Ghofrani HA, Kimmig L, Kremer N, Olsson KM, Brita da Rocha B, Rosenkranz S, Seeger W, Yogeswaran A, Rako Z, Tello K. Clinical Relevance of Right Atrial Functional Response to Treatment in Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:775039. [PMID: 34950716 PMCID: PMC8688770 DOI: 10.3389/fcvm.2021.775039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Right atrial (RA) function has emerged as an important determinant of outcome in pulmonary arterial hypertension (PAH). However, studies exploring RA function after initiation of specific pulmonary vascular treatment and its association with outcome in patients with incident PAH are lacking. Methods: RA peak longitudinal strain (PLS), passive strain (PS), and peak active contraction strain (PACS) were retrospectively assessed in 56 treatment-naïve patients with PAH at baseline and during follow-up after initiation of specific monotherapy or combination therapy. Patients were grouped according to their individual RA functional response to treatment, based on change from baseline (Δ): worsened (first Δ-tertile), stable (second Δ-tertile), and improved (third Δ-tertile). The Spearman's rho correlation and linear regression analysis were used to determine associations. Time to clinical worsening (defined as deterioration of functional class or 6-min walking distance, disease-related hospital admission, or death) was measured from the follow-up assessment. The association of RA functional treatment response with time to clinical worsening was assessed using the Kaplan-Meier and the Cox regression analyses. Results: Median (interquartile range) time to echocardiographic follow-up was 11 (9-12) months. Of the 56 patients, 37 patients (66%) received specific dual or triple combination therapy. Δ RA PLS during follow-up was significantly associated with changes in key hemodynamic and echocardiographic parameters. The change of pulmonary vascular resistance, right ventricular (RV) end-systolic area, and global longitudinal strain were independently associated with Δ RA PLS. The median time to clinical worsening after echocardiographic follow-up was 6 (2-14) months [17 events (30%)]. In the multivariate Cox regression analysis, worsening of RA PLS was significantly associated with clinical deterioration (hazard ratio: 4.87; 95% CI: 1.26-18.76; p = 0.022). Patients with worsened RA PLS had a significantly poorer prognosis than those with stable or improved RA PLS (log-rank p = 0.012). By contrast, PS and PACS did not yield significant prognostic information. Conclusion: Treatment-naïve patients with PAH may show different RA functional response patterns to PAH therapy. These functional patterns are significantly associated with clinically relevant outcome measures. Improvements of RA function are driven by reductions of afterload, RV remodeling, and RV dysfunction.
Collapse
Affiliation(s)
- Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Daniel Zedler
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dominik Berliner
- Department of Cardiology, Hannover Medical School, Hannover, Germany
| | - Philipp Douschan
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Division of Pulmonology, Department of Internal Medicine and Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Pneumology, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Lucas Kimmig
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Nils Kremer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine, German Center for Lung Research Biomedical Research in Endstage and Obstructive Lung Disease Hannover (DZL/BREATH), Hannover Medical School, Hannover, Germany
| | - Bruno Brita da Rocha
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin and Cologne Cardiovascular Research Center (CCRC), Herzzentrum der Universität zu Köln, Köln, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Athiththan Yogeswaran
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Zvonimir Rako
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
204
|
Computational Simulator Models and Invasive Hemodynamic Monitoring as Tools for Precision Medicine in Pulmonary Arterial Hypertension. J Clin Med 2021; 11:jcm11010082. [PMID: 35011825 PMCID: PMC8745441 DOI: 10.3390/jcm11010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Precision medicine, providing the right therapeutic strategy for the right patient, could revolutionize management and prognosis of patients affected by cardiovascular diseases. Big data and artificial intelligence are pivotal for the realization of this ambitious design. In the setting of pulmonary arterial hypertension (PAH), the use of computational models and data derived from ambulatory implantable hemodynamic monitors could provide useful information for tailored treatment, as requested by precision medicine.
Collapse
|
205
|
Affiliation(s)
- Paul M Hassoun
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
206
|
Abstract
Pulmonary arterial hypertension is characterized by obliteration and obstruction of the pulmonary arterioles that in turn results in high right ventricular afterload and right heart failure. The pathobiology of pulmonary arterial hypertension is complex, with contributions from multiple pathophysiologic processes that are regulated by a variety of molecular mechanisms. This nature likely explains the limited efficacy of our current therapies, which only target a small portion of the pathobiological mechanisms that underlie advanced disease. Here we review the pathobiology of pulmonary arterial hypertension, focusing on the systemic, cellular, and molecular mechanisms that underlie the disease.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Room 128A Hanes House, 330 Trent Drive, Durham, NC 27710, USA.
| | - Yen-Rei A Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, 12605 E. 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
207
|
Application and Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio in Patients with Ischemic and Non-Ischemic Cardiomyopathy. Diagnostics (Basel) 2021; 11:diagnostics11122188. [PMID: 34943425 PMCID: PMC8700391 DOI: 10.3390/diagnostics11122188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to assess the prognostic utility of TAPSE/PASP as an echocardiographic parameter of maladaptive RV remodeling in cardiomyopathy patients using cardiac magnetic resonance (CMR) imaging. Furthermore, we sought to compare TAPSE/PASP to TAPSE. The association of the echocardiographic parameters TAPSE/PASP and TAPSE with CMR parameters of RV and LV remodeling was evaluated in 111 patients with ischemic and non-ischemic cardiomyopathy and cut-off values for maladaptive RV remodeling were defined. In a second step, the prognostic value of TAPSE/PASP and its cut-off value were analyzed regarding mortality in a validation cohort consisting of 221 patients with ischemic and non-ischemic cardiomyopathy. A low TAPSE/PASP (<0.38 mm/mmHg) and TAPSE (<16 mm) were associated with a lower RVEF and a long-axis RV global longitudinal strain (GLS) as well as higher RVESVI, RVEDVI and NT-proBNP. A low TAPSE/PASP, but not TAPSE, was associated with a lower LVEF and long-axis LV GLS, and a higher LVESVI, LVEDVI and T1 relaxation time at the interventricular septum and the RV insertion points. Furthermore, in the validation cohort, low TAPSE/PASP was associated with a higher mortality and TAPSE/PASP was an independent predictor of mortality. TAPSE/PASP is a predictor of maladaptive RV and LV remodeling associated with poor outcomes in cardiomyopathy patients.
Collapse
|
208
|
Prisco SZ, Eklund M, Raveendran R, Thenappan T, Prins KW. With No Lysine Kinase 1 Promotes Metabolic Derangements and RV Dysfunction in Pulmonary Arterial Hypertension. JACC. BASIC TO TRANSLATIONAL SCIENCE 2021; 6:834-850. [PMID: 34869947 PMCID: PMC8617575 DOI: 10.1016/j.jacbts.2021.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- AS160, 160 kDa substrate of the Akt serine/threonine kinase
- DCA, dicarboxylic fatty acid
- FAO, fatty acid oxidation
- GLO1, glyoxalase 1
- GLO2, glyoxalase 2
- GLUT1, glucose transporter 1
- GLUT4, glucose transporter 4
- LV, left ventricle/ventricular
- MCT, monocrotaline
- MCT-V, monocrotaline-vehicle
- PAH, pulmonary arterial hypertension
- PTM, post-translationally modify/modifications
- PV, pressure-volume
- PVR, pulmonary vascular resistance
- RA, right atrial
- RV, right ventricle/ventricular
- RVD, right ventricular dysfunction
- TCA, tricarboxylic acid
- Tau/τ, right ventricular relaxation time
- UDP-GlcNAC, uridine diphosphate N-acetylglucosamine
- WNK, with no lysine kinase
- lipotoxicity
- metabolism
- mitochondria
- pulmonary arterial hypertension
- right ventricular dysfunction
- with no lysine kinase 1
Collapse
Affiliation(s)
| | | | | | | | - Kurt W. Prins
- Address for correspondence: Dr Kurt Prins, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, 312 Church Street Southeast, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
209
|
Freed BH. REPAIRing What We Can't See: The Need for Imaging Endpoints in PAH Clinical Trials. JACC Cardiovasc Imaging 2021; 15:254-256. [PMID: 34801460 DOI: 10.1016/j.jcmg.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin H Freed
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
210
|
Yogeswaran A, Tello K, Lund J, Klose H, Harbaum L, Sommer N, Oqueka T, Hennigs JK, Grimminger F, Seeger W, Ghofrani HA, Richter MJ, Gall H. Risk assessment in pulmonary hypertension based on routinely measured laboratory parameters. J Heart Lung Transplant 2021; 41:400-410. [PMID: 34857454 DOI: 10.1016/j.healun.2021.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND γ-glutamyl transferase (GGT), the aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, and the neutrophil-to-lymphocyte ratio (NLR) are prognostic biomarkers in several cardiovascular diseases, but their relevance in pulmonary hypertension (PH) is not fully understood. We aimed to assess their prognostic value in patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic PH (CTEPH). METHODS We retrospectively analyzed 731 incident patients with idiopathic PAH or CTEPH who entered the Giessen PH registry during 1993-2019. A risk stratification score based on GGT, AST/ALT ratio, and NLR tertiles was compared with a truncated version of the European Society of Cardiology/European Respiratory Society (ESC/ERS) risk stratification scheme. Associations with survival were evaluated using Kaplan-Meier and Cox regression analyses. External validation was performed in 311 patients with various types of PAH or CTEPH from a second German center. RESULTS GGT levels, AST/ALT, and NLR independently predicted mortality at baseline and during follow-up. The scoring system based on these biomarkers predicted mortality at baseline and during follow-up (both log-rank p < 0.001; hazard ratio [95% confidence interval], high vs low risk: baseline, 7.6 [3.9, 15.0]; follow-up, 13.3 [4.8, 37.1]). Five-year survival of low, intermediate, and high risk groups was 92%, 76%, and 51%, respectively, at baseline and 95%, 78%, and 50%, respectively, during follow-up. Our scoring system showed characteristics comparable to the ESC/ERS scheme, and predicted mortality in the validation cohort. CONCLUSION GGT, AST/ALT, and NLR were reliable prognostic biomarkers at baseline and during follow-up, with predictive power comparable to the gold standard for risk stratification.
Collapse
Affiliation(s)
- Athiththan Yogeswaran
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jonas Lund
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hans Klose
- Department of Respiratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Department of Respiratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natascha Sommer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tim Oqueka
- Department of Respiratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K Hennigs
- Department of Respiratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
211
|
Naeije R, Richter MJ, Rubin LJ. The physiologic basis of pulmonary arterial hypertension. Eur Respir J 2021; 59:13993003.02334-2021. [PMID: 34737219 PMCID: PMC9203839 DOI: 10.1183/13993003.02334-2021] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare dyspnea-fatigue syndrome caused by a progressive increase in pulmonary vascular resistance (PVR) and eventual right ventricular (RV) failure. In spite of extensive pulmonary vascular remodeling, lung function in PAH is generally well preserved, with hyperventilation and increased physiologic dead space, but minimal changes in lung mechanics and only mild to moderate hypoxemia and hypocapnia. Hypoxemia is mainly caused by a low mixed venous PO2 from a decreased cardiac output. Hypocapnia is mainly caused by an increased chemosensitivity. Exercise limitation in PAH is cardiovascular rather than ventilatory or muscular. The extent of pulmonary vascular disease in PAH is defined by multipoint pulmonary vascular pressure-flow relationships with a correction for hematocrit. Pulsatile pulmonary vascular pressure-flow relationships in PAH allow for the assessment of RV hydraulic load. This analysis is possible either in the frequency-domain or in the time-domain. The RV in PAH adapts to increased afterload by an increased contractility to preserve its coupling to the pulmonary circulation. When this homeometric mechanism is exhausted, the RV dilates to preserve flow output by an additional heterometric mechanism. Right heart failure is then diagnosed by imaging of increased right heart dimensions and clinical systemic congestion signs and symptoms. The coupling of the RV to the pulmonary circulation is assessed by the ratio of end-systolic to arterial elastances, but these measurements are difficult. Simplified estimates of RV-PA coupling can be obtained by magnetic resonance or echocardiographic imaging of ejection fraction.
Collapse
Affiliation(s)
| | - Manuel J Richter
- Department of Internal Medicine, Justus Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Lewis J Rubin
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
212
|
Critical Care Management of Decompensated Right Heart Failure in Pulmonary Arterial Hypertension Patients - An Ongoing Approach. J Crit Care Med (Targu Mures) 2021; 7:170-183. [PMID: 34722920 PMCID: PMC8519386 DOI: 10.2478/jccm-2021-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
Despite substantial advancements in diagnosis and specific medical therapy in pulmonary arterial hypertension patients’ management, this condition continues to represent a major cause of mortality worldwide. In pulmonary arterial hypertension, the continuous increase of pulmonary vascular resistance and rapid development of right heart failure determine a poor prognosis. Against targeted therapy, patients inexorable deteriorate over time. Pulmonary arterial hypertension patients with acute right heart failure who need intensive care unit admission present a complexity of the disease pathophysiology. Intensive care management challenges are multifaceted. Awareness of algorithms of right-sided heart failure monitoring in intensive care units, targeted pulmonary hypertension therapies, and recognition of precipitating factors, hemodynamic instability and progressive multisystem organ failure requires a multidisciplinary pulmonary hypertension team. This paper summarizes the management strategies of acute right-sided heart failure in pulmonary arterial hypertension adult cases based on recently available data.
Collapse
|
213
|
Pérez Vela J, Llanos Jorge C, Duerto Álvarez J, Jiménez Rivera J. Manejo clínico del shock poscardiotomía en pacientes adultos. Med Intensiva 2021. [DOI: 10.1016/j.medin.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
214
|
Hansmann G, Diekmann F, Chouvarine P, Ius F, Carlens J, Schwerk N, Warnecke G, Vogel-Claussen J, Hohmann D, Alten T, Jack T. Full recovery of right ventricular systolic function in children undergoing bilateral lung transplantation for severe PAH. J Heart Lung Transplant 2021; 41:187-198. [PMID: 34955331 DOI: 10.1016/j.healun.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We investigated whether RV function recovers in children with pulmonary arterial hypertension (PAH) and RV failure undergoing lung transplantation (LuTx). METHODS Prospective observational study of 15 consecutive children, 1.9 to 17.6 years old, with PAH undergoing bilateral LuTx. We performed advanced echocardiography (Echo) and cardiac magnetic resonance imaging (MRI), followed by conventional and strain analysis, pre- and ∼6 weeks post-LuTx. RESULTS After LuTx, RV/LV end-systolic diameter ratio (Echo), RV volumes and systolic RV function (RVEF 63 vs 30 %; p < 0.05) by MRI completely normalized, even in children with severe RV failure (RVEF < 40%). The echocardiographic end-systolic LV eccentricity index nearly normalized post-LuTx (1.0 vs 2.0, p < 0.0001) while RV hypertrophy regressed more slowly and was still evident. We found especially the end-systolic RV/LV ratios by Echo (diameter: 0.6 vs 2.6) or MRI (volumes: 0.8 vs 3.4) excellent diagnostic tools (p < 0.05): Together with RVEF by MRI, these ratios were superior to tricuspid annular plane systolic excursion (TAPSE; p = 0.4551) in assessing global systolic RV dysfunction. Moreover, children with severe PAH had reduced RV 2D longitudinal strain (Echo, MRI; p = 0.0450) and decreased RV 2D radial and circumferential strain (MRI; p = 0.0026 and p = 0.0036 respectively), all of which greatly improved following LuTx. CONCLUSION We demonstrate full recovery of RV systolic function in children within two months after LuTx for severe PAH, independently of the patients' age, weight, and hemodynamic compromise preceding the LuTx. Even in end-stage pediatric PAH with poor RV function and low cardiac output, LuTx should be preferred over heart-lung transplantation.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany.
| | - Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Julia Carlens
- Department of Pediatric Pulmonology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pulmonology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Dagmar Hohmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Tim Alten
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Thomas Jack
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| |
Collapse
|
215
|
Vanderpool RR, Hunter KS, Insel M, Garcia JGN, Bedrick EJ, Tedford RJ, Rischard FP. The Right Ventricular-Pulmonary Arterial Coupling and Diastolic Function Response to Therapy in Pulmonary Arterial Hypertension. Chest 2021; 161:1048-1059. [PMID: 34637777 DOI: 10.1016/j.chest.2021.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Multiparametric risk assessment is used in pulmonary arterial hypertension (PAH) to target therapy. However, this strategy is imperfect as most patients remain in intermediate or high risk after initial treatment with low risk being the goal. Metrics of right ventricular (RV) adaptation are promising tools that may help refine our therapeutic strategy. RESEARCH QUESTION Does RV adaptation predict therapeutic response over time? STUDY DESIGN AND METHODS We evaluated 52 incident treatment naïve patients with advanced PAH by catheterization and cardiac imaging longitudinally at baseline, follow-up 1 (∼3 mo.) and follow-up 2 (∼18 mo.). All patients were placed on goal-directed therapy with parenteral treprostinil and/or combination therapy with treatment escalation if functional class I-II was not achieved. Therapeutic response was evaluated at follow-up 1 as non-responders (died) or responders and again at follow-up 2 as super-responders (low risk) or partial-responders (high/intermediate risk). Multiparametric risk was based on a simplified ERS/ESC guideline score. RV adaptation was evaluated with the single-beat coupling ratio (Ees/Ea) and diastolic function with diastolic elastance (Eed). Data are expressed as mean±SD or odds ratio [95%CI]. RESULTS Nine patients (17%) were non-responders. PAH-directed therapy improved ERS low risk from 1 (2%) at baseline to 23 (55%) at follow-up 2. Ees/Ea at presentation was non-significantly higher in responders (0.9±0.4) versus non-responders (0.6±0.4, p=0.09) but was unable to predict super-responder status at follow-up 2 (odds ratio 1.40 [0.28-7.0], p=0.84). Baseline RVEF and change in Eed successfully predicted super-responder status at follow-up 2 (odds ratio 1.15 [1.0-1.27], p=0.009 and 0.29 [0.86-0.96], p=0.04, respectively). INTERPRETATION In patients with advanced PAH, RV-PA coupling could not discriminate irreversible RV failure (non-responders) at presentation but showed a late trend to improvement by follow-up 2. Early change in Eed and baseline RVEF were the best predictors of therapeutic response.
Collapse
Affiliation(s)
| | - Kendall S Hunter
- Department of Bioengineering and Cardiology, UC Denver Medical Campus, Denver, CO
| | - Michael Insel
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, University of Arizona, Tucson, AZ
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ; Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, University of Arizona, Tucson, AZ
| | - Edward J Bedrick
- BIO5 Institute, Center of Biostatistics and Informatics, University of Arizona, Tucson, AZ
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Franz P Rischard
- Department of Medicine, University of Arizona, Tucson, AZ; Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, University of Arizona, Tucson, AZ.
| |
Collapse
|
216
|
Kwan ED, Vélez-Rendón D, Zhang X, Mu H, Patel M, Pursell E, Stowe J, Valdez-Jasso D. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H702-H715. [PMID: 34448637 PMCID: PMC8794227 DOI: 10.1152/ajpheart.00046.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening.NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Diastole
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Models, Cardiovascular
- Myocardium/pathology
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/physiopathology
- Rats, Sprague-Dawley
- Systole
- Time Factors
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Ethan D Kwan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Daniela Vélez-Rendón
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoyan Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Hao Mu
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Megh Patel
- College of Medicine, Texas A&M University, College Station, Texas
| | - Erica Pursell
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Jennifer Stowe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
217
|
Marino PN. Left atrial conduit function: A short review. Physiol Rep 2021; 9:e15053. [PMID: 34605214 PMCID: PMC8488566 DOI: 10.14814/phy2.15053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional echocardiography can elucidate the phasic functions of the left atrium if a simultaneous acquisition of a pyramidal full-volume dataset, as gathered from the apical window and containing the entire left atrial and left ventricular cardiac sections, is obtained. Hence, conduit can be quantified as the integral of net, diastolic, instantaneous difference between synchronized atrial and ventricular volume curves, beginning at minimum ventricular cavity volume and ending just before atrial contraction. Increased conduit can reflect increased downstream suction, as conduit would track the apex-to-base intracavitary pressure gradient existing, in early diastole, within the single chamber formed by the atrium and the ventricle, when the mitral valve is open. Such a gradient increases in response to adrenergic stimulation or during exercise and mediates an increment in passive flow during early diastole, with the ventricle being filled from the atrial reservoir and, simultaneously, from blood drawn from the pulmonary veins. In this context conduit, and even more conduit flow rate, expressed in ml/sec, can be viewed as an indirect marker of left ventricular relaxation. It is well known, however, that a large amount of conduit (in relative terms) is also supposed to contribute to LV stroke volume in conditions of increased resistance to LV filling, when diastolic function significantly worsens. Stiffening of the atrio-ventricular complex implies increments in LA pressure more pronounced in late systole, causing markedly elevated "v" waves, independently of the presence of mitral insufficiency. The combination of increased atrio-ventricular stiffness and conduit flow is associated with an elevation of the right ventricular pulsatile relative to resistive load that negatively impacts on exercise capacity and survival in these patients. Atrial conduit is an "intriguing" parameter that conveys a noninvasive picture of the complex atrioventricular coupling condition in diastole and its backward effects on the right side of the heart and the pulmonary circulation. Given the easiness associated with its correctly performed quantification in the imaging laboratory, I am sure that conduit will survive the competitive access to the list of valuable parameters capable of deciphering, although not necessarily simplifying, the complex diastolic scenario in health and disease.
Collapse
Affiliation(s)
- Paolo N. Marino
- School of MedicineUniversità del Piemonte OrientaleNovaraItaly
- Istituto IperbaricoVillafranca (Verona)Italy
| |
Collapse
|
218
|
Berghausen EM, Janssen W, Vantler M, Gnatzy-Feik LL, Krause M, Behringer A, Joseph C, Zierden M, Freyhaus HT, Klinke A, Baldus S, Alcazar MA, Savai R, Pullamsetti SS, Wong DW, Boor P, Zhao JJ, Schermuly RT, Rosenkranz S. Disrupted PI3K subunit p110α signaling protects against pulmonary hypertension and reverses established disease in rodents. J Clin Invest 2021; 131:136939. [PMID: 34596056 DOI: 10.1172/jci136939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.
Collapse
Affiliation(s)
- Eva M Berghausen
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Wiebke Janssen
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Marius Vantler
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Leoni L Gnatzy-Feik
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Max Krause
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Arnica Behringer
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Christine Joseph
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Mario Zierden
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Miguel A Alcazar
- Center for Molecular Medicine Cologne (CMMC) and.,Institute for Lung Health, member of the DZL, UGMLC, Giessen, Germany.,Department of Pediatric and Adolecent Medicine, University of Cologne, Cologne, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Dickson Wl Wong
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jean J Zhao
- Dana-Farber Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph T Schermuly
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
219
|
Weatherald J, Philipenko B, Montani D, Laveneziana P. Ventilatory efficiency in pulmonary vascular diseases. Eur Respir Rev 2021; 30:30/161/200214. [PMID: 34289981 PMCID: PMC9488923 DOI: 10.1183/16000617.0214-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiopulmonary exercise testing (CPET) is a frequently used tool in the differential diagnosis of dyspnoea. Ventilatory inefficiency, defined as high minute ventilation (V′E) relative to carbon dioxide output (V′CO2), is a hallmark characteristic of pulmonary vascular diseases, which contributes to exercise intolerance and disability in these patients. The mechanisms of ventilatory inefficiency are multiple and include high physiologic dead space, abnormal chemosensitivity and an altered carbon dioxide (CO2) set-point. A normal V′E/V′CO2 makes a pulmonary vascular disease such as pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) unlikely. The finding of high V′E/V′CO2 without an alternative explanation should prompt further diagnostic testing to exclude PAH or CTEPH, particularly in patients with risk factors, such as prior venous thromboembolism, systemic sclerosis or a family history of PAH. In patients with established PAH or CTEPH, the V′E/V′CO2 may improve with interventions and is a prognostic marker. However, further studies are needed to clarify the added value of assessing ventilatory inefficiency in the longitudinal follow-up of patients. Ventilatory inefficiency is a hallmark feature of PH that reflects abnormal ventilation/perfusion matching, chemosensitivity and an altered CO2 set-point. Minute ventilation/CO2 production is useful in the diagnosis, management and prognostication of PH.https://bit.ly/3jnNdUG
Collapse
Affiliation(s)
- Jason Weatherald
- Dept of Medicine, Division of Respirology, University of Calgary, Cumming School of Medicine, Calgary, Canada.,Libin Cardiovascular Institute, Calgary, Canada
| | - Brianne Philipenko
- Dept of Medicine, Division of Respirology, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - David Montani
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France .,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France
| |
Collapse
|
220
|
Vahdatpour CA, Ryan JJ, Zimmerman JM, MacCormick SJ, Palevsky HI, Alnuaimat H, Ataya A. Advanced airway management and respiratory care in decompensated pulmonary hypertension. Heart Fail Rev 2021; 27:1807-1817. [PMID: 34476657 PMCID: PMC8412384 DOI: 10.1007/s10741-021-10168-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Meticulous risk stratification is essential when considering intubation of a patient with decompensated pulmonary hypertension (dPH). It is paramount to understand both the pathophysiology of dPH (and associated right ventricular failure) and the complications related to a high-risk intubation before attempting the procedure. There are few recommendations in this area and the literature, guiding these recommendations, is limited to expert opinion and very few case reports/case series. This review will discuss the complex pathophysiology of dPH, the complications associated with intubation, the debates surrounding induction agents, and the available options for the intubation procedure, with specific emphasis on the emerging role for awake fiberoptic intubation. All patients should be evaluated for candidacy for veno-arterial extracorporeal membrane oxygen as a bridge to recovery, lung transplantation, or pulmonary endarterectomy prior to intubation. Only an experienced proceduralist who is both comfortable with high-risk intubations and the pathophysiology of dPH should perform these intubations.
Collapse
Affiliation(s)
- Cyrus A Vahdatpour
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, P.O Box 100225 JHMHC, Gainesville, FL, 32610-0225, USA.
| | - John J Ryan
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Joshua M Zimmerman
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Samuel J MacCormick
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Harold I Palevsky
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Hassan Alnuaimat
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, P.O Box 100225 JHMHC, Gainesville, FL, 32610-0225, USA
| | - Ali Ataya
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, P.O Box 100225 JHMHC, Gainesville, FL, 32610-0225, USA
| |
Collapse
|
221
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
222
|
D'Alto M, Constantine A, Chessa M, Santoro G, Gaio G, Giordano M, Romeo E, Argiento P, Wacker J, D'Aiello AF, Sarubbi B, Russo MG, Naeije R, Golino P, Dimopoulos K. Fluid challenge and balloon occlusion testing in patients with atrial septal defects. Heart 2021; 108:848-854. [PMID: 34413090 DOI: 10.1136/heartjnl-2021-319676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Careful, stepwise assessment is required in all patients with atrial septal defect (ASD) to exclude pulmonary vascular or left ventricular (LV) disease. Fluid challenge and balloon occlusion may unmask LV disease and post-capillary pulmonary hypertension, but their role in the evaluation of patients with 'operable' ASDs is not well established. METHODS We conducted a prospective study in three Italian specialist centres between 2018 and 2020. Patients selected for percutaneous ASD closure underwent assessment at baseline and after fluid challenge, balloon occlusion and both. RESULTS Fifty patients (46 (38.2, 57.8) years, 72% female) were included. All had a shunt fraction >1.5, pulmonary vascular resistance (PVR) <5 Wood Units (WU) and pulmonary arterial wedge pressure (PAWP) <15 mm Hg. Individuals with a PVR ≥2 WU at baseline (higher PVR group) were older, more symptomatic, with a higher baseline systemic vascular resistance (SVR) than the lower PVR group (all p<0.0001). Individuals with a higher PVR experienced smaller increases in pulmonary blood flow following fluid challenge (0.3 (0.1, 0.5) vs 2.0 (1.5, 2.8) L/min, p<0.0001). Balloon occlusion led to a more marked fall in SVR (p<0.0001) and a larger increase in systemic blood flow (p=0.024) in the higher PVR group. No difference was observed in PAWP following fluid challenge and/or balloon occlusion between groups; four (8%) patients reached a PAWP ≥18 mm Hg following the addition of fluid challenge to balloon occlusion testing. CONCLUSIONS In adults with ASD without overt LV disease, even small rises in PVR may have significant implications on cardiovascular haemodynamics. Fluid challenge may provide additional information to balloon occlusion in this setting.
Collapse
Affiliation(s)
- Michele D'Alto
- Department of Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Andrew Constantine
- Adult Congenital Heart Centre and Centre for Pulmonary Hypertension, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Massimo Chessa
- Pediatric Cardiology Department and GUCH Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giuseppe Santoro
- Heart Hospital "G. Pasquinucci", National Research Council - Tuscany Foundation "G. Monasterio", Massa, Italy
| | - Gianpiero Gaio
- Paediatric Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Mario Giordano
- Paediatric Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Emanuele Romeo
- Department of Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Paola Argiento
- Department of Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Julie Wacker
- Pediatric Cardiology Department and GUCH Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Angelo Fabio D'Aiello
- Pediatric Cardiology Department and GUCH Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Berardo Sarubbi
- Adult Congenital Heart Disease Unit, Monaldi Hospital, Naples, Italy
| | - Maria Giovanna Russo
- Paediatric Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Robert Naeije
- Department of Pathophysiology, Free University of Brussels Campus de la Plaine, Brussels, Belgium
| | - Paolo Golino
- Department of Cardiology, University 'L Vanvitelli' - Monaldi Hospital, Naples, Italy
| | - Konstantinos Dimopoulos
- Adult Congenital Heart Centre and Centre for Pulmonary Hypertension, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
223
|
Diekmann F, Chouvarine P, Sallmon H, Meyer-Kobbe L, Kieslich M, Plouffe BD, Murthy SK, Lichtinghagen R, Legchenko E, Hansmann G. Soluble Receptor for Advanced Glycation End Products (sRAGE) Is a Sensitive Biomarker in Human Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168591. [PMID: 34445297 PMCID: PMC8395319 DOI: 10.3390/ijms22168591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition with an unmet need for early diagnosis, better monitoring, and risk stratification. The receptor for advanced glycation end products (RAGE) is activated in response to hypoxia and vascular injury, and is associated with inflammation, cell proliferation and migration in PAH. For the adult cohort, we recruited 120 patients with PAH, 83 with idiopathic PAH (IPAH) and 37 with connective tissue disease-associated PAH (CTD-PAH), and 48 controls, and determined potential plasma biomarkers by enzyme-linked immunoassay. The established heart failure marker NTproBNP and IL-6 plasma levels were several-fold higher in both adult IPAH and CTD-PAH patients versus controls. Plasma soluble RAGE (sRAGE) was elevated in IPAH patients (3044 ± 215.2 pg/mL) and was even higher in CTD-PAH patients (3332 ± 321.6 pg/mL) versus controls (1766 ± 121.9 pg/mL; p < 0.01). All three markers were increased in WHO functional class II+III PAH versus controls (p < 0.001). Receiver-operating characteristic analysis revealed that sRAGE has diagnostic accuracy comparable to prognostic NTproBNP, and even outperforms NTproBNP in the distinction of PAH FC I from controls. Lung tissue RAGE expression was increased in IPAH versus controls (mRNA) and was located predominantly in the PA intima, media, and inflammatory cells in the perivascular space (immunohistochemistry). In the pediatric cohort, plasma sRAGE concentrations were higher than in adults, but were similar in PH (n = 10) and non-PH controls (n = 10). Taken together, in the largest adult sRAGE PAH study to date, we identify plasma sRAGE as a sensitive and accurate PAH biomarker with better performance than NTproBNP in the distinction of mild PAH from controls.
Collapse
Affiliation(s)
- Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Hannes Sallmon
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Louisa Meyer-Kobbe
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Moritz Kieslich
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Brian D. Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Department of STEM, Regis College, Weston, MA 02493, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Flaskworks, LLC, Boston, MA 02118, USA
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
- Correspondence: ; Tel.: +49-511-532-9594
| |
Collapse
|
224
|
Notomi Y. Uncoupling and deep connections in the loop. Eur Heart J Cardiovasc Imaging 2021; 22:295-297. [PMID: 33244579 DOI: 10.1093/ehjci/jeaa265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuichi Notomi
- Internal Medicine, Cardiovascular Imaging, Keiyu Hospital, 3-7-3 Minatomirai, Nishi-ku, Yokohama, Kanagawa 220-0012, Japan
| |
Collapse
|
225
|
Forton K, Motoji Y, Caravita S, Faoro V, Naeije R. Exercise stress echocardiography of the pulmonary circulation and right ventricular-arterial coupling in healthy adolescents. Eur Heart J Cardiovasc Imaging 2021; 22:688-694. [PMID: 32380528 DOI: 10.1093/ehjci/jeaa085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS To explore the effects of age and sex in adolescents vs. young or middle-aged adults on pulmonary vascular function and right ventricular-arterial (RV-PA) coupling as assessed by exercise stress echocardiography. METHODS AND RESULTS Forty healthy adolescents aged 12-15 years were compared with 40 young adults aged 17-22 years and 40 middle-aged adults aged 30-50 years. Sex distribution was equal in the three groups. All the subjects underwent an exercise stress echocardiography. A pulmonary vascular distensibility coefficient α was determined from multipoint pulmonary vascular pressure-flow relationships. RV-PA coupling was assessed by the tricuspid annular plane systolic excursion (TAPSE) to systolic pulmonary artery pressure (PASP) ratio, who has been previously validated by invasive study. While cardiac index and mean PAP were not different, adolescents compared to young and middle-aged adults, respectively had higher pulmonary vascular distensibility coefficients α (1.60 ± 0.31%/mmHg vs. 1.39 ± 0.29%/mmHg vs. 1.20 ± 0.35%/mmHg, P < 0.00001). Adolescents and young adults compared to middle-aged adults, respectively had higher TAPSE/PASP ratios at rest (1.24 ± 0.18 mm/mmHg and 1.22 ± 0.17 mm/mmHg vs. 1.07 ± 0.18 mm/mmHg, P < 0.008) and during exercise (0.86 ± 0.24, 0.80 ± 0.15 and 0.72 ± 0.15 mm/mmHg, P < 0.04). The TAPSE/PASP ratio decreased with exercise. There were no sex differences in α or TAPSE/PASP. CONCLUSION Compared to adults, adolescents present with a sex-independent more distensible pulmonary circulation. Resting and exercise RV-PA coupling is decreased in middle-aged adults.
Collapse
Affiliation(s)
- Kevin Forton
- Faculty of Motor Sciences, Cardio-Pulmonary Exercise Laboratory, Université Libre de Bruxelles, Erasmus Campus CP 604, 808 Lennik Road, 1070 Brussels, Belgium.,Department of Cardiology, Erasmus University Hospital, 1070 Brussels, Belgium
| | - Yoshiki Motoji
- Faculty of Motor Sciences, Cardio-Pulmonary Exercise Laboratory, Université Libre de Bruxelles, Erasmus Campus CP 604, 808 Lennik Road, 1070 Brussels, Belgium.,Department of Cardiology, Erasmus University Hospital, 1070 Brussels, Belgium
| | - Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy.,Department of Management, Information and Production Engineering, University of Bergamo, Viale G. Marconi, 5, 24044 Dalmine (BG), Italy
| | - Vitalie Faoro
- Faculty of Motor Sciences, Cardio-Pulmonary Exercise Laboratory, Université Libre de Bruxelles, Erasmus Campus CP 604, 808 Lennik Road, 1070 Brussels, Belgium
| | - Robert Naeije
- Faculty of Motor Sciences, Cardio-Pulmonary Exercise Laboratory, Université Libre de Bruxelles, Erasmus Campus CP 604, 808 Lennik Road, 1070 Brussels, Belgium
| |
Collapse
|
226
|
Zubair A, Waheed S, Shuja F. Psychological impact of cadaveric dissection on first-year medical students. J R Coll Physicians Edinb 2021; 51:392-401. [PMID: 34131680 DOI: 10.4997/jrcpe.2021.419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This cross-sectional study was carried out to ascertain if first-time cadaver dissections can cause acute stress disorder (ASD) in medical students, and if death anxiety and gender play a role in the development of these symptoms. METHODS A total of 135 first-year medical students at the Services Institute of Medical Sciences and King Edward Medical University, Lahore, Pakistan, who had recently conducted their first ever cadaver dissection filled out three scales: the Impact of Event Scale-Revised (IES-R), the Appraisal of Life Scale (Revised) (ALS-R) and Death Anxiety Inventory. The results were then calculated via SPSS v.23. Any students with a history of psychiatric treatment or disorder were not included in the study. RESULTS Scores on the IES-R showed that the sample suffered from symptoms of ASD (mean = 36.15, standard deviation = 15.99). Multilinear regression showed that death anxiety did not predict any variance on the scores for IES-R, whereas higher scores on the ALS-R threat domain scale predicted higher scores on the IES-R. Death anxiety had little to no impact on the scores for IES-R. CONCLUSIONS Results showed that students who perceived the dissection situation as threatening and anxiety inducing were more likely to test positively for ASD symptoms. A major limitation of the study was that it did not measure whether these symptoms reduced with repeated exposure to cadaver dissection or how symptoms changed over time.
Collapse
Affiliation(s)
- Ambreen Zubair
- South Medical Ward, King Edward Medical University, Lahore, Pakistan
| | - Satia Waheed
- Medical Unit IV Service, Institute of Medical Sciences, Lahore, Pakistan,
| | | |
Collapse
|
227
|
Keranov S, Dörr O, Jafari L, Liebetrau C, Keller T, Troidl C, Riehm J, Rutsatz W, Bauer P, Kriechbaum S, Voss S, Richter MJ, Tello K, Gall H, Ghofrani HA, Guth S, Seeger W, Hamm CW, Nef H. Osteopontin and galectin-3 as biomarkers of maladaptive right ventricular remodeling in pulmonary hypertension. Biomark Med 2021; 15:1021-1034. [PMID: 34289706 DOI: 10.2217/bmm-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study assessed the utility of osteopontin (OPN) and galectin-3 (Gal-3) as biomarkers of maladaptive right ventricular remodeling in pulmonary hypertension (PH). Materials & methods: We examined plasma levels of OPN and Gal-3 in patients with PH (n = 62), dilated cardiomyopathy (n = 34), left ventricular hypertrophy (LVH; n = 47), and controls without right ventricle (RV) or LV abnormalities (n = 38). Results: OPN and Gal-3 levels were higher in PH, dilated cardiomyopathy and LVH than in the controls. OPN concentrations in PH patients with maladaptive RV were significantly higher than in those with adaptive RV. Gal-3 did not differentiate between adaptive and maladaptive RV remodeling in PH. OPN and Gal-3 levels did not correlate with parameters of LV remodeling. Conclusion: OPN is a potential biomarker of RV maladaptation.
Collapse
Affiliation(s)
- Stanislav Keranov
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany
| | - Oliver Dörr
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Christoph Liebetrau
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Till Keller
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Christian Troidl
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Jessica Riehm
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
| | - Wiebke Rutsatz
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
| | - Pascal Bauer
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
| | - Steffen Kriechbaum
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Sandra Voss
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Christian W Hamm
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Holger Nef
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Rhein Main, Bad Nauheim, 61231, Germany.,Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| |
Collapse
|
228
|
Guo X, Lai J, Wang H, Tian Z, Wang Q, Zhao J, Li M, Fang Q, Fang L, Liu Y, Zeng X. Predictive value of non-invasive right ventricle to pulmonary circulation coupling in systemic lupus erythematosus patients with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging 2021; 22:111-118. [PMID: 31872222 DOI: 10.1093/ehjci/jez311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a serious and devastating complication of systemic lupus erythematosus (SLE), especially when the right ventricle (RV) fails. Whether the ratio between tricuspid annular plane systolic excursion (TAPSE) and pulmonary artery systolic pressure (PASP) measured by echocardiography as a simple surrogate of RV to pulmonary circulation (PC) coupling predicts the outcome of SLE-associated PAH has not been investigated. METHODS AND RESULTS Between February 2010 and August 2015, 112 consecutive patients with a diagnosis of SLE-associated PAH confirmed by right heart catheterization were enrolled prospectively. The endpoint was a composite of all-cause mortality and clinical worsening. Baseline clinical characteristics and echocardiographic assessment were analysed. Among all the patients, 47 (42%) patients experienced the endpoint (mean follow-up period 18.1 ± 12.0 months), including 20 patients who died during a median follow-up period of 48.5 months. Multivariable Cox regression analysis showed that TAPSE/PASP ratio [hazard ratio (HR) 0.004, P = 0.017] and 6-min walk distance (6MWD) (HR 0.997, P = 0.036) were the independent predictors for the endpoint. A three-group prediction risk was created based on combined assessment of the TAPSE/PASP ratio and 6MWD relative to their cut-off values. The patients with the worse RV-PC coupling (TAPSE/PASP <0.184 mm/mmHg) and the lower 6MWD (<395 m) had the highest risk (HR 4.62, confidence interval 2.27-9.41, P < 0.001) of experiencing the endpoint. CONCLUSION The TAPSE/PASP ratio, combined with 6MWD, provides clinical and prognostic insights into patients with SLE-associated PAH. A low TAPSE/PASP and low 6MWD identifies the subgroup of patients with high risk of poor prognosis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jinzhi Lai
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Hui Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - MengTao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Yongtai Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
229
|
Wamala I, Payne CJ, Saeed MY, Bautista-Salinas D, Van Story D, Thalhofer T, Staffa SJ, Ghelani SJ, Del Nido PJ, Walsh CJ, Vasilyev NV. Importance of Preserved Tricuspid Valve Function for Effective Soft Robotic Augmentation of the Right Ventricle in Cases of Elevated Pulmonary Artery Pressure. Cardiovasc Eng Technol 2021; 13:120-128. [PMID: 34263419 PMCID: PMC8888489 DOI: 10.1007/s13239-021-00562-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Purpose In clinical practice, many patients with right heart failure (RHF) have elevated pulmonary artery pressures and increased afterload on the right ventricle (RV). In this study, we evaluated the feasibility of RV augmentation using a soft robotic right ventricular assist device (SRVAD), in cases of increased RV afterload. Methods In nine Yorkshire swine of 65–80 kg, a pulmonary artery band was placed to cause RHF and maintained in place to simulate an ongoing elevated afterload on the RV. The SRVAD was actuated in synchrony with the ventricle to augment native RV output for up to one hour. Hemodynamic parameters during SRVAD actuation were compared to baseline and RHF levels. Results Median RV cardiac index (CI) was 1.43 (IQR, 1.37–1.80) L/min/m2 and 1.26 (IQR 1.05–1.57) L/min/m2 at first and second baseline. Upon PA banding RV CI fell to a median of 0.79 (IQR 0.63–1.04) L/min/m2. Device actuation improved RV CI to a median of 0.87 (IQR 0.78–1.01), 0.85 (IQR 0.64–1.59) and 1.11 (IQR 0.67–1.48) L/min/m2 at 5 min (p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes respectively. Statistical GEE analysis showed that lower grade of tricuspid regurgitation at time of RHF (p = 0.046), a lower diastolic pressure at RHF (p = 0.019) and lower mean arterial pressure at RHF (p = 0.024) were significantly associated with higher SRVAD effectiveness. Conclusions Short-term augmentation of RV function using SRVAD is feasible even in cases of elevated RV afterload. Moderate or severe tricuspid regurgitation were associated with reduced device effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00562-7
Collapse
Affiliation(s)
- Isaac Wamala
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA. .,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin, Berlin, Germany.
| | - Christopher J Payne
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.,Industrial Engineering, Technical University of Cartagena, Murcia, Spain
| | - David Van Story
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | | | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Sunil J Ghelani
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
230
|
Echocardiographic Assessment of Right Ventricular-Arterial Coupling in Predicting Prognosis of Pulmonary Arterial Hypertension Patients. J Clin Med 2021; 10:jcm10132995. [PMID: 34279478 PMCID: PMC8268071 DOI: 10.3390/jcm10132995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In response to an increased afterload in pulmonary arterial hypertension (PAH), the right ventricle (RV) adapts by remodeling and increasing contractility. The idea of coupling refers to maintaining a relatively constant relationship between ventricular contractility and afterload. Twenty-eight stable PAH patients (mean age 49.5 ± 15.5 years) were enrolled into the study. The follow-up time of this study was 58 months, and the combined endpoint (CEP) was defined as death or clinical deterioration. We used echo TAPSE as a surrogate of RV contractility and estimated systolic pulmonary artery pressure (sPAP) reflecting RV afterload. Ventricular–arterial coupling was evaluated by the ratio between these two parameters (TAPSE/sPAP). In the PAH group, the mean pulmonary artery pressure (mPAP) was 47.29 ± 15.3 mmHg. The mean echo-estimated TAPSE/sPAP was 0.34 ± 0.19 mm/mmHg and was comparable in value and prognostic usefulness to the parameter derived from magnetic resonance and catheterization (ROC analysis). Patients who had CEP (n = 21) had a significantly higher mPAP (53.11 ± 17.11 mmHg vs. 34.86 ± 8.49 mmHg, p = 0.03) and lower TAPSE/sPAP (0.30 ± 0.21 vs. 0.43 ± 0.23, p = 0.04). Patients with a TAPSE/sPAP lower than 0.25 mm/mmHg had worse prognosis, with log-rank test p = 0.001. the echocardiographic estimation of TAPSE/sPAP offers an easy, reliable, non-invasive prognostic parameter for the comprehensive assessment of hemodynamic adaptation in PAH patients.
Collapse
|
231
|
Time Is of the Essence in PAH Therapy. Chest 2021; 160:25-26. [PMID: 34246368 DOI: 10.1016/j.chest.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022] Open
|
232
|
Potus F, Frump AL, Umar S, R. Vanderpool R, Al Ghouleh I, Lai YC. Recent advancements in pulmonary arterial hypertension and right heart failure research: overview of selected abstracts from ATS2020 and emerging COVID-19 research. Pulm Circ 2021; 11:20458940211037274. [PMID: 34434543 PMCID: PMC8381443 DOI: 10.1177/20458940211037274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Each year the American Thoracic Society (ATS) Conference brings together scientists who conduct basic, translational and clinical research to present on the recent advances in the field of respirology. Due to the Coronavirus Disease of 2019 (COVID-19) pandemic, the ATS2020 Conference was held online in a series of virtual meetings. In this review, we focus on the breakthroughs in pulmonary hypertension research. We have selected 11 of the best basic science abstracts which were presented at the ATS2020 Assembly on Pulmonary Circulation mini-symposium "What's New in Pulmonary Arterial Hypertension (PAH) and Right Ventricular (RV) Signaling: Lessons from the Best Abstracts," reflecting the current state of the art and associated challenges in PH. Particular emphasis is placed on understanding the mechanisms underlying RV failure, the regulation of inflammation, and the novel therapeutic targets that emerged from preclinical research. The pathologic interactions between pulmonary hypertension, right ventricular function and COVID-19 are also discussed.
Collapse
Affiliation(s)
- Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de
l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec,
Canada
| | - Andrea L. Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, Division of
Molecular Medicine, David Geffen School of Medicine at University of California Los
Angeles, Los Angeles, CA, USA
| | - Rebecca R. Vanderpool
- Division of Translational and Regenerative Medicine, University of
Arizona, Tucson, AZ, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, and
Division of Cardiology, Department of Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
233
|
Malenfant S, Lebret M, Breton-Gagnon É, Potus F, Paulin R, Bonnet S, Provencher S. Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms. Eur Respir Rev 2021; 30:200284. [PMID: 33853885 PMCID: PMC9488698 DOI: 10.1183/16000617.0284-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Abstract
Exercise intolerance is a cardinal symptom of pulmonary arterial hypertension (PAH) and strongly impacts patients' quality of life (QoL). Although central cardiopulmonary impairments limit peak oxygen consumption (V' O2peak ) in patients with PAH, several peripheral abnormalities have been described over the recent decade as key determinants in exercise intolerance, including impaired skeletal muscle (SKM) morphology, convective O2 transport, capillarity and metabolism indicating that peripheral abnormalities play a greater role in limiting exercise capacity than previously thought. More recently, cerebrovascular alterations potentially contributing to exercise intolerance in patients with PAH were also documented. Currently, only cardiopulmonary rehabilitation has been shown to efficiently improve the peripheral components of exercise intolerance in patients with PAH. However, more extensive studies are needed to identify targeted interventions that would ultimately improve patients' exercise tolerance and QoL. The present review offers a broad and comprehensive analysis of the present literature about the complex mechanisms and their interactions limiting exercise in patients and suggests several gaps in knowledge that need to be addressed in the future for a better understanding of exercise intolerance in patients with PAH.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marius Lebret
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Émilie Breton-Gagnon
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - François Potus
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
234
|
Echocardiography in Pulmonary Arterial Hypertension: Is It Time to Reconsider Its Prognostic Utility? J Clin Med 2021; 10:jcm10132826. [PMID: 34206876 PMCID: PMC8268493 DOI: 10.3390/jcm10132826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an insult in the pulmonary vasculature, with subsequent right ventricular (RV) adaptation to the increased afterload that ultimately leads to RV failure. The awareness of the importance of RV function in PAH has increased considerably because right heart failure is the predominant cause of death in PAH patients. Given its wide availability and reduced cost, echocardiography is of paramount importance in the evaluation of the right heart in PAH. Several echocardiographic parameters have been shown to have prognostic implications in PAH; however, the role of echocardiography in the risk assessment of the PAH patient is limited under the current guidelines. This review discusses the echocardiographic evaluation of the RV in PAH and during therapy, and its prognostic implications, as well as the potential significant role of repeated echocardiographic assessment in the follow-up of patients with PAH.
Collapse
|
235
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
236
|
Levy D, Laghlam D, Estagnasie P, Brusset A, Squara P, Nguyen LS. Post-operative Right Ventricular Failure After Cardiac Surgery: A Cohort Study. Front Cardiovasc Med 2021; 8:667328. [PMID: 34195233 PMCID: PMC8236513 DOI: 10.3389/fcvm.2021.667328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Right ventricular failure (RVF) after cardiac surgery is an important risk factor for morbidity and mortality. Its diagnosis is challenging, and thus, its incidence and predictors are not well-established. We investigated the incidence, complications, and variables associated with clinically relevant post-operative RVF. Methods: We included all patients who underwent cardiac surgery with cardiopulmonary bypass between 2016 and 2019 in a cardiac surgery center with standardized diagnostic and therapeutic management of RVF. RVF was considered only if clinically relevant: associated with hemodynamic instability requiring catecholamine support and inhaled nitric oxide relayed by sildenafil. Results: Overall, 3,826 patients were included, of whom, 110 (2.9%) developed post-operative RVF. Mortality was not different among patients who developed post-operative RVF, compared with the rest of the cohort (1.8 vs. 0.7%, p = 0.17). Using a composite outcome that combined death, reintubation, stroke, and prolonged intensive care unit stay (more than 14 days) yielded an incidence of 6.6%, and RVF was associated with this composite outcome with an odds ratio of 3.6 (2.2–5.8), p < 0.001. In a multivariable model, pre-operative variables independently associated with post-operative RVF were pre-operative atrial fibrillation (AF) {adjusted odds ratio (adjOR) 3.22 [95% confidence interval (95%CI) = 1.94–5.36], p < 0.001}, left ventricle ejection fraction below 50% [adjOR = 2.55 (95%CI = 1.52–4.33), p < 0.001], systolic pulmonary artery pressure above 55 mmHg [adjOR = 8.64 (95%CI = 5.27–14.1); p < 0.001], mitral valve surgery [adjOR = 2.17 CI (95%CI = 1.28–3.66), p = 0.004], and tricuspid valve surgery [adjOR = 10.33 (95%CI = 6.14–17.4), p < 0.001]. In patients who developed post-operative RVF requiring treatment, 32 (29.1%) showed RV dysfunction before surgery. Conclusion: In this cohort study, 2.9% of patients developed clinically significant post-operative RVF. Moreover, RVF was associated with severe adverse outcomes, including death, strokes, reintubation, and prolonged intensive care unit stay.
Collapse
Affiliation(s)
- David Levy
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Driss Laghlam
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Philippe Estagnasie
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Alain Brusset
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Pierre Squara
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Lee S Nguyen
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| |
Collapse
|
237
|
Roubenne L, Marthan R, Le Grand B, Guibert C. Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells 2021; 10:cells10061477. [PMID: 34204699 PMCID: PMC8231487 DOI: 10.3390/cells10061477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Collapse
Affiliation(s)
- Lukas Roubenne
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- CHU de Bordeaux, Avenue du Haut Lévêque, F-33604 Pessac, France
| | - Bruno Le Grand
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
238
|
Bonnemain J, Ltaief Z, Liaudet L. The Right Ventricle in COVID-19. J Clin Med 2021; 10:jcm10122535. [PMID: 34200990 PMCID: PMC8230058 DOI: 10.3390/jcm10122535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with the novel severe acute respiratory coronavirus-2 (SARS-CoV2) results in COVID-19, a disease primarily affecting the respiratory system to provoke a spectrum of clinical manifestations, the most severe being acute respiratory distress syndrome (ARDS). A significant proportion of COVID-19 patients also develop various cardiac complications, among which dysfunction of the right ventricle (RV) appears particularly common, especially in severe forms of the disease, and which is associated with a dismal prognosis. Echocardiographic studies indeed reveal right ventricular dysfunction in up to 40% of patients, a proportion even greater when the RV is explored with strain imaging echocardiography. The pathophysiological mechanisms of RV dysfunction in COVID-19 include processes increasing the pulmonary vascular hydraulic load and others reducing RV contractility, which precipitate the acute uncoupling of the RV with the pulmonary circulation. Understanding these mechanisms provides the fundamental basis for the adequate therapeutic management of RV dysfunction, which incorporates protective mechanical ventilation, the prevention and treatment of pulmonary vasoconstriction and thrombotic complications, as well as the appropriate management of RV preload and contractility. This comprehensive review provides a detailed update of the evidence of RV dysfunction in COVID-19, its pathophysiological mechanisms, and its therapy.
Collapse
Affiliation(s)
- Jean Bonnemain
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
| | - Zied Ltaief
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
- Division of Pathophysiology, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: ; Tel.: +41-79-556-4278
| |
Collapse
|
239
|
Le Ribeuz H, To L, Ghigna MR, Martin C, Nagaraj C, Dreano E, Rucker-Martin C, Girerd B, Bouliguan J, Pechoux C, Lambert M, Boet A, Issard J, Mercier O, Hoetzenecker K, Manoury B, Becq F, Burgel PR, Cottart CH, Olschewski A, Sermet-Gaudelus I, Perros F, Humbert M, Montani D, Antigny F. Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.00653-2020. [PMID: 33926975 DOI: 10.1183/13993003.00653-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A reduction in pulmonary artery (PA) relaxation is a key event in pulmonary arterial hypertension (PAH) pathogenesis. CFTR dysfunction in airway epithelial cells plays a central role in cystic fibrosis (CF); CFTR is also expressed in PAs and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS RT-Q-PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in PAs from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myograph on human, pig and rat PAs, we demonstrated that CFTR activation induces PAs relaxation. CFTR-mediated PA relaxation was reduced in PAs from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularization. Pathologic assessment of lungs from patients with severe CF (F508del-CFTR) revealed severe PA remodeling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularization. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS CFTR expression is strongly decreased in PA smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces PA relaxation.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lucie To
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Clémence Martin
- Hôpitaux de Paris (AP-HP), Dept of Respiratory Medicine, Centre de Référence Maladie Rare Mucoviscidose, ERN-Lung, Cochin Hospital, , Paris, France.,Inserm U1016, Institut Cochin, Université de Paris, Paris, France
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elise Dreano
- Inserm U1151 - CNRS UMR 8253 - Institut Necker Enfants Malades, Centre Maladie Rare Mucoviscidose, ERN Lung, Université de Paris, Paris, France
| | - Catherine Rucker-Martin
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jérôme Bouliguan
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-1185, Université Paris Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Christine Pechoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Angèle Boet
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Justin Issard
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Boris Manoury
- Signalisation et Physiopathologie Cardiovasculaire - UMR_S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers Cedex 9, France
| | - Pierre-Régis Burgel
- Hôpitaux de Paris (AP-HP), Dept of Respiratory Medicine, Centre de Référence Maladie Rare Mucoviscidose, ERN-Lung, Cochin Hospital, , Paris, France.,Inserm U1016, Institut Cochin, Université de Paris, Paris, France
| | - Charles-Henry Cottart
- Inserm U1151 - CNRS UMR 8253 - Institut Necker Enfants Malades, Centre Maladie Rare Mucoviscidose, ERN Lung, Université de Paris, Paris, France
| | - Andrea Olschewski
- Inserm U1016, Institut Cochin, Université de Paris, Paris, France.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Isabelle Sermet-Gaudelus
- Inserm U1151 - CNRS UMR 8253 - Institut Necker Enfants Malades, Centre Maladie Rare Mucoviscidose, ERN Lung, Université de Paris, Paris, France
| | - Frédéric Perros
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
240
|
Oakland H, Joseph P, Naeije R, Elassal A, Cullinan M, Heerdt PM, Singh I. Arterial load and right ventricular-vascular coupling in pulmonary hypertension. J Appl Physiol (1985) 2021; 131:424-433. [PMID: 34043473 DOI: 10.1152/japplphysiol.00204.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Right ventricular (RV) functional adaptation to afterload determines outcome in pulmonary hypertension (PH). RV afterload is determined by the dynamic interaction between pulmonary vascular resistance (PVR), characteristic impedance (Zc), and wave reflection. Pulmonary vascular impedance (PVZ) represents the most comprehensive measure of RV afterload; however, there is an unmet need for an easier bedside measurement of this complex variable. Although a recent study showed that Zc and wave reflection can be estimated from RV pressure waveform analysis and cardiac output, this has not been validated. Estimations of Zc and wave reflection coefficient (λ) were validated relative to conventional spectral analysis in an animal model. Zc, λ, and the single-beat ratio of end-systolic to arterial elastance (Ees/Ea) to estimate RV-pulmonary arterial (PA) coupling were determined from right heart catheterization (RHC) data. The study included 30 pulmonary artery hypertension (PAH) and 40 heart failure with preserved ejection fraction (HFpEF) patients [20 combined pre- and postcapillary PH (Cpc-PH) and 20 isolated postcapillary PH, (Ipc-PH)]. Also included were 10 age- and sex-matched controls. There was good agreement with minimal bias between estimated and spectral analysis-derived Zc and λ. Zc in PAH and Cpc-PH groups exceeded that in the Ipc-PH group and controls. λ was increased in Ipc-PH (0.84 ± 0.02), Cpc-PH (0.87 ± 0.05), and PAH groups (0.85 ± 0.04) compared with controls (0.79 ± 0.03); all P values were <0.05. λ was the only afterload parameter associated with RV-PA coupling in PAH. In the PH-HFpEF group, RV-PA uncoupling was independent of RV afterload. Our findings indicate that Zc and λ derived from an RV pressure curve can be used to improve estimation of RV afterload. λ is the only afterload measure associated with RV-PA uncoupling in PAH, whereas RV-PA uncoupling in PH-HFpEF appears to be independent of afterload consistent with an inherent abnormality of the RV myocardium.NEW & NOTEWORTHY Pulmonary vascular impedance (PVZ) represents the most comprehensive measure of right ventricle (RV) afterload; however, measurement of this variable is complex. We demonstrate that characteristic impedance (Zc) and a wave reflection coefficient, λ, can be derived from RV pressure waveform analysis. In addition, RV dysfunction in left heart disease is independent of its afterload. The current study provides a platform for future studies to examine the pharmacotherapeutic effects and prognosis of different measures of RV afterload.
Collapse
Affiliation(s)
- Hannah Oakland
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut
| | - Phillip Joseph
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut
| | - Robert Naeije
- School of Medicine, Free University of Brussels, Brussels, Belgium
| | - Ahmed Elassal
- Division of Applied Hemodynamics, Department of Anesthesiology, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut
| | - Marjorie Cullinan
- Department of Respiratory Care, Yale New Haven Hospital, New Haven, Connecticut
| | - Paul M Heerdt
- Division of Applied Hemodynamics, Department of Anesthesiology, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut
| | - Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
241
|
Clinical safety and efficacy of thrombolytic therapy with low-dose prolonged infusion of tissue type plasminogen activator in patients with intermediate-high risk pulmonary embolism. Blood Coagul Fibrinolysis 2021; 31:536-542. [PMID: 33181758 DOI: 10.1097/mbc.0000000000000960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
: The patients with intermediate-high risk pulmonary embolism who have acute right ventricular (RV) dysfunction and myocardial injury without overt hemodynamic compromise may be candidates for thrombolytic therapy. Alternative low-dose thrombolytic therapy strategies with prolonged infusion may further decrease the complication rates as its efficacy and safety have been previously proven in the management of prosthetic valve thrombosis. In this study, we aimed to investigate the clinical outcomes of low-dose prolonged thrombolytic therapy regimen in intermediate-high risk pulmonary embolism patients. This study enrolled 16 retrospectively evaluated patients (female 9, mean age: 70.9 ± 13.5 years) with the diagnosis of acute pulmonary embolism who were treated with low-dose and slow-infusion of tissue-type plasminogen activator (t-PA). All patients underwent transthoracic echocardiography and computed tomography scan for assessment of thrombolytic therapy success. Low-dose prolonged thrombolytic therapy was successful in all patients. The mean t-PA dose used was 48.4 ± 6.3 mg. There was residual segmental thrombus in nine (56.3%) patients after thrombolytic therapy. The arterial oxygen saturation and tricuspid annular plane systolic excursion increased after thrombolytic therapy whereas heart rate, RV to left ventricular (LV) ratio, systolic pulmonary artery pressure, and the frequencies of hypotension and tachypnea significantly decreased. There was no cerebrovascular accident or major bleeding requiring transfusion. There were two minor bleedings (12.5%) including hemoptysis and epistaxis. Thrombolytic therapy in these intermediate-high risk pulmonary embolism patients was associated with excellent clinical outcomes and survival to discharge (100%) without any 60-day mortality. Prolonged thrombolytic therapy regimen with low-dose and slow-infusion of t-PA may be associated with lower complication rates without comprimising effectiveness in patients with acute intermediate-high risk pulmonary embolism.
Collapse
|
242
|
Jung YH, Ren X, Suffredini G, Dodd-O JM, Gao WD. Right ventricular diastolic dysfunction and failure: a review. Heart Fail Rev 2021; 27:1077-1090. [PMID: 34013436 DOI: 10.1007/s10741-021-10123-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
Right ventricular diastolic dysfunction and failure (RVDDF) has been increasingly identified in patients with cardiovascular diseases, including heart failure and other diseases with cardiac involvement. It is unknown whether RVDDF exists as a distinct clinical entity; however, its presence and degree have been shown to be a sensitive marker of end-organ dysfunction related to multiple disease processes including systemic hypertension, pulmonary hypertension, heart failure, and endocrine disease. In this manuscript, we review issues pertaining to RVDDF including anatomic features of the right ventricle, physiologic measurements, RVDDF diagnosis, underlying mechanisms, clinical impact, and clinical management. Several unique features of RVDDF are also discussed.
Collapse
Affiliation(s)
- Youn-Hoa Jung
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Giancarlo Suffredini
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jeffery M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
243
|
Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. Recent Findings New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. Summary CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.
Collapse
|
244
|
High Right Ventricular Afterload during Exercise in Patients with Pulmonary Arterial Hypertension. J Clin Med 2021; 10:jcm10092024. [PMID: 34065097 PMCID: PMC8126033 DOI: 10.3390/jcm10092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
The right ventricle (RV) is more sensitive to an increase in afterload than the left ventricle (LV), and RV afterload during exercise increases more easily than LV afterload. Pulmonary arterial hypertension (PAH)-specific therapy has improved pulmonary hemodynamics at rest; however, the pulmonary hemodynamic response to exercise is still abnormal in most patients with PAH. In these patients, RV afterload during exercise could be higher, resulting in a greater increase in RV wall stress. Recently, an increasing number of studies have indicated the short-term efficacy of exercise training. However, considering the potential risk of promoting myocardial maladaptive remodeling, even low-intensity repetitive exercise training could lead to long-term clinical deterioration. Further studies investigating the long-term effects on the RV and pulmonary vasculature are warranted. Although the indications for exercise training for patients with PAH have been expanding, exercise training may be associated with various risks. Training programs along with risk stratification based on the pulmonary hemodynamic response to exercise may enhance the safety of patients with PAH.
Collapse
|
245
|
Zhao QH, Gong SG, Jiang R, Li C, Chen GF, Luo CJ, Qiu HL, Liu JM, Wang L, Zhang R. Echocardiographic Prognosis Relevance of Attenuated Right Heart Remodeling in Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:650848. [PMID: 34026869 PMCID: PMC8137976 DOI: 10.3389/fcvm.2021.650848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Right ventricular (RV) function is a great determination of the fate in patients with pulmonary arterial hypertension (PAH). Monitoring RV structure back to normal or improvement should be useful for evaluation of RV function. The aims of this study were to assess the prognostic relevance of changed right heart (RH) dimensions by echocardiography and attenuated RH remodeling (ARHR) in idiopathic PAH (IPAH). Methods: We retrospectively analyzed 232 consecutive adult IPAH patients at baseline assessment and included RH catheterization and echocardiography. ARHR at the mean 20 ± 12 months' follow-up was defined by a decreased right atrium area, RV mid-diameter, and left ventricular end-diastolic eccentricity index. The follow-up end point was all-cause mortality. Results: At mean 20 ± 12 months' follow-up, 33 of 232 patients (14.2%) presented with ARHR. The remaining 199 surviving patients were monitored for another 25 ± 20 months. At the end of follow-up, the survival rates at 1, 3, and 5 years were 89, 89, and 68% in patients with ARHR, respectively, and 84, 65 and 41% in patients without ARHR (log-rank p = 0.01). ARHR was an independent prognostic factor for mortality. Besides, ARHR was available to further stratify patients' risk assessment through the French PAH non-invasive-risk criteria. Conclusions: Echocardiographic ARHR is an independent determinant of prognosis in IPAH at long-term follow-up. ARHR might be a useful tool to indicate the RV morphologic and functional improvement associated with better prognostic likelihood.
Collapse
Affiliation(s)
- Qin-Hua Zhao
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Su-Gang Gong
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Jiang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Li
- Tongji University School of Medicine, Shanghai, China
| | - Ge-Fei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ci-Jun Luo
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Ling Qiu
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Ming Liu
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
246
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
247
|
Markvardsen LK, Sønderskov LD, Wandall-Frostholm C, Pinilla E, Prat-Duran J, Aalling M, Mogensen S, Andersen CU, Simonsen U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J Vasc Res 2021; 58:237-251. [PMID: 33910208 DOI: 10.1159/000515511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.
Collapse
MESH Headings
- Animals
- Arterial Pressure/drug effects
- Cystamine/pharmacology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors
- Protein Glutamine gamma Glutamyltransferase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Pulmonary Fibrosis/enzymology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/prevention & control
- Rats, Wistar
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Lars K Markvardsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene D Sønderskov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Charlotte U Andersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
248
|
Pullamsetti SS, Tello K, Seeger W. Utilising biomarkers to predict right heart maladaptive phenotype: a step toward precision medicine. Eur Respir J 2021; 57:57/4/2004506. [PMID: 33833075 DOI: 10.1183/13993003.04506-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Khodr Tello
- Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
249
|
Llucià-Valldeperas A, van Wezenbeek J, Goumans MJ, de Man FS. The battle of new biomarkers for right heart failure in pulmonary hypertension: is the queen of hearts NT-proBNP defeated at last? Eur Respir J 2021; 57:57/4/2004277. [PMID: 33795356 DOI: 10.1183/13993003.04277-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Aida Llucià-Valldeperas
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Authors contributed equally
| | - Jessie van Wezenbeek
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Authors contributed equally
| | | | - Frances Sarah de Man
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
250
|
Nakaya T, Tsujino I, Nakamura J, Chiba Y, Iwano H. Right ventricular pressure-volume loop produced with simultaneous application of three-dimensional echocardiography and high-fidelity micromanometry in a patient with pulmonary arterial hypertension. Echocardiography 2021; 38:805-807. [PMID: 33778995 DOI: 10.1111/echo.15032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/27/2022] Open
Abstract
Accurate assessment of right ventricular (RV) function has received a growing attention. Pressure-volume (PV) loop analysis is the gold standard method for evaluating RV function; however, it is not widely employed because of its invasive nature and complexity. The present report is the first to have drawn a RV PV loop in a patient with pulmonary hypertension, with a simultaneous recording of RV pressure and volume using high-fidelity micromanometry and three-dimensional echocardiography. This allows for less invasive and simple assessment of RV function, potentially promoting better understanding and management of pulmonary hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Toshitaka Nakaya
- Department of Respiratory Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichizo Tsujino
- Department of Respiratory Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Nakamura
- Department of Respiratory Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Chiba
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Iwano
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|