201
|
Ets-1 is required for the activation of VEGFR3 during latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Virol 2013; 87:6758-68. [PMID: 23552426 DOI: 10.1128/jvi.03241-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma (KS), is present in the predominant tumor cells of KS, the spindle cells. Spindle cells express markers of lymphatic endothelium and, interestingly, KSHV infection of blood endothelial cells reprograms them to a lymphatic endothelial cell phenotype. KSHV-induced reprogramming requires the activation of STAT3 and phosphatidylinositol 3 (PI3)/AKT through the activation of cellular receptor gp130. Importantly, KSHV-induced reprogramming is specific to endothelial cells, indicating that there are additional host genes that are differentially regulated during KSHV infection of endothelial cells that contribute to lymphatic reprogramming. We found that the transcription factor Ets-1 is highly expressed in KS spindle cells and is upregulated during KSHV infection of endothelial cells in culture. The KSHV latent vFLIP gene is sufficient to induce Ets-1 expression in an NF-κB-dependent fashion. Ets-1 is required for KSHV-induced expression of VEGFR3, a lymphatic endothelial-cell-specific receptor important for lymphangiogenesis, and Ets-1 activates the promoter of VEGFR3. Ets-1 knockdown does not alter the expression of another lymphatic-specific gene, the podoplanin gene, but does inhibit the expression of VEGFR3 in uninfected lymphatic endothelium, indicating that Ets-1 is a novel cellular regulator of VEGFR3 expression. Knockdown of Ets-1 affects the ability of KSHV-infected cells to display angiogenic phenotypes, indicating that Ets-1 plays a role in KSHV activation of endothelial cells during latent KSHV infection. Thus, Ets-1 is a novel regulator of VEGFR3 and is involved in the induction of angiogenic phenotypes by KSHV.
Collapse
|
202
|
Pal M, Koul S, Koul HK. The transcription factor sterile alpha motif (SAM) pointed domain-containing ETS transcription factor (SPDEF) is required for E-cadherin expression in prostate cancer cells. J Biol Chem 2013; 288:12222-31. [PMID: 23449978 DOI: 10.1074/jbc.m112.434225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Loss of E-cadherin is one of the key steps in tumor progression. Our previous studies demonstrate that SAM pointed domain-containing ETS transcription factor (SPDEF) inhibited prostate cancer metastasis in vitro and in vivo. In the present study, we evaluated the relationship between SPDEF and E-cadherin expression in an effort to better understand the mechanism of action of SPDEF in prostate tumor cell invasion and metastasis. The results presented here demonstrate a direct correlation between expression of E-cadherin and SPDEF in prostate cancer cells. Additional data demonstrate that modulation of E-cadherin and SPDEF had similar effects on cell migration/invasion. In addition, siRNA-mediated knockdown of E-cadherin was sufficient to block the effects of SPDEF on cell migration and invasion. We also show that stable forced expression of SPDEF results in increased expression of E-cadherin, whereas down-regulation of SPDEF decreased E-cadherin expression. In addition, we demonstrate that SPDEF expression is not regulated by E-cadherin. Moreover, our chromatin immunoprecipitation and luciferase reporter assay revealed that SPDEF occupies E-cadherin promoter site and acts as a direct transcriptional inducer of E-cadherin in prostate cancer cells. Taken together, to the best of our knowledge, these studies are the first demonstrating requirement of SPDEF for expression of E-cadherin, an essential epithelial cell junction protein. Given that loss of E-cadherin is a central tenant in tumor metastasis, the results of our studies, by providing a new mechanism for regulation of E-cadherin expression, could have far reaching impact.
Collapse
Affiliation(s)
- Mintu Pal
- Program in Urosciences, Division of Urology, Department of Surgery, School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
203
|
Legrand AJ, Choul-Li S, Spriet C, Idziorek T, Vicogne D, Drobecq H, Dantzer F, Villeret V, Aumercier M. The level of Ets-1 protein is regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in cancer cells to prevent DNA damage. PLoS One 2013; 8:e55883. [PMID: 23405229 PMCID: PMC3566071 DOI: 10.1371/journal.pone.0055883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Ets-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel interaction partner of Ets-1. We show that Ets-1 activates, by direct interaction, the catalytic activity of PARP-1 and is then poly(ADP-ribosyl)ated in a DNA-independent manner. The catalytic inhibition of PARP-1 enhanced Ets-1 transcriptional activity and caused its massive accumulation in cell nuclei. Ets-1 expression was correlated with an increase in DNA damage when PARP-1 was inhibited, leading to cancer cell death. Moreover, PARP-1 inhibitors caused only Ets-1-expressing cells to accumulate DNA damage. These results provide new insight into Ets-1 regulation in cancer cells and its link with DNA repair proteins. Furthermore, our findings suggest that PARP-1 inhibitors would be useful in a new therapeutic strategy that specifically targets Ets-1-expressing tumours.
Collapse
Affiliation(s)
- Arnaud J Legrand
- CNRS USR 3078, Institut de Recherche Interdisciplinaire, Campus CNRS de la Haute Borne, Université Lille Nord de France, IFR 147, BP 70478, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, Rahman ZAA, Ismail SM, Zaini ZM, Prepageran N, Kallarakkal TG, Ramanathan A, Mohayadi NABM, Rosli NSBM, Mustafa WMW, Abraham MT, Tay KK, Zain RB. Genome wide analysis of chromosomal alterations in oral squamous cell carcinomas revealed over expression of MGAM and ADAM9. PLoS One 2013; 8:e54705. [PMID: 23405089 PMCID: PMC3566089 DOI: 10.1371/journal.pone.0054705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/14/2012] [Indexed: 12/26/2022] Open
Abstract
Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
Collapse
Affiliation(s)
- Vui King Vincent-Chong
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Arif Anwar
- Sengenics Sdn Bhd, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sok Ching Cheong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, Selangor Darul Ehsan, Malaysia
| | - Yi-Hsin Yang
- Department of Dental Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zuraiza Mohamad Zaini
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Narayanan Prepageran
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Otorhinolaringology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | - Keng Kiong Tay
- Oral Health Division, Ministry of Health, Putrajaya, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
205
|
Tanaka M, Masaki Y, Tanaka K, Miyazaki M, Kato M, Sugimoto R, Nakamura K, Aishima S, Shirabe K, Nakamuta M, Enjoji M, Kotoh K, Takayanagi R. Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep 2013; 7:365-70. [PMID: 23178736 DOI: 10.3892/mmr.2012.1201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/16/2012] [Indexed: 12/16/2022] Open
Abstract
The prognosis of patients with hepatocellular carcinoma (HCC) may be improved by novel treatments focusing on the characteristic metabolic changes of this disease. Therefore, we analyzed the biological interactions of metabolic features with the degree of tumor differentiation and the level of malignant potential in 41 patients with completely resectable HCC. The expression levels in resected samples of mRNAs encoded by genes related to tumor metabolism and metastasis were investigated, and the correlation between these expression levels and degrees of differentiation was analyzed. Of the 41 patients, 2 patients had grade I, 27 had grade II, and 12 had grade III tumors. Reductions in the levels of 3-hydroxyacyl-CoA dehydrogenase (HADHA) and acyl-CoA oxidase (ACOX)-2 mRNAs, and increases in pyruvate kinase isoenzyme type M2 (PKM2) mRNA were significantly correlated with the progression of de-differentiation. Analysis of partial correlation coefficients showed that the level of PKM2 mRNA expression was significantly correlated with those of pro-angiogenic genes, vascular endothelial growth factor (VEGF) and ETS-1. Moreover, the levels of VEGF-A and ETS-1 mRNA expression were independently correlated with that of the epithelial-mesenchymal transition (EMT)‑related gene SNAIL. These findings suggest that reductions in fatty acid oxidation and responses to hypoxia may affect the progression of malignant phenotypes in HCC.
Collapse
Affiliation(s)
- Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Zhang XF, Zhu Y, Liang WB, Zhang JJ. The ETS-Domain Transcription Factor Elk-1 Regulates COX-2 Gene Expression and Inhibits Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell Line INS-1. Int J Endocrinol 2013; 2013:843462. [PMID: 23818898 PMCID: PMC3684088 DOI: 10.1155/2013/843462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 12/27/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic β -cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair β -cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. We previously demonstrated that transcription factor Elk-1 significantly upregulated COX-2 gene promoter activity. In this report, we used pancreatic β -cell line (INS-1) to explore the relationships between Elk-1 and COX-2. We first investigated the effects of Elk-1 on COX-2 transcriptional regulation and expression in INS-1 cells. We thus undertook to study the binding of Elk-1 to its putative binding sites in the COX-2 promoter. We also analysed glucose-stimulated insulin secretion (GSIS) in INS-1 cells that overexpressed Elk-1. Our results demonstrate that Elk-1 efficiently upregulates COX-2 expression at least partly through directly binding to the -82/-69 region of COX-2 promoter. Overexpression of Elk-1 inhibits GSIS in INS-1 cells. These findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic β -cell. Moreover, Elk-1, the transcriptional regulator of COX-2 expression, will be a potential target for the prevention of β -cell dysfunction mediated by PGE2.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Biochemistry, Wenzhou Medical College, Wenzhou 325035, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen-Biao Liang
- Transfusion Laboratory, Jiangsu Province Blood Center, Nanjing 210029, China
| | - Jing-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
- *Jing-Jing Zhang:
| |
Collapse
|
207
|
Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke. Brain Res 2012; 1495:76-85. [PMID: 23246490 DOI: 10.1016/j.brainres.2012.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 01/09/2023]
Abstract
Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies.
Collapse
|
208
|
Kawazu T, Nishino T, Obata Y, Furusu A, Miyazaki M, Abe K, Koji T, Kohno S. Production and degradation of extracellular matrix in reversible glomerular lesions in rat model of habu snake venom-induced glomerulonephritis. Med Mol Morphol 2012; 45:190-8. [DOI: 10.1007/s00795-011-0559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/28/2011] [Indexed: 12/11/2022]
|
209
|
Milflores-Flores L, Millán-Pérez L, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Characterization of P1 promoter activity of the beta-galactoside alpha2,6-sialyltransferase I gene (siat 1) in cervical and hepatic cancer cell lines. J Biosci 2012; 37:259-67. [PMID: 22581331 DOI: 10.1007/s12038-012-9194-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The level of beta-galactoside alpha2,6-sialyltransferase I (ST6Gal I) mRNA, encoded by the gene siat1, is increased in malignant tissues. Expression is regulated by different promoters - P1, P2 and P3 - generating three mRNA isoforms H, X and YZ. In cervical cancer tissue the mRNA isoform H, which results from P1 promoter activity, is increased. To study the regulation of P1 promoter, different constructs from P1 promoter were evaluated by luciferase assays in cervical and hepatic cell lines. Deletion of a fragment of 1048 bp (-89 to +24 bp) increased 5- and 3-fold the promoter activity in C33A and HepG2 cell lines, respectively. The minimal region with promoter activity was a 37 bp fragment in C33A cells. The activity of this region does not require the presence of an initiator sequence. In HepG2 cells the minimal promoter activity was detected in the 66 bp fragment. Sp1 (-32) mutation increased the promoter activity only in HepG2 cells. HNF1 mutation decreased promoter activity in HepG2 cell line but not in C33A cells. We identified a large region that plays a negative regulation role. The regulation of promoter activity is cell type specific. Our study provides new insights into the complex transcriptional regulation of siat1 gene.
Collapse
Affiliation(s)
- Lorena Milflores-Flores
- Laboratorio de Biologia Molecular y Virologia, Centro de Investigacion Biomedica de Oriente, Instituto Mexicano del Seguro Social, Hospital General de Zona No. 5, Km 4.5 Carretera Federal Atlixco-Metepec, 74360 Metepec, Puebla, Mexico
| | | | | | | | | |
Collapse
|
210
|
Kamoshida G, Matsuda A, Katabami K, Kato T, Mizuno H, Sekine W, Oku T, Itoh S, Tsuiji M, Hattori Y, Maitani Y, Tsuji T. Involvement of transcription factor Ets-1 in the expression of the α3 integrin subunit gene. FEBS J 2012; 279:4535-46. [DOI: 10.1111/febs.12040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Go Kamoshida
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Ayaka Matsuda
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Kouji Katabami
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Takumi Kato
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Hiromi Mizuno
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Wakana Sekine
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Teruaki Oku
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Saotomo Itoh
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Makoto Tsuiji
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Yoshiyuki Hattori
- Institute of Medicinal Chemistry; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Yoshie Maitani
- Institute of Medicinal Chemistry; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| | - Tsutomu Tsuji
- Department of Microbiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo; Japan
| |
Collapse
|
211
|
Pallai R, Bhaskar A, Sodi V, Rice LM. Ets1 and Elk1 transcription factors regulate cancerous inhibitor of protein phosphatase 2A expression in cervical and endometrial carcinoma cells. Transcription 2012; 3:323-35. [PMID: 23117818 DOI: 10.4161/trns.22518] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as a proto-oncogene that is overexpressed in various types of human cancers. CIP2A acts by inhibiting protein phosphatase 2A-dependent destabilization of c-Myc, resulting in increased cell proliferation. Here, we have characterized the proximal promoter region of the human CIP2A gene in cervical, endometrial and liver carcinoma cells. The 5' flanking minimal proximal promoter of the CIP2A gene consists of putative binding sites for Ets1 and Elk1 in forward and reverse orientations. Here, we show that Ets1 and Elk1 binding is essential for CIP2A basal expression in several urogenital cancer cell lines. Interestingly, both Ets1 and Elk1 are required together for CIP2A expression, as siRNA knockdown of Ets1 and Elk1 together decreased CIP2A gene transcription, whereas knockdown of Ets1 or Elk1 alone had no effect. Moreover, ectopic expression of Ets1 and Elk1 together increased CIP2A expression. To gain physiological significance of the Ets1 and Elk1 regulation we observed, a panel of matched human cervical carcinoma samples was analyzed for the expression of CIP2A and Ets1 and/or Elk1. We found a direct correlation between the levels of CIP2A and the levels of Ets1 and Elk1. Our results suggest that the binding of Ets1 and Elk1 together to the proximal CIP2A promoter is absolutely required for CIP2A expression in cervical, endometrial and liver carcinoma cell lines. Thus, different factors regulate CIP2A expression in a cell-type specific manner. As previous work has shown a requirement for only Ets1 in prostate and gastric carcinomas, our results now indicate that CIP2A regulation is more complex than previously determined.
Collapse
Affiliation(s)
- Rajash Pallai
- Department of Cancer Signaling and Cell Cycle, Venenum Biodesign, L.L.C, Hamilton, NJ, USA
| | | | | | | |
Collapse
|
212
|
Dröge J, Pande A, Englander EW, Makałowski W. Comparative genomics of neuroglobin reveals its early origins. PLoS One 2012; 7:e47972. [PMID: 23133533 PMCID: PMC3485006 DOI: 10.1371/journal.pone.0047972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroglobin (Ngb) is a hexacoordinated globin expressed mainly in the central and peripheral nervous system of vertebrates. Although several hypotheses have been put forward regarding the role of neuroglobin, its definite function remains uncertain. Ngb appears to have a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. Ngb is phylogenetically ancient and has a substitution rate nearly four times lower than that of other vertebrate globins, e.g. hemoglobin. Despite its high sequence conservation among vertebrates Ngb seems to be elusive in invertebrates. PRINCIPAL FINDINGS We determined candidate orthologs in invertebrates and identified a globin of the placozoan Trichoplax adhaerens that is most likely orthologous to vertebrate Ngb and confirmed the orthologous relationship of the polymeric globin of the sea urchin Strongylocentrotus purpuratus to Ngb. The putative orthologous globin genes are located next to genes orthologous to vertebrate POMT2 similarly to localization of vertebrate Ngb. The shared syntenic position of the globins from Trichoplax, the sea urchin and of vertebrate Ngb strongly suggests that they are orthologous. A search for conserved transcription factor binding sites (TFBSs) in the promoter regions of the Ngb genes of different vertebrates via phylogenetic footprinting revealed several TFBSs, which may contribute to the specific expression of Ngb, whereas a comparative analysis with myoglobin revealed several common TFBSs, suggestive of regulatory mechanisms common to globin genes. SIGNIFICANCE Identification of the placozoan and echinoderm genes orthologous to vertebrate neuroglobin strongly supports the hypothesis of the early evolutionary origin of this globin, as it shows that neuroglobin was already present in the placozoan-bilaterian last common ancestor. Computational determination of the transcription factor binding sites repertoire provides on the one hand a set of transcriptional factors that are responsible for the specific expression of the Ngb genes and on the other hand a set of factors potentially controlling expression of a couple of different globin genes.
Collapse
Affiliation(s)
- Jasmin Dröge
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Amit Pande
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Ella W. Englander
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Muenster, Germany
| |
Collapse
|
213
|
Potential tumorigenic programs associated with TP53 mutation status reveal role of VEGF pathway. Br J Cancer 2012; 107:1722-8. [PMID: 23079576 PMCID: PMC3493873 DOI: 10.1038/bjc.2012.461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Targeting differentially activated or perturbed tumour pathways is the key idea in individualised cancer therapy, which is emerging as an important option in treating cancers with poor prognostic profiles. TP53 mutation status is known as a core determinant of survival in breast cancer. The pathways disrupted in association with TP53 mutation status in tumours are not well characterised. Method: In this study, we stratify breast cancers based on their TP53 mutation status and identify the set of dysregulated tumorigenic pathways and corresponding candidate driver genes using breast cancer gene expression profiles. Expressions of these genes were evaluated for their effect on patient survival first in univariate models, followed by multivariate models with TP53 status as a covariate. Results: The most strongly differentially enriched pathways between breast cancers stratified by TP53 mutation status include in addition to TP53 signalling, several known cancer pathways involved in renal, prostate, pancreatic, colorectal, lung and other cancers, and signalling pathways such as calcium signalling, MAPK, ERBB and vascular endothelial growth factor (VEGF) signalling pathways. We found that mutant TP53 in conjunction with active estrogen receptor (ER) signalling significantly influence survival. We also found that upregulation of VEGFA mRNA levels in association with active ER signalling is a significant marker for poor survival, even in the presence of wild-type TP53. Conclusion: Mutation status of TP53 in breast cancer involves wide ranging derangement of several pathways. Among the candidate genes of the significantly deranged pathways, we identified VEGFA expression as an important marker of survival even when controlled by TP53 mutation status. Interestingly, independent of the TP53 mutation status, the survival effect of VEGFA was found significant in patients with active ER signalling (ER/PgR+), but not in those with ER/PgR− status. Therefore, we propose more studies to focus on the role of complex interplay between TP53, ER and VEGF signalling from therapeutic and prognostic context in breast cancer.
Collapse
|
214
|
Overexpression of ETS-1 is associated with malignant biological features of prostate cancer. Asian J Androl 2012; 14:860-3. [PMID: 23064684 DOI: 10.1038/aja.2012.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
E26 transformation-specific-1 (ETS-1), an ETS family transcription factor, has been reported to play an important role in a variety of physiological and pathological processes, but clinical implications of ETS-1 expression in prostate cancer (PCa), particularly high-risk cases, including response to androgen-deprivation therapy (ADT) have yet to be elucidated. We examined the expression of ETS-1 using immunohistochemical staining of paraffin-embedded prostate carcinoma tissue obtained by needle biopsy from 69 mostly advanced PCa patients. ETS-1 expression was compared with the clinicopathological characteristics of the 69 patients, including 25 who underwent ADT as a primary treatment. As a result, PCa patients with higher expression of ETS-1 were significantly more likely to be of high stage and high Gleason score (P<0.05). There was no significant association between ETS-1 expression and the initial prostate-specific antigen (PSA) level. In the 25 patients treated by ADT, the staining score for ETS-1 was significantly associated with rapid development of castration-resistant disease within 24 months (P<0.05), whereas the Gleason score and PSA level were not. In conclusion, increased ETS-1 expression was associated with a higher stage, higher Gleason score and shorter time to castration-resistant progression. These data suggest that immunostaining for ETS-1 could be a molecular marker for predicting a poor clinical outcome for PCa patients, particularly those with high-risk disease.
Collapse
|
215
|
Chan YC, Roy S, Huang Y, Khanna S, Sen CK. The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem 2012; 287:41032-43. [PMID: 23060436 DOI: 10.1074/jbc.m112.413294] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
miR-199a-5p plays a critical role in controlling cardiomyocyte survival. However, its significance in endothelial cell biology remains ambiguous. Here, we report the first evidence that miR-199a-5p negatively regulates angiogenic responses by directly targeting v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1). Induction of miR-199a-5p in human dermal microvascular endothelial cells (HMECs) blocked angiogenic response in Matrigel® culture, whereas miR-199a-5p-deprived cells exhibited enhanced angiogenesis in vitro. Bioinformatics prediction and miR target reporter assay recognized Ets-1 as a novel direct target of miR-199a-5p. Delivery of miR-199a-5p blocked Ets-1 expression in HMECs, whereas knockdown endogenous miR-199a-5p induced Ets-1 expression. Matrix metalloproteinase 1 (MMP-1), one of the Ets-1 downstream mediators, was negatively regulated by miR-199a-5p. Overexpression of Ets-1 not only rescued miR-199a-5p-dependent anti-angiogenic effects but also reversed miR-199a-5p-induced loss of MMP-1 expression. Similarly, Ets-1 knockdown blunted angiogenic response and induction of MMP-1 in miR-199a-5p-deprived HMECs. Examination of cutaneous wound dermal tissue revealed a significant down-regulation of miR-199a-5p expression, which was associated with induction of Ets-1 and MMP-1. Mice carrying homozygous deletions in the Ets-1 gene exhibited blunted wound blood flow and reduced abundance of endothelial cells. Impaired wound angiogenesis was associated with compromised wound closure, insufficient granulation tissue formation, and blunted induction of MMP-1. Thus, down-regulation of miR-199a-5p is involved in the induction of wound angiogenesis through derepressing of the Ets-1-MMP1 pathway.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
216
|
Switzer CH, Cheng RYS, Ridnour LA, Glynn SA, Ambs S, Wink DA. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 2012; 14:R125. [PMID: 22971289 PMCID: PMC4053102 DOI: 10.1186/bcr3319] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/12/2012] [Indexed: 02/04/2023] Open
Abstract
Introduction The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced phenotypes in ER- human breast cancer cells. Methods Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase (NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical NO-donor, diethlylenetriamine NONOate (DETANO). Results Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling. Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1 transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1 transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-cadherin, S100A8, IL-8 and αβ-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation, matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion. Conclusions These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked to poor patient survival.
Collapse
|
217
|
Feng W, Chumley P, Hua P, Rezonzew G, Jaimes D, Duckworth MW, Xing D, Jaimes EA. Role of the transcription factor erythroblastosis virus E26 oncogen homolog-1 (ETS-1) as mediator of the renal proinflammatory and profibrotic effects of angiotensin II. Hypertension 2012; 60:1226-33. [PMID: 22966006 DOI: 10.1161/hypertensionaha.112.197871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the pathogenesis of end-organ injury in hypertension via its diverse hemodynamic and nonhemodynamic effects. Erythroblastosis virus E26 oncogen homolog-1 (ETS-1) is an important transcription factor recently recognized as an important mediator of cell proliferation, inflammation, and fibrosis. In the present studies, we tested the hypothesis that ETS-1 is a common mediator of the renal proinflammatory and profibrotic effects of Ang II. C57BL6 mice (n=6 per group) were infused with vehicle (control), Ang II (1.4 mg/kg per day), Ang II and an ETS-1 dominant-negative peptide (10 mg/kg per day), or Ang II and an ETS-1 mutant peptide (10 mg/kg per day) via osmotic minipump for 2 or 4 weeks. The infusion of Ang II resulted in significant increases in blood pressure and left ventricular hypertrophy, which were not modified by ETS-1 blockade. The administration of ETS-1 dominant-negative peptide significantly attenuated Ang II-induced renal injury as assessed by urinary protein excretion, mesangial matrix expansion, and cell proliferation. Furthermore, ETS-1 dominant-negative peptide but not ETS-1 mutant peptide significantly reduced Ang II-mediated upregulation of transforming growth factor-β, connective tissue growth factor, and α-smooth muscle actin. In addition, ETS-1 blockade reduced several proinflammatory effects of Ang II, including macrophage infiltration, nitrotyrosine expression, and NOX4 mRNA expression. Our studies suggest that ETS-1 is a common mediator of the proinflammatory and profibrotic effects of Ang II-induced hypertensive renal damage and may result in the development of novel strategies in the treatment and prevention of end-organ injury in hypertension.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, University of Alabama at Birmingham, Ziegler Research Building 637, 1530 3rd Ave South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Shaikhibrahim Z, Ochsenfahrt J, Fuchs K, Kristiansen G, Perner S, Wernert N. ERG is specifically associated with ETS-2 and ETV-4, but not with ETS-1, in prostate cancer. Int J Mol Med 2012; 30:1029-33. [PMID: 22922762 PMCID: PMC3572757 DOI: 10.3892/ijmm.2012.1097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
The erythroblast transformation-specific (ETS) family of transcription factors plays important roles in both physiological and pathological conditions. Even though many studies have focused on single ETS factors within a single tissue and within the context of specific promoters, the functional impact of multiple ETS members present within a specific cell type has not yet been investigated, especially in prostate cancer (PCa). As the most prominent gene rearrangement in PCa leads to the overexpression of the ETS-related gene (ERG), the aim of this study was to investigate whether ERG is part of a complex integrated transcriptional network that involves other ETS factors. More specifically, as the ETS family consists of 27 members, we focused our efforts initially on investigating whether ERG is associated with the three family members, ETS-1, ETS-2 and ETS variant gene‑4 (ETV‑4), in PCa as a proof of principle. Using western blot analysis, we show that ERG, ETS-1, ETS-2 and ETV-4 are expressed in PC3 cell nuclear extracts and in protein lysates prepared from human PCa prostatectomy specimens. Immunoprecipitations using an anti-ERG antibody were used with PC3 cell nuclear extracts as well as with a pooled protein lysate sample prepared from the PCa tissue samples of five patients. Importantly, our results revealed that ERG is specifically associated with ETS-2 and ETV-4, but not with ETS-1, in PC3 cell nuclear extracts and PCa tissue protein lysates. Our findings strongly support the notion that ERG is part of a complex integrated transcriptional network that involves other ETS factors, which are likely to cooperate or influence the activity of ERG in PCa. The functional impact of multiple ETS factors being associated with ERG in PCa requires further study, as it may provide insights into the mechanism by which ERG exerts its influence in PCa and may subsequently contribute to our understanding of the molecular basis of PCa.
Collapse
Affiliation(s)
- Zaki Shaikhibrahim
- Institute of Pathology, University Hospital of Bonn, D-53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
219
|
Van den Broeck A, Gremeaux L, Topal B, Vankelecom H. Human pancreatic adenocarcinoma contains a side population resistant to gemcitabine. BMC Cancer 2012; 12:354. [PMID: 22894607 PMCID: PMC3500221 DOI: 10.1186/1471-2407-12-354] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Therapy resistance remains one of the major challenges to improve the prognosis of patients with pancreatic cancer. Chemoresistant cells, which potentially also display cancer stem cell (CSC) characteristics, can be isolated using the side population (SP) technique. Our aim was to search for a SP in human pancreatic ductal adenocarcinoma (PDAC) and to examine its chemoresistance and CSC(−like) phenotype. Methods Human PDAC samples were expanded in immunodeficient mice and first-generation xenografts analyzed for the presence of a Hoechst dye-effluxing SP using flow cytometry (FACS). To investigate chemoresistance of the SP, mice bearing PDAC xenografts were treated with gemcitabine and SP proportion determined. In addition, the SP and the main tumour cell population (MP) were sorted by FACS for RNA extraction to profile gene expression, and for culturing under sphere-forming conditions. Results A SP was identified in all PDAC samples, analyzed. This SP was more resistant to gemcitabine than the other tumour cells as examined in vivo. Whole-genome expression profiling of the SP revealed upregulation of genes related to therapy resistance, apoptotic regulation and epithelial-mesenchymal transition. In addition, the SP displayed higher tumourigenic (CSC) activity than the MP as analyzed in vitro by sphere-forming capacity. Conclusion We identified a SP in human PDAC and uncovered a chemoresistant and CSC-associated phenotype. This SP may represent a new therapeutic target in pancreatic cancer. Trial registration Clinicaltrials.gov NCT00936104
Collapse
Affiliation(s)
- Anke Van den Broeck
- Department of Abdominal Surgery, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
220
|
Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, Millione A, Shah J, Hollingshead MG, Hite KM, Burkett MW, Delosh RM, Silvers TE, Scudiero DA, Shoemaker RH. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One 2012; 7:e41401. [PMID: 22870217 PMCID: PMC3411700 DOI: 10.1371/journal.pone.0041401] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine), anti-microtubule (vincristine), and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4)-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma.
Collapse
Affiliation(s)
- Vaibhav Saini
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Curtis D. Hose
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Anne Monks
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Bingnan Han
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Dianne L. Newton
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Angelena Millione
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jalpa Shah
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Melinda G. Hollingshead
- Biological Testing Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Karen M. Hite
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Mark W. Burkett
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Rene M. Delosh
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Thomas E. Silvers
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Dominic A. Scudiero
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
221
|
Amaru Calzada A, Todoerti K, Donadoni L, Pellicioli A, Tuana G, Gatta R, Neri A, Finazzi G, Mantovani R, Rambaldi A, Introna M, Lombardi L, Golay J. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2V617F myeloproliferative neoplasm cells. Exp Hematol 2012; 40:634-45.e10. [DOI: 10.1016/j.exphem.2012.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/13/2023]
|
222
|
Cho JK, Chun C, Kuh HJ, Song SC. Injectable poly(organophosphazene)–camptothecin conjugate hydrogels: Synthesis, characterization, and antitumor activities. Eur J Pharm Biopharm 2012; 81:582-90. [DOI: 10.1016/j.ejpb.2012.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/16/2012] [Indexed: 11/16/2022]
|
223
|
Inhibitory effects of the transcription factor Ets-1 on the expression of type I collagen in TGF-β1-stimulated renal epithelial cells. Mol Cell Biochem 2012; 369:247-54. [PMID: 22829018 DOI: 10.1007/s11010-012-1388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/07/2012] [Indexed: 01/20/2023]
Abstract
Extracellular matrix (ECM) production and epithelial-mesenchymal transition (EMT) are important for phenotypic conversion in normal development and disease states such as tissue fibrosis. Transforming growth factor-β1 (TGFβ1) is one of the most potent inducers of ECM proteins, and its role in the pathogenesis of fibrosis is well established. Ets family is involved in a diverse array of biologic functions including cellular growth, migration, and differentiation. In the present study, we investigated whether Ets-1 has a role in ECM production and EMT in human renal tubuloepithelial cells (HKC cells). TGFβ1 treatment increases Ets-1 expression and nuclear translocation in the HKC cells. Overexpression of recombinant Ets-1 suppressed transcription of α2(I) collagen (COL1A2) and type I collagen production in the TGFβ1-activated HKC cells. From the experiments using specific inhibitors against Smad3 or mitogen-activated protein (MAP) kinase pathways, Ets-1 has an inhibitory role for COL1A2 transcription and the p38 MAPK pathway participates in the negative contribution of Ets-1 in TGFβ1/Smad3-activated renal cells.
Collapse
|
224
|
Immunohistochemical determination of ETS-1 oncoprotein expression in urothelial carcinomas of the urinary bladder. Appl Immunohistochem Mol Morphol 2012; 20:153-8. [PMID: 21623185 DOI: 10.1097/pai.0b013e31821ba035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ETS-1 protooncogene is an important transcription factor that plays a role in the regulation of physiological processes, such as cell proliferation and differentiation. ETS-1 is thought to be related to the growth of carcinoma cells by its regulation of the transcription of matrix metalloproteinases and urokinase-type plasminogen activator. In this study, we aimed to investigate the expression pattern of ETS-1 oncoprotein in urothelial carcinomas of the urinary bladder and determine its relationship with histopathologic parameters, including tumor grade and stage. One hundred six specimens of urothelial carcinoma and a total of 14 normal urothelium were analyzed immunohistochemically with anti-ETS-1 monoclonal antibody. The normal urothelium showed positive ETS-1 immunostaining. ETS-1 expression remained high in low-grade and noninvasive tumors, whereas it frequently decreased in high-grade or invasive carcinomas. Interestingly, ETS-1 was highly expressed in the basal cell layer of the noninvasive urothelial carcinomas. ETS-1 expression showed a strong negative correlation with the tumor grade (P<0.001; r, -0.67) and stage (P<0.001; r, -0.75). The nonmuscle-invasive tumors (pTa+pT1) and noninvasive tumors (pTa) had significantly higher ETS-1 expression than the muscle-invasive tumors (pT2; P<0.001) and invasive tumors (pT1+pT2; P<0.001), respectively. Results of our study show that decreased ETS-1 expression is significantly associated with high grade and advanced stage in urothelial carcinomas of the urinary bladder, and that the downregulation of ETS-1 expression may be a marker of the aggressiveness of such malignancies.
Collapse
|
225
|
Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:721-30. [DOI: 10.1016/j.nano.2011.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/05/2011] [Accepted: 09/22/2011] [Indexed: 11/24/2022]
|
226
|
Matteucci E, Maroni P, Luzzati A, Perrucchini G, Bendinelli P, Desiderio MA. Bone metastatic process of breast cancer involves methylation state affecting E-cadherin expression through TAZ and WWOX nuclear effectors. Eur J Cancer 2012; 49:231-44. [PMID: 22717556 DOI: 10.1016/j.ejca.2012.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 11/17/2022]
Abstract
We investigated the involvement of Hippo-related pathways in bone metastasis from breast cancer, by evaluating E-cadherin expression downstream of WWdomain-containing oxidoreductase (Wwox) and transcriptional co-activator with PDZ-binding motif (TAZ). These nuclear effectors functioned in a context-specific fashion on transcriptome, depending on breast-cancer aggressiveness and methylation state. Wwox and E-cadherin were found in human specimens of bone metastasis but not in primary-ductal breast carcinoma, while TAZ showed a characteristic localisation in metastasis nuclei. Wwox and E-cadherin were higher in 1833-metastatic clone with bone avidity than in parental-MDA-MB231 cells, while only metastatic cells presented TAZ. In 1833 cells, a complex interplay of transcriptional signalling controlled E-cadherin transactivation. Wwox and TAZ activated Hypoxia inducible factor-1 (HIF-1) binding to E-cadherin promoter, while Peroxisome proliferator-activated receptor γ (PPARγ) intervened in E-cadherin transactivation favouring and preventing Wwox and TAZ functions, respectively. Methylation impinged on Hippo-related pathways through Wwox and TAZ, modifying metastatic phenotype. The protract exposure to 5-azacytidine (Aza), by affecting methylation state modified the shape of 1833 cells, becoming mesenchymal as that of MDA-MB231 cells and reduced spontaneous-Matrigel invasion. The underlying-molecular mechanisms were diminutions of E-cadherin, Wwox, matrix metalloproteases 2 and 9, HIF-1- and PPARγ-activities, inversely correlated to Snail and nuclear-TAZ accumulations. Exogenous WWOX restored 1833-Aza invasion. Thus, 1833-Aza cells permitted to study the role played by methylation in metastasis plasticity, being E-cadherin loss part of an entire-gene reprogramming. Of note, bone-metastasis formation in 1833-Aza xenograft was partially impaired, prolonging mice survival. In conclusion, the methylation-heritable changes seemed important for cancer progression to establish bone metastasis engraftment/growth, by affecting steps requiring homotipic and/or heterotypic-adhesive properties and matrix degradation.
Collapse
Affiliation(s)
- Emanuela Matteucci
- Dipartimento di Scienze Biomediche per Salute, Università degli Studi di Milano, Italy
| | | | | | | | | | | |
Collapse
|
227
|
Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect Immun 2012; 80:2847-57. [PMID: 22689813 DOI: 10.1128/iai.00258-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.
Collapse
|
228
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012; 3:255-266. [PMID: 23710261 DOI: 10.1515/bmc-2011-0057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
229
|
Joshi H, Nord SH, Frigessi A, Børresen-Dale AL, Kristensen VN. Overrepresentation of transcription factor families in the genesets underlying breast cancer subtypes. BMC Genomics 2012; 13:199. [PMID: 22616941 PMCID: PMC3441847 DOI: 10.1186/1471-2164-13-199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 05/22/2012] [Indexed: 01/08/2023] Open
Abstract
Background The human genome contains a large amount of cis-regulatory DNA elements responsible for directing both spatial and temporal gene-expression patterns. Previous studies have shown that based on their mRNA expression breast tumors could be divided into five subgroups (Luminal A, Luminal B, Basal, ErbB2+ and Normal-like), each with a distinct molecular portrait. Whole genome gene expression analysis of independent sets of breast tumors reveals repeatedly the robustness of this classification. Furthermore, breast tumors carrying a TP53 mutation show a distinct gene expression profile, which is in strong association to the distinct molecular portraits. The mRNA expression of 552 genes, which varied considerably among the different tumors, but little between two samples of the same tumor, has been shown to be sufficient to separate these tumor subgroups. Results We analyzed in silico the transcriptional regulation of genes defining the subgroups at 3 different levels: 1. We studied the pathways in which the genes distinguishing the subgroups of breast cancer may be jointly involved including upstream regulators (1st and 2nd level of regulation) as well as downstream targets of these genes. 2. Then we analyzed the promoter areas of these genes (−500 bp tp +100 bp relative to the transcription start site) for canonical transcription binding sites using Genomatix. 3. We looked for the actual expression levels of the identified TF and how they correlate with the overrepresentation of their TF binding sites in the separate groups. We report that promoter composition of the genes that most strongly predict the patient subgroups is distinct. The class-predictive genes showed a clearly different degree of overrepresentation of transcription factor families in their promoter sequences. Conclusion The study suggests that transcription factors responsible for the observed expression pattern in breast cancers may lead us to important biological pathways.
Collapse
Affiliation(s)
- Himanshu Joshi
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital, Lorenskog, Norway
| | | | | | | | | |
Collapse
|
230
|
Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett 2012; 586:1693-701. [DOI: 10.1016/j.febslet.2012.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/23/2012] [Accepted: 04/11/2012] [Indexed: 11/20/2022]
|
231
|
Differential oncogene-related gene expressions in myeloma cells resistant to prednisone and vincristine. Biomed Pharmacother 2012; 66:506-11. [PMID: 22681910 DOI: 10.1016/j.biopha.2012.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance in cancer may arise due to alterations in gene expression. In this study, sublines of drug-resistant multiple myeloma (MM) cells, namely RPMI-8226 and U-266, were examined for their differential oncogene-related gene expression levels and the relations to drug resistance were analyzed. Drug resistance was induced by application of the prednisone or vincristine using stepwise dose increments. XTT cytotoxicity assay was used for determination of resistance levels. Microarray analysis was carried out and the genes up- or downregulated more than two-folds were considered as significantly changed. Different types of oncogenes were altered in different drug-resistant RPMI-8226 and U-266 multiple myeloma sublines. The oncogenes which belong to Ras superfamily, especially Rho family of GTPases, were upregulated in prednisone-resistant MM cell lines whereas they were either downregulated or not changed in vincristine resistance. ETS and NF-κB2 are among transcription factors which were downregulated in prednisone-resistant cells. Transforming growth factor beta receptor (TGFß) was downregulated in prednisone-resistant MM cell lines while it was upregulated in vincristine-resistant cell lines. Different types of interleukin gene expressions were seen to be altered in resistant MM sublines whereas suppressors of cytokine signalling genes such as SOCS2, SOCS4 and WSB2 were all downregulated. In conclusion, it is seen that different drugs can induce totally different pathways leading to resistance in the same cancer cell lines. Every drug resistance should be evaluated separately. These facts must be considered in cancer chemotherapy and reversal of drug resistance.
Collapse
|
232
|
Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, Villarèse P, Vachez E, Dik WA, Millien C, Radford I, Verhoeyen E, Cosset FL, Petit A, Ifrah N, Dombret H, Hermine O, Spicuglia S, Langerak AW, Macintyre EA, Nadel B, Ferrier P, Asnafi V. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell 2012; 21:563-76. [PMID: 22516263 DOI: 10.1016/j.ccr.2012.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 01/03/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Acute lymphoblastic leukemias (ALLs) are characterized by multistep oncogenic processes leading to cell-differentiation arrest and proliferation. Specific abrogation of maturation blockage constitutes a promising therapeutic option in cancer, which requires precise understanding of the underlying molecular mechanisms. We show that the cortical thymic maturation arrest in T-lineage ALLs that overexpress TLX1 or TLX3 is due to binding of TLX1/TLX3 to ETS1, leading to repression of T cell receptor (TCR) α enhanceosome activity and blocked TCR-Jα rearrangement. TLX1/TLX3 abrogation or enforced TCRαβ expression leads to TCRα rearrangement and apoptosis. Importantly, the autoextinction of clones carrying TCRα-driven TLX1 expression supports TLX "addiction" in TLX-positive leukemias and provides further rationale for targeted therapy based on disruption of TLX1/TLX3.
Collapse
Affiliation(s)
- Saïda Dadi
- Department of Hematologye, Université de Médecine Paris Descartes Sorbonne Cité, Centre National de la Recherche Scientifique (CNRS), France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
2-Hydroxy-4ʼ-Methoxychalcone Inhibits Proliferation and Inflammation of Human Aortic Smooth Muscle Cells by Increasing the Expression of Peroxisome Proliferator–Activated Receptor Gamma. J Cardiovasc Pharmacol 2012; 59:339-51. [DOI: 10.1097/fjc.0b013e3182440486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
234
|
Nalesnik MA, Tseng G, Ding Y, Xiang GS, Zheng ZL, Yu Y, Marsh JW, Michalopoulos GK, Luo JH. Gene deletions and amplifications in human hepatocellular carcinomas: correlation with hepatocyte growth regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1495-1508. [PMID: 22326833 PMCID: PMC3657620 DOI: 10.1016/j.ajpath.2011.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/09/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
Abstract
Tissues from 98 human hepatocellular carcinomas (HCCs) obtained from hepatic resections were subjected to somatic copy number variation (CNV) analysis. Most of these HCCs were discovered in livers resected for orthotopic transplantation, although in a few cases, the tumors themselves were the reason for the hepatectomies. Genomic analysis revealed deletions and amplifications in several genes, and clustering analysis based on CNV revealed five clusters. The LSP1 gene had the most cases with CNV (46 deletions and 5 amplifications). High frequencies of CNV were also seen in PTPRD (21/98), GNB1L (18/98), KIAA1217 (18/98), RP1-1777G6.2 (17/98), ETS1 (11/98), RSU1 (10/98), TBC1D22A (10/98), BAHCC1 (9/98), MAML2 (9/98), RAB1B (9/98), and YIF1A (9/98). The existing literature regarding hepatocytes or other cell types has connected many of these genes to regulation of cytoskeletal architecture, signaling cascades related to growth regulation, and transcription factors directly interacting with nuclear signaling complexes. Correlations with existing literature indicate that genomic lesions associated with HCC at the level of resolution of CNV occur on many genes associated directly or indirectly with signaling pathways operating in liver regeneration and hepatocyte growth regulation.
Collapse
Affiliation(s)
- Michael A. Nalesnik
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George Tseng
- Departments of Biostatistics, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Surgery, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Departments of Biostatistics, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guo-Sheng Xiang
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhong-liang Zheng
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - YanPing Yu
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James W. Marsh
- Joint CMU-Pitt Ph.D. Program in Computational Biology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K. Michalopoulos
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian-Hua Luo
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
235
|
The Ets-1 transcription factor is required for Stat1-mediated T-bet expression and IgG2a class switching in mouse B cells. Blood 2012; 119:4174-81. [PMID: 22438254 DOI: 10.1182/blood-2011-09-378182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In response to antigens and cytokines, mouse B cells undergo class-switch recombination (CSR) and differentiate into Ig-secreting cells. T-bet, a T-box transcription factor that is up-regulated in lymphocytes by IFN-γ or IL-27, was shown to regulate CSR to IgG2a after T cell-independent B-cell stimulations. However, the molecular mechanisms controlling this process remain unclear. In the present study, we show that inactivation of the Ets-1 transcription factor results in a severe decrease in IgG2a secretion in vivo and in vitro. No T-bet expression was observed in Ets-1-deficient (Ets-1(-/-)) B cells stimulated with IFN-γ and lipopolysaccharide, and forced expression of T-bet in these cells rescued IgG2a secretion. Furthermore, we identified a transcriptional enhancer in the T-bet locus with an activity in B cells that relies on ETS-binding sites. After IFN-γ stimulation of Ets-1(-/-) B cells, activated Stat1, which forms a complex with Ets-1 in wild-type cells, no longer binds to the T-bet enhancer or promotes histone modifications at this site. These results demonstrate that Ets-1 is critical for IgG2a CSR and acts as an essential cofactor for Stat1 in the regulation of T-bet expression in B cells.
Collapse
|
236
|
Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012; 119:3724-33. [PMID: 22383799 DOI: 10.1182/blood-2011-09-380634] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are many examples of transcription factor families whose members control gene expression profiles of diverse cell types. However, the mechanism by which closely related factors occupy distinct regulatory elements and impart lineage specificity is largely undefined. Here we demonstrate on a genome wide scale that the hematopoietic GATA factors GATA-1 and GATA-2 bind overlapping sets of genes, often at distinct sites, as a means to differentially regulate target gene expression and to regulate the balance between proliferation and differentiation. We also reveal that the GATA switch, which entails a chromatin occupancy exchange between GATA2 and GATA1 in the course of differentiation, operates on more than one-third of GATA1 bound genes. The switch is equally likely to lead to transcriptional activation or repression; and in general, GATA1 and GATA2 act oppositely on switch target genes. In addition, we show that genomic regions co-occupied by GATA2 and the ETS factor ETS1 are strongly enriched for regions marked by H3K4me3 and occupied by Pol II. Finally, by comparing GATA1 occupancy in erythroid cells and megakaryocytes, we find that the presence of ETS factor motifs is a major discriminator of megakaryocyte versus red cell specification.
Collapse
|
237
|
Lee CG, Kwon HK, Sahoo A, Hwang W, So JS, Hwang JS, Chae CS, Kim GC, Kim JE, So HS, Hwang ES, Grenningloh R, Ho IC, Im SH. Interaction of Ets-1 with HDAC1 represses IL-10 expression in Th1 cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2244-53. [PMID: 22266280 DOI: 10.4049/jimmunol.1101614] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-10 is a multifunctional cytokine that plays a crucial role in immunity and tolerance. IL-10 is produced by diverse immune cell types, including B cells and subsets of T cells. Although Th1 produce IL-10, their expression levels are much lower than Th2 cells under conventional stimulation conditions. The potential role of E26 transformation-specific 1 (Ets-1) transcription factor as a negative regulator for Il10 gene expression in CD4(+) T cells has been implicated previously. In this study, we investigated the underlying mechanism of Ets-1-mediated Il10 gene repression in Th1 cells. Compared with wild type Th1 cells, Ets-1 knockout Th1 cells expressed a significantly higher level of IL-10, which is comparable with that of wild type Th2 cells. Upregulation of IL-10 expression in Ets-1 knockout Th1 cells was accompanied by enhanced chromatin accessibility and increased recruitment of histone H3 acetylation at the Il10 regulatory regions. Reciprocally, Ets-1 deficiency significantly decreased histone deacetylase 1 (HDAC1) enrichment at the Il10 regulatory regions. Treatment with trichostatin A, an inhibitor of HDAC family, significantly increased Il10 gene expression by increasing histone H3 acetylation recruitment. We further demonstrated a physical interaction between Ets-1 and HDAC1. Coexpression of Ets-1 with HDAC1 synergistically repressed IL-10 transcription activity. In summary, our data suggest that an interaction of Ets-1 with HDAC1 represses the Il10 gene expression in Th1 cells.
Collapse
Affiliation(s)
- Choong-Gu Lee
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, The Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
239
|
Smith AM, Findlay VJ, Bandurraga SG, Kistner-Griffin E, Spruill LS, Liu A, Golshayan AR, Turner DP. ETS1 transcriptional activity is increased in advanced prostate cancer and promotes the castrate-resistant phenotype. Carcinogenesis 2012; 33:572-80. [PMID: 22232738 DOI: 10.1093/carcin/bgs007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advanced disease accounts for the majority of prostate cancer-related deaths and androgen deprivation therapy (ADT) is the standard of care for these patients. Many patients undergoing ADT become resistant to its effects and progress to castrate-resistant prostate cancer (CRPC). Current therapies for CRPC patients are inadequate, with progression-free survival rates as low as 2 months. The molecular events that promote CRPC are poorly understood. ETS (v-ets erythroblastosis virus E26 oncogene) transcription factors are regulators of carcinogenesis. Protein levels of the archetypical ETS factor, ETS1, are increased in clinical and latent prostate cancer relative to benign prostatic hyperplasia and normal prostate to promote multiple cancer-associated processes, such as energy metabolism, matrix degradation, survival, angiogenesis, migration and invasion. Our studies have found that ETS1 expression is highest in high-grade prostate cancer (Gleason 7 and above). Increased ETS1 expression and transcriptional activity promotes an aggressive and castrate-resistant phenotype in immortalized prostate cancer cells. Elevated AKT (v-akt murine thymoma viral oncogene homolog) activity was demonstrated to increase ETS1 protein levels specifically in castrate-resistant cells and exogenous ETS1 expression was sufficient to rescue invasive potential decreased by inhibition of AKT activity. Significantly, targeted androgen receptor activity altered ETS1 expression, which in turn altered the castrate-resistant phenotype. These data suggest a role for oncogenic ETS1 transcriptional activity in promoting aggressive prostate cancer and the castrate-resistant phenotype.
Collapse
Affiliation(s)
- A M Smith
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012. [PMID: 23710261 DOI: 10.1515/bmc-2011-1057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
241
|
Lin TC, Chen SU, Chen YF, Chang YC, Lin CW. Intramucosal variant of nasal natural killer (NK)/T cell lymphoma has a better survival than does invasive variant: implication on loss of E26 transformation-specific sequence 1 (ETS-1) and T-box expressed in T cells (T-bet) with invasion. Histopathology 2011; 60:287-95. [DOI: 10.1111/j.1365-2559.2011.04086.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
242
|
Abstract
Osteoarthritis (OA) is characterized by the breakdown of articular cartilage that is mediated in part by increased production of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), enzymes that degrade components of the cartilage extracellular matrix. Efforts to design synthetic inhibitors of MMPs/ADAMTS have only led to limited clinical success. In addition to pharmacologic therapies, physiologic joint loading is widely recommended as a nonpharmacologic approach to improve joint function in osteoarthritis. Clinical trials report that moderate levels of exercise exert beneficial effects, such as improvements in pain and physical function. Experimental studies demonstrate that mechanical loading mitigates joint destruction through the downregulation of MMPs/ADAMTS. However, the molecular mechanisms underlying these effects of physiologic loading on arthritic joints are not well understood. We review here the recent progress on mechanotransduction in articular joints, highlighting the mediators and pathways in the maintenance of cartilage integrity, especially in the prevention of cartilage degradation in OA.
Collapse
Affiliation(s)
- Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Radation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Oncophysics Research Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - John A. Hardin
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Neil J. Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Radation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Oncophysics Research Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
243
|
O'Brien P, Morin P, Ouellette RJ, Robichaud GA. The Pax-5 gene: a pluripotent regulator of B-cell differentiation and cancer disease. Cancer Res 2011; 71:7345-50. [PMID: 22127921 DOI: 10.1158/0008-5472.can-11-1874] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Pax-5 oncogene encodes a potent transcription factor that plays a key role in B-cell development and cancerous processes. In normal B-lymphopoiesis, Pax-5 accomplishes a dual function by activating B-cell commitment genes while concomitantly repressing non-B-lineage genes. Given the pivotal importance of Pax-5-mediated processes in B-cell development, an aberrant regulation of Pax5 expression has consistently been associated with B-cell cancers, namely, lymphoma and lymphocytic leukemias. More recently, Pax-5 gene expression has been proposed to influence carcinogenic events in tissues of nonlymphoid origin by promoting cell growth and survival. However, in other cases, Pax-5 products have opposing effects on proliferative activity, thus redefining its generally accepted role as an oncogene in cancer. In this review, we attempt to summarize recent findings about the function and regulation of Pax-5 gene products in B-cell development and related cancers. In addition, we present new findings that highlight the pleiotropic effects of Pax-5 activity in a number of other cancer types.
Collapse
Affiliation(s)
- Pierre O'Brien
- Département de Chimie et Biochimie, Université de Moncton, Moncton, New Brunswick, Canada
| | | | | | | |
Collapse
|
244
|
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood 2011; 118:5783-93. [DOI: 10.1182/blood-2011-07-369090] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive, often-fatal hyperinflammatory disorder. Mutations in PRF1, UNC13D, STX11, and STXBP2 are causative of FHL2, 3, 4, and 5, respectively. In a majority of suspected FHL patients from Northern Europe, sequencing of exons and splice sites of such genes required for lymphocyte cytotoxicity revealed no or only monoallelic UNC13D mutations. Here, in 21 patients, we describe 2 pathogenic, noncoding aberrations of UNC13D. The first is a point mutation localized in an evolutionarily conserved region of intron 1. This mutation selectively impairs UNC13D transcription in lymphocytes, abolishing Munc13-4 expression. The second is a 253-kb inversion straddling UNC13D, affecting the 3′-end of the transcript and likewise abolishing Munc13-4 expression. Carriership of the intron 1 mutation was found in patients across Europe, whereas carriership of the inversion was limited to Northern Europe. Notably, the latter aberration represents the first description of an autosomal recessive human disease caused by an inversion. These findings implicate an intronic sequence in cell-type specific expression of Munc13-4 and signify variations outside exons and splice sites as a common cause of FHL3. Based on these data, we propose a strategy for targeted sequencing of evolutionary conserved noncoding regions for the diagnosis of primary immunodeficiencies.
Collapse
|
245
|
Baron D, Magot A, Ramstein G, Steenman M, Fayet G, Chevalier C, Jourdon P, Houlgatte R, Savagner F, Pereon Y. Immune response and mitochondrial metabolism are commonly deregulated in DMD and aging skeletal muscle. PLoS One 2011; 6:e26952. [PMID: 22096509 PMCID: PMC3212519 DOI: 10.1371/journal.pone.0026952] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/06/2011] [Indexed: 01/12/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.
Collapse
|
246
|
Bian Y, Zhou W, Zhao Y, Li X, Geng W, Hao R, Yang Q, Huang W. High-dose siRNAs upregulate mouse Eri-1 at both transcription and posttranscription levels. PLoS One 2011; 6:e26466. [PMID: 22039495 PMCID: PMC3198429 DOI: 10.1371/journal.pone.0026466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/27/2011] [Indexed: 01/05/2023] Open
Abstract
The eri-1 gene encodes a 3′ exonuclease that can negatively regulate RNA interference via siRNase activity. High-dose siRNAs (hd-siRNAs) can enhance Eri-1 expression, which in return degrade siRNAs and greatly reduces RNAi efficiency. Here we report that hd-siRNAs induce mouse Eri-1 (meri-1) expression through the recruitment of Sp1, Ets-1, and STAT3 to the meri-1 promoter and the formation of an Sp1-Ets-1-STAT3 complex. In addition, hd-siRNAs also abolish the 3′ untranslated region (UTR) mediated posttranscriptional repression of meri-1. Our findings demonstrate the molecular mechanism underlying the upregulation of meri-1 by hd-siRNA.
Collapse
Affiliation(s)
- Yingnan Bian
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Wei Zhou
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Yingchun Zhao
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Xiaoping Li
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Wei Geng
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Ruixin Hao
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Qing Yang
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
| | - Weida Huang
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai, China
- Laboratory for Synthetic Biology, Centers for Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy Sciences, Pudong, Shanghai, China
- * E-mail:
| |
Collapse
|
247
|
Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, Wong CH, Wang H, Ungewiss C, Ahn YH, Shin DH, Kurie JM, Hanash SM. Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 2011; 71:7670-82. [PMID: 21987723 DOI: 10.1158/0008-5472.can-11-0964] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The microRNA-200 (miR-200) family restricts epithelial-mesenchymal transition (EMT) and metastasis in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma. To determine the mechanisms responsible for EMT and metastasis regulated by this microRNA, we conducted a global liquid chromatography/tandem mass spectrometry analysis to compare metastatic and nonmetastatic murine lung adenocarcinoma cells which had undergone EMT because of loss of miR-200. An analysis of syngeneic tumors generated by these cells identified multiple novel proteins linked to metastasis. In particular, the analysis of conditioned media, cell surface proteins, and whole-cell lysates from metastatic and nonmetastatic cells revealed large-scale modifications in the tumor microenvironment. Specific increases were documented in extracellular matrix (ECM) proteins, peptidases, and changes in distribution of cell adhesion proteins in the metastatic cell lines. Integrating proteomic data from three subproteomes, we defined constituents of a multilayer protein network that both regulated and mediated the effects of TGFβ. Lastly, we identified ECM proteins and peptidases that were directly regulated by miR-200. Taken together, our results reveal how expression of miR-200 alters the tumor microenvironment to inhibit the processes of EMT and metastasis.
Collapse
|
248
|
Mattia G, Errico MC, Felicetti F, Petrini M, Bottero L, Tomasello L, Romania P, Boe A, Segnalini P, Di Virgilio A, Colombo MP, Carè A. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res 2011; 24:953-65. [PMID: 21711453 PMCID: PMC3272348 DOI: 10.1111/j.1755-148x.2011.00881.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/23/2011] [Indexed: 01/13/2023]
Abstract
MicroRNAs-221 and -222 are highly upregulated in several solid tumors, including melanomas. We demonstrate that the proto-oncogene ETS-1, involved in the pathogenesis of cancers of different origin, is a transcriptional regulator of miR-222 by direct binding to its promoter region. Differently from 293FT cells or early stage melanomas, where unphosphorylated ETS-1 represses miR-222 transcription, in metastatic melanoma the constitutively Thr-38 phosphorylated fraction of ETS-1 induces miR-222. Despite its stepwise decreased expression along with melanoma progression, the oncogenic activity of ETS-1 relies on its RAS/RAF/ERK-dependent phosphorylation status more than on its total amount. To close the loop, we demonstrate ETS-1 as a direct target of miR-222, but not miR-221, showing the novel option of their uncoupled functions. In addition, a spatial redistribution of ETS-1 protein from the nucleus to the cytoplasm is also evidenced in advanced melanoma cells. Finally, in vivo studies confirmed the contribution of miR-222 to the increased invasive potential obtained by ETS- silencing.
Collapse
Affiliation(s)
- Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - M Cristina Errico
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Federica Felicetti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Marina Petrini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Lisabianca Bottero
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Luisa Tomasello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Paolo Romania
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Alessandra Boe
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Patrizia Segnalini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Antonio Di Virgilio
- Service for Quality and Safety of Animal Experimentation, Istituto Superiore di SanitàRome, Italy
| | - Mario P Colombo
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale TumoriMilan, Italy
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| |
Collapse
|
249
|
Calli AO, Sari A, Cakalagaoglu F, Altinboga AA, Oncel S. ETS-1 proto-oncogene as a key newcomer molecule to predict invasiveness in laryngeal carcinoma. Pathol Res Pract 2011; 207:628-33. [PMID: 21940109 DOI: 10.1016/j.prp.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/20/2011] [Accepted: 07/29/2011] [Indexed: 12/01/2022]
Abstract
ETS-1 protein is one of the key regulators in tumor invasion and progression. We aimed to evaluate the role of ETS-1 in the invasiveness and progression of laryngeal squamous carcinoma, as well as to determine the correlations between clinicopathological characteristics and expression of this molecule. We assessed the levels of ETS-1 in a total of 96 laryngeal specimens of varying degrees of dysplasia, microinvasive squamous carcinoma (8), and invasive squamous carcinoma (60), using normal mucosal epithelium (10) as a positive control. The relationship between ETS-1 expression and clinicopathological parameters of laryngeal carcinoma was also analyzed. We found a significantly higher ETS-1 expression in invasive laryngeal squamous cell carcinomas than in dysplasia (P<0.001). A correlation between ETS-1 expression scores and grade was detected - T factor, stage, cartilage invasion, lymph node metastasis, as well as depth of invasion in laryngeal tumors. Our study is the first to demonstrate that ETS-1 expression is significantly increased in invasive carcinoma, but it is absent in low-moderate grade laryngeal dysplasia and non-neoplastic laryngeal mucosa. This data suggest that ETS-1 expression may play an important role in tumor invasion, and may function in the initiation of the invasive process in laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Aylin Orgen Calli
- Izmir Training and Research Hospital, Department of Pathology, Yesilyurt, Turkey.
| | | | | | | | | |
Collapse
|
250
|
Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol 2011; 22:976-84. [PMID: 21945894 DOI: 10.1016/j.semcdb.2011.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The ETS family of transcription factors plays an essential role in controlling endothelial gene expression. Multiple members of the ETS family are expressed in the developing endothelium and evidence suggests that the proteins function, to some extent, redundantly. However, recent studies have demonstrated a crucial non-redundant role for ETV2, as a primary player in specification and differentiation of the endothelial lineage. Here, we review the contribution of ETS factors, and their partner proteins, to the regulation of embryonic vascular development.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| | | | | |
Collapse
|