201
|
Shao Y, Xu H, Wang J, Dai X, Liang W, Ren L, Wang Y. Agitation and apathy increase risk of dementia in psychiatric inpatients with late-onset psychiatric symptoms. BMC Psychiatry 2021; 21:214. [PMID: 33910556 PMCID: PMC8080316 DOI: 10.1186/s12888-021-03210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A diagnosis of dementia in middle-aged and elder people is often complicated by physical frailty and comorbid neuropsychiatric symptoms (NPSs). Previous studies have identified NPSs as a risk factor for dementia. The aim of this study was to figure out to what extent individual NPS and certain demographic factors increased the risk of dementia in middle-aged and senior psychiatric inpatients. METHODS One hundred twenty-seven middle-aged and senior patients admitted to psychiatric wards for late-onset (age ≥ 50 years) psychiatric symptoms were included and categorized into dementia or non-demented psychiatric disorders (NDPD). The patients' demographic information and medical records were collected during the first hospitalization and subjected to statistical analyses. RESULTS 41.73% of the registered psychiatric inpatients were diagnosed as dementia in which Alzheimer's disease (AD) was the dominant subtype. The NDPD group consisted of nine individual diagnoses, except for schizophrenia. The frequencies of dementia inpatients increased with first episode age while that of NDPD inpatients decreased with first episode age. In the enrolled inpatients, most of dementia patients were males while females accounted for a higher proportion of NDPD patients. 58.49% of enrolled dementia inpatients presented cognitive deficit (CD) as the initial symptom while the remaining 41.51% showed NPS as initial symptom. Of the 12 NPSs, agitation and apathy greatly and significantly increased risk of dementia in psychiatric inpatients with late-onset psychiatric symptoms. CONCLUSIONS These results added evidence that the demented patients admitted to psychiatric ward are more likely to be male, older first episode age, and have characteristic NPS including aberrant motor behavior (AMB), hallucinations, agitation, irritability and apathy. Further, this study emphasized the importance of agitation and apathy of NPSs functioning as risk factors of dementia in these inpatients.
Collapse
Affiliation(s)
- Yuan Shao
- grid.452897.50000 0004 6091 8446Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Haiyun Xu
- grid.268099.c0000 0001 0348 3990The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- grid.452897.50000 0004 6091 8446Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Xijian Dai
- grid.452897.50000 0004 6091 8446Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Wei Liang
- grid.452897.50000 0004 6091 8446Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Lina Ren
- grid.452897.50000 0004 6091 8446Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yongjun Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China.
| |
Collapse
|
202
|
Litvan I, Proudfoot JA, Martin ER, Standaert D, Riley D, Hall D, Marras C, Bayram E, Dubinsky RM, Bordelon Y, Reich S, Shprecher D, Kluger B, Cunningham C, Schellenberg GD, Jankovic J. Gene-Environment Interactions in Progressive Supranuclear Palsy. Front Neurol 2021; 12:664796. [PMID: 33897612 PMCID: PMC8062875 DOI: 10.3389/fneur.2021.664796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Several genetic and environmental factors have been reported in progressive supranuclear palsy (PSP), although none were identified as a definitive cause. We aimed to explore potential gene-environment interactions in PSP. Two hundred and ninety two PSP cases and 292 controls matched for age, sex, and race from the ENGENE-PSP were analyzed to determine the association between PSP and minor alleles of 5 single nucleotide polymorphisms (SNPs) in 4 genes (MAPT, MOBP, EIF2AK3, and STX6), which were previously associated with PSP risk. Interactions between these SNPs and environmental factors, including previously reported occupational and agricultural risk factors for PSP, were assessed for PSP odds and age of symptom onset. Minor alleles of MAPTrs242557 and EIF2AK3rs7571971 were individually associated with increased odds; MAPTrs8070723 minor alleles were associated with lower PSP odds. There were several gene-environment interactions for PSP odds and age of symptom onset, however, they did not remain significant after FDR-correction. Larger scale studies are required to determine potential interactions.
Collapse
Affiliation(s)
- Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, La Jolla, CA, United States
| | - James A. Proudfoot
- Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA, United States
| | - Eden R. Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - David Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David Riley
- InMotion, Warrensville Heights, OH, United States
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Connie Marras
- Morto and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Research, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Ece Bayram
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, La Jolla, CA, United States
| | - Richard M. Dubinsky
- Department of General Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Shprecher
- Banner Sun Health Research Institute, Sun City, AZ, United States
- Department of Neurology, University of Utah, Salt City, UT, United States
| | - Benzi Kluger
- Department of Neurology, University of Colorado, Denver, CO, United States
| | - Christopher Cunningham
- Division of Movement Disorders, Department of Neurology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
203
|
Pathway from TDP-43-Related Pathology to Neuronal Dysfunction in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Int J Mol Sci 2021; 22:ijms22083843. [PMID: 33917673 PMCID: PMC8068029 DOI: 10.3390/ijms22083843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a pathologic protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 is normally a nuclear protein, but affected neurons of ALS or FTLD patients exhibit mislocalization of nuclear TDP-43 and cytoplasmic inclusions. Basic studies have suggested gain-of-neurotoxicity of aggregated TDP-43 or loss-of-function of intrinsic, nuclear TDP-43. It has also been hypothesized that the aggregated TDP-43 functions as a propagation seed of TDP-43 pathology. However, a mechanistic discrepancy between the TDP-43 pathology and neuronal dysfunctions remains. This article aims to review the observations of TDP-43 pathology in autopsied ALS and FTLD patients and address pathways of neuronal dysfunction related to the neuropathological findings, focusing on impaired clearance of TDP-43 and synaptic alterations in TDP-43-related ALS and FTLD. The former may be relevant to intraneuronal aggregation of TDP-43 and exocytosis of propagation seeds, whereas the latter may be related to neuronal dysfunction induced by TDP-43 pathology. Successful strategies of disease-modifying therapy might arise from further investigation of these subcellular alterations.
Collapse
|
204
|
Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab 2021; 32:224-237. [PMID: 33640250 PMCID: PMC8277580 DOI: 10.1016/j.tem.2021.01.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Over the past decade, it has become clear that lipid homeostasis is central to cellular metabolism. Lipids are particularly abundant in the central nervous system (CNS) where they modulate membrane fluidity, electric signal transduction, and synaptic stabilization. Abnormal lipid profiles reported in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and traumatic brain injury (TBI), are further support for the importance of lipid metablism in the nervous system. Cardiolipin (CL), a mitochondria-exclusive phospholipid, has recently emerged as a focus of neurodegenerative disease research. Aberrant CL content, structure, and localization are linked to impaired neurogenesis and neuronal dysfunction, contributing to aging and the pathogenesis of several neurodegenerative diseases, such as AD and PD. Furthermore, the highly tissue-specific acyl chain composition of CL confers it significant potential as a biomarker to diagnose and monitor the progression in several neurological diseases. CL also represents a potential target for pharmacological strategies aimed at treating neurodegeneration. Given the equipoise that currently exists between CL metabolism, mitochondrial function, and neurological disease, we review the role of CL in nervous system physiology and monogenic and neurodegenerative disease pathophysiology, in addition to its potential application as a biomarker and pharmacological target.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
205
|
Khoury R, Liu Y, Sheheryar Q, Grossberg GT. Pharmacotherapy for Frontotemporal Dementia. CNS Drugs 2021; 35:425-438. [PMID: 33840052 DOI: 10.1007/s40263-021-00813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia is a heterogeneous spectrum of neurodegenerative disorders. The neuropathological inclusions are tau proteins, TAR DNA binding protein 43 kDa-TDP-43, or fused in sarcoma-ubiquitinated inclusions. Genetically, several autosomal mutations account for the heritability of the disorder. Phenotypically, frontotemporal dementia can present with a behavioral variant or a language variant called primary progressive aphasia. To date, there are no approved symptomatic or disease-modifying treatments for frontotemporal dementia. Currently used therapies are supported by low-level of evidence (mostly uncontrolled) studies. The off-label use of drugs is also limited by their side-effect profile including an increased risk of confusion, parkinsonian symptoms, and risk of mortality. Emerging disease-modifying treatments currently target the progranulin and the expansion on chromosome 9 open reading frame 72 genes as well as tau deposits. Advancing our understanding of the pathophysiology of the disease and improving the design of future clinical trials are much needed to optimize the chances to obtain positive outcomes.
Collapse
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, Saint Georges Hospital University Medical Center, Youssef Sursock Street, PO Box 166378, Beirut, Lebanon. .,Faculty of Medicine, University of Balamand, Beirut, Lebanon. .,Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| | - Yu Liu
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Quratulanne Sheheryar
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
206
|
Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 2021; 18:728-752. [PMID: 34389969 PMCID: PMC8423978 DOI: 10.1007/s13311-021-01101-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia encompasses a group of clinical syndromes defined pathologically by degeneration of the frontal and temporal lobes. Historically, these syndromes have been challenging to diagnose, with an average of about three years between the time of symptom onset and the initial evaluation and diagnosis. Research in the field of neuroimaging has revealed numerous biomarkers of the various frontotemporal dementia syndromes, which has provided clinicians with a method of narrowing the differential diagnosis and improving diagnostic accuracy. As such, neuroimaging is considered a core investigative tool in the evaluation of neurodegenerative disorders. Furthermore, patterns of neurodegeneration correlate with the underlying neuropathological substrates of the frontotemporal dementia syndromes, which can aid clinicians in determining the underlying etiology and improve prognostication. This review explores the advancements in neuroimaging and discusses the phenotypic and pathologic features of behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, and nonfluent variant primary progressive aphasia, as seen on structural magnetic resonance imaging and positron emission tomography.
Collapse
Affiliation(s)
- Bradley T Peet
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
207
|
Vöglein J, Kostova I, Arzberger T, Roeber S, Schmitz P, Simons M, Ruf V, Windl O, Herms J, Dieterich M, Danek A, Höglinger GU, Giese A, Levin J. First symptom guides diagnosis and prognosis in neurodegenerative diseases-a retrospective study of autopsy proven cases. Eur J Neurol 2021; 28:1801-1811. [PMID: 33662165 DOI: 10.1111/ene.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Clinical diagnostic criteria for neurodegenerative diseases have been framed based on clinical phenomenology. However, systematic knowledge about the first reported clinical symptoms in neurodegenerative diseases is lacking. Therefore, the aim was to determine the prevalence and clinical implications of the first clinical symptom (FS) as assessed by medical history in neuropathologically proven neurodegenerative diseases. METHODS Neuropathological diagnoses from the Neurobiobank Munich, Germany, were matched with clinical records for analyses of the diagnostic and prognostic values of FSs. RESULTS In all, 301 patients with the neuropathological diagnoses Alzheimer disease (AD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD) including the neuropathologically indistinguishable clinical phenotypes Parkinson disease and dementia with Lewy bodies, multiple system atrophy (MSA) and corticobasal degeneration (CBD) were studied. Memory disturbance was the most common FS in AD (34%), FTLD (19%) and LBD (26%), gait disturbance in PSP (35%) and MSA (27%) and aphasia and personality changes in CBD (20%, respectively). In a model adjusting for prevalence in the general population, AD was predicted by memory disturbance in 79.0%, aphasia in 97.2%, personality changes in 96.0% and by cognitive disturbance in 99.0%. Gait disturbance and tremor predicted LBD in 54.6% and 97.3%, coordination disturbance MSA in 59.4% and dysarthria FTLD in 73.0%. Cognitive FSs were associated with longer survival in AD (12.0 vs. 5.3 years; p < 0.001) and FTLD (8.2 vs. 4.1 years; p = 0.005) and motor FSs with shorter survival in PSP (7.2 vs. 9.7; p = 0.048). CONCLUSIONS Assessing FSs in neurodegenerative diseases may be beneficial for accuracy of diagnosis and prognosis and thereby may improve clinical care and precision of study recruitment.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
208
|
Höglinger GU, Litvan I, Mendonca N, Wang D, Zheng H, Rendenbach-Mueller B, Lon HK, Jin Z, Fisseha N, Budur K, Gold M, Ryman D, Florian H, Ahmed A, Aiba I, Albanese A, Bertram K, Bordelon Y, Bower J, Brosch J, Claassen D, Colosimo C, Corvol JC, Cudia P, Daniele A, Defebvre L, Driver-Dunckley E, Duquette A, Eleopra R, Eusebio A, Fung V, Geldmacher D, Golbe L, Grandas F, Hall D, Hatano T, Höglinger GU, Honig L, Hui J, Kerwin D, Kikuchi A, Kimber T, Kimura T, Kumar R, Litvan I, Ljubenkov P, Lorenzl S, Ludolph A, Mari Z, McFarland N, Meissner W, Mir Rivera P, Mochizuki H, Morgan J, Munhoz R, Nishikawa N, O`Sullivan J, Oeda T, Oizumi H, Onodera O, Ory-Magne F, Peckham E, Postuma R, Quattrone A, Quinn J, Ruggieri S, Sarna J, Schulz PE, Slevin J, Tagliati M, Wile D, Wszolek Z, Xie T, Zesiewicz T. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol 2021; 20:182-192. [DOI: 10.1016/s1474-4422(20)30489-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
|
209
|
Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021; 17:3306-3322. [PMID: 33632058 PMCID: PMC8632097 DOI: 10.1080/15548627.2021.1872189] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis. Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| |
Collapse
|
210
|
Robinson JL, Porta S, Garrett FG, Zhang P, Xie SX, Suh E, Van Deerlin VM, Abner EL, Jicha GA, Barber JM, Lee VMY, Lee EB, Trojanowski JQ, Nelson PT. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 2021; 143:2844-2857. [PMID: 32830216 DOI: 10.1093/brain/awaa219] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.
Collapse
Affiliation(s)
- John L Robinson
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Filip G Garrett
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Panpan Zhang
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - EunRan Suh
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Justin M Barber
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Virginia M-Y Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
211
|
Lee JY, Marian OC, Don AS. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromolecular Med 2021; 23:1-24. [PMID: 33550528 DOI: 10.1007/s12017-021-08644-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson's disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.
Collapse
Affiliation(s)
- Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oana C Marian
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
212
|
Jabbari E, Koga S, Valentino RR, Reynolds RH, Ferrari R, Tan MMX, Rowe JB, Dalgard CL, Scholz SW, Dickson DW, Warner TT, Revesz T, Höglinger GU, Ross OA, Ryten M, Hardy J, Shoai M, Morris HR. Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol 2021; 20:107-116. [PMID: 33341150 PMCID: PMC7116626 DOI: 10.1016/s1474-4422(20)30394-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The genetic basis of variation in the progression of primary tauopathies has not been determined. We aimed to identify genetic determinants of survival in progressive supranuclear palsy (PSP). METHODS In stage one of this two stage genome-wide association study (GWAS), we included individuals with PSP, diagnosed according to pathological and clinical criteria, from two separate cohorts: the 2011 PSP GWAS cohort, from brain banks based at the Mayo Clinic (Jacksonville, FL, USA) and in Munich (Germany), and the University College London PSP cohort, from brain banks and the PROSPECT study, a UK-wide longitudinal study of patients with atypical parkinsonian syndromes. Individuals were included if they had clinical data available on sex, age at motor symptom onset, disease duration (from motor symptom onset to death or to the date of censoring, Dec 1, 2019, if individuals were alive), and PSP phenotype (with reference to the 2017 Movement Disorder Society criteria). Genotype data were used to do a survival GWAS using a Cox proportional hazards model. In stage two, data from additional individuals from the Mayo Clinic brain bank, which were obtained after the 2011 PSP GWAS, were used for a pooled analysis. We assessed the expression quantitative trait loci (eQTL) profile of variants that passed genome-wide significance in our GWAS using the Functional Mapping and Annotation of GWAS platform, and did colocalisation analyses using the eQTLGen and PsychENCODE datasets. FINDINGS Data were collected and analysed between Aug 1, 2016, and Feb 1, 2020. Data were available for 1001 individuals of white European ancestry with PSP in stage one. We found a genome-wide significant association with survival at chromosome 12 (lead single nucleotide polymorphism rs2242367, p=7·5 × 10-10, hazard ratio 1·42 [95% CI 1·22-1·67]). rs2242367 was associated with survival in the individuals added in stage two (n=238; p=0·049, 1·22 [1·00-1·48]) and in the pooled analysis of both stages (n=1239; p=1·3 × 10-10, 1·37 [1·25-1·51]). An eQTL database screen revealed that rs2242367 is associated with increased expression of LRRK2 and two long intergenic non-coding RNAs (lncRNAs), LINC02555 and AC079630.4, in whole blood. Although we did not detect a colocalisation signal for LRRK2, analysis of the PSP survival signal and eQTLs for LINC02555 in the eQTLGen blood dataset revealed a posterior probability of hypothesis 4 of 0·77, suggesting colocalisation due to a single shared causal variant. INTERPRETATION Genetic variation at the LRRK2 locus was associated with survival in PSP. The mechanism of this association might be through a lncRNA-regulated effect on LRRK2 expression because LINC02555 has previously been shown to regulate LRRK2 expression. LRRK2 has been associated with sporadic and familial forms of Parkinson's disease, and our finding suggests a genetic overlap with PSP. Further functional studies will be important to assess the potential of LRRK2 modulation as a disease-modifying therapy for PSP and related tauopathies. FUNDING PSP Association, CBD Solutions, Medical Research Council (UK).
Collapse
Affiliation(s)
- Edwin Jabbari
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK; Movement Disorders Centre, University College London Queen Square Institute of Neurology, London, UK.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Regina H Reynolds
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Manuela M X Tan
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK; Movement Disorders Centre, University College London Queen Square Institute of Neurology, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sonja W Scholz
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas T Warner
- Reta Lila Weston Institute, University College London Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Tamas Revesz
- Reta Lila Weston Institute, University College London Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases, Munich, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; Reta Lila Weston Institute, University College London Queen Square Institute of Neurology, London, UK; Dementia Research Institute at University College London, University College London Queen Square Institute of Neurology, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Maryam Shoai
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK; Movement Disorders Centre, University College London Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
213
|
Mak E, Holland N, Jones PS, Savulich G, Low A, Malpetti M, Kaalund SS, Passamonti L, Rittman T, Romero-Garcia R, Manavaki R, Williams GB, Hong YT, Fryer TD, Aigbirhio FI, O'Brien JT, Rowe JB. In vivo coupling of dendritic complexity with presynaptic density in primary tauopathies. Neurobiol Aging 2021; 101:187-198. [PMID: 33631470 PMCID: PMC8209289 DOI: 10.1016/j.neurobiolaging.2021.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
Understanding the cellular underpinnings of neurodegeneration remains a challenge; loss of synapses and dendritic arborization are characteristic and can be quantified in vivo, with [11C]UCB-J PET and MRI-based Orientation Dispersion Imaging (ODI), respectively. We aimed to assess how both measures are correlated, in 4R-tauopathies of progressive supranuclear palsy - Richardson's Syndrome (PSP-RS; n = 22) and amyloid-negative (determined by [11C]PiB PET) Corticobasal Syndrome (Cortiobasal degeneration, CBD; n =14), as neurodegenerative disease models, in this proof-of-concept study. Compared to controls (n = 27), PSP-RS and CBD patients had widespread reductions in cortical ODI, and [11C]UCB-J non-displaceable binding potential (BPND) in excess of atrophy. In PSP-RS and CBD separately, regional cortical ODI was significantly associated with [11C]UCB-J BPND in disease-associated regions (p < 0.05, FDR corrected). Our findings indicate that reductions in synaptic density and dendritic complexity in PSP-RS and CBD are more severe and extensive than atrophy. Furthermore, both measures are tightly coupled in vivo, furthering our understanding of the pathophysiology of neurodegeneration, and applicable to studies of early neurodegeneration with a safe and widely available MRI platform.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Roido Manavaki
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
214
|
Korhonen T, Katisko K, Cajanus A, Hartikainen P, Koivisto AM, Haapasalo A, Remes AM, Solje E. Comparison of Prodromal Symptoms of Patients with Behavioral Variant Frontotemporal Dementia and Alzheimer Disease. Dement Geriatr Cogn Disord 2021; 49:98-106. [PMID: 32485711 DOI: 10.1159/000507544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Behavioral variant frontotemporal dementia (bvFTD) is the most common clinical subtype of frontotemporal lobar degeneration. bvFTD is often characterized by changes in behavior and personality, frequently leading to psychiatric misdiagnoses. On the other hand, substantial clinical overlap with other neurodegenerative diseases, such as Alzheimer disease (AD), further complicates the diagnostics. OBJECTIVE Our aim was to identify the main differences in early symptoms of bvFTD and AD in the prodromal stages of the diseases. In addition, patients with bvFTD were analyzed separately according to whether they carry the C9orf72repeat expansion or not. METHODS Patient records of bvFTD (n = 75) and AD (n = 83) patients were analyzed retrospectively for memory and neuropsychiatric symptoms, sleeping disorders, and somatic complaints before the setting of the accurate diagnosis. RESULTS A total of 84% of bvFTD patients (n = 63) and 98.8% of AD patients (n = 82) reported subjective memory disturbances in the prodromal phases of the disease. bvFTD patients presented significantly more often with sleeping disorders, headache, inexplicable collapses, transient loss of consciousness, somatization, delusions, and hallucinations, suicidality, changes in oral behaviors, and urinary problems. In addition, poor financial judgement was frequently detected in patients with prodromal bvFTD. Aberrant sensations in the nose and throat without any physical explanation, regarded as somatizations, emerged only in bvFTD patients with the C9orf72 repeat expansion. CONCLUSIONS Subjective reporting of impaired episodic memory is a poor indicator in differentiating bvFTD from AD. Sleeping disturbances, delusions, hallucinations, and unexplained somatic complaints in a patient with cognitive disturbances should prompt the clinicians to consider bvFTD as a possible diagnostic option behind these symptoms. The spectrum of symptoms in the prodromal stages of bvFTD may be more diverse than the latest criteria suggest.
Collapse
Affiliation(s)
- Titta Korhonen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Päivi Hartikainen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland, .,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland,
| |
Collapse
|
215
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
216
|
Leroy M, Bertoux M, Skrobala E, Mode E, Adnet-Bonte C, Le Ber I, Bombois S, Cassagnaud P, Chen Y, Deramecourt V, Lebert F, Mackowiak MA, Sillaire AR, Wathelet M, Pasquier F, Lebouvier T. Characteristics and progression of patients with frontotemporal dementia in a regional memory clinic network. ALZHEIMERS RESEARCH & THERAPY 2021; 13:19. [PMID: 33419472 PMCID: PMC7796569 DOI: 10.1186/s13195-020-00753-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Due to heterogeneous clinical presentation, difficult differential diagnosis with Alzheimer’s disease (AD) and psychiatric disorders, and evolving clinical criteria, the epidemiology and natural history of frontotemporal lobar degeneration (FTD) remain elusive. In order to better characterize FTD patients, we relied on the database of a regional memory clinic network with standardized diagnostic procedures and chose AD patients as a comparator. Methods Patients that were first referred to our network between January 2010 and December 2016 and whose last clinical diagnosis was degenerative or vascular dementia were included. Comparisons were conducted between FTD and AD as well as between the different FTD syndromes, divided into language variants (lvFTD), behavioral variant (bvFTD), and FTD with primarily motor symptoms (mFTD). Cognitive progression was estimated with the yearly decline in Mini Mental State Examination (MMSE). Results Among the patients that were referred to our network in the 6-year time span, 690 were ultimately diagnosed with FTD and 18,831 with AD. Patients with FTD syndromes represented 2.6% of all-cause dementias. The age-standardized incidence was 2.90 per 100,000 person-year and incidence peaked between 75 and 79 years. Compared to AD, patients with FTD syndromes had a longer referral delay and delay to diagnosis. Patients with FTD syndromes had a higher MMSE score than AD at first referral while their progression was similar. mFTD patients had the shortest survival while survival in bvFTD, lvFTD, and AD did not significantly differ. FTD patients, especially those with the behavioral variant, received more antidepressants, anxiolytics, and antipsychotics than AD patients. Conclusions FTD syndromes differ with AD in characteristics at baseline, progression rate, and treatment. Despite a broad use of the new diagnostic criteria in an organized memory clinic network, FTD syndromes are longer to diagnose and account for a low proportion of dementia cases, suggesting persistent underdiagnosis. Congruent with recent publications, the late peak of incidence warns against considering FTD as being exclusively a young-onset dementia.
Collapse
Affiliation(s)
- Mélanie Leroy
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Maxime Bertoux
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | | | - Elisa Mode
- Univ. Lille, Inserm, CHU Lille, F-59000, Lille, France
| | - Catherine Adnet-Bonte
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Isabelle Le Ber
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphanie Bombois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Pascaline Cassagnaud
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Yaohua Chen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Florence Lebert
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Marie Anne Mackowiak
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Adeline Rollin Sillaire
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | | | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, CNRMAJ, LiCEND, DistAlz, F-59000, Lille, France.
| | | |
Collapse
|
217
|
Epelbaum S, Saade YM, Flamand Roze C, Roze E, Ferrieux S, Arbizu C, Nogues M, Azuar C, Dubois B, Tezenas du Montcel S, Teichmann M. A Reliable and Rapid Language Tool for the Diagnosis, Classification, and Follow-Up of Primary Progressive Aphasia Variants. Front Neurol 2021; 11:571657. [PMID: 33469441 PMCID: PMC7813774 DOI: 10.3389/fneur.2020.571657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Primary progressive aphasias (PPA) have been investigated by clinical, therapeutic, and fundamental research but examiner-consistent language tests for reliable reproducible diagnosis and follow-up are lacking. Methods: We developed and evaluated a rapid language test for PPA (“PARIS”) assessing its inter-examiner consistency, its power to detect and classify PPA, and its capacity to identify language decline after a follow-up of 9 months. To explore the reliability and specificity/sensitivity of the test it was applied to PPA patients (N = 36), typical amnesic Alzheimer's disease (AD) patients (N = 24) and healthy controls (N = 35), while comparing it to two rapid examiner-consistent language tests used in stroke-induced aphasia (“LAST”, “ART”). Results: The application duration of the “PARIS” was ~10 min and its inter-rater consistency was of 88%. The three tests distinguished healthy controls from AD and PPA patients but only the “PARIS” reliably separated PPA from AD and allowed for classifying the two most frequent PPA variants: semantic and logopenic PPA. Compared to the “LAST” and “ART,” the “PARIS” also had the highest sensitivity for detecting language decline. Conclusions: The “PARIS” is an efficient, rapid, and highly examiner-consistent language test for the diagnosis, classification, and follow-up of frequent PPA variants. It might also be a valuable tool for providing end-points in future therapeutic trials on PPA and other neurodegenerative diseases affecting language processing.
Collapse
Affiliation(s)
- Stéphane Epelbaum
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France.,Institut du Cerveau, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Inria, Aramis-project team, 'APHP-INRIA collaboration', Paris, France
| | - Yasmina Michel Saade
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Constance Flamand Roze
- Centre Hospitalier Sud-Francilien, Université Paris Sud, Corbeil-Essonnes, Service de Neurologie et Unité Neurovasculaire, Corbeil-Essonnes, France
| | - Emmanuel Roze
- Institut du Cerveau, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Department of Neurology, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Sophie Ferrieux
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Céline Arbizu
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Marie Nogues
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Carole Azuar
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France.,Institut du Cerveau, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Bruno Dubois
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France.,Institut du Cerveau, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Sophie Tezenas du Montcel
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| | - Marc Teichmann
- Department of Neurology, National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, Pitié Salpêtrière Hospital, AP-HP, Paris, France.,Institut du Cerveau, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
218
|
Rohrer JD, Boxer AL. The Frontotemporal Dementia Prevention Initiative: Linking Together Genetic Frontotemporal Dementia Cohort Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:113-121. [PMID: 33433872 DOI: 10.1007/978-3-030-51140-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around one-third of frontotemporal dementia (FTD) is autosomal dominant with the major genetic causes being mutations in MAPT, GRN and C9orf72. Studying familial forms of FTD can provide a window into the earliest stages of the illness, many years before symptoms start. Large cohort studies have been set up in recent years to better understand this presymptomatic phase, including the Genetic FTD Initiative (GENFI) and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (ARTFL/LEFFTDS) studies. Whilst these studies have focused on the investigation of a variety of aspects of genetic FTD, from understanding the molecular pathogenesis to developing biomarkers, they also have a common goal: finding a way to prevent FTD. Researchers from these cohort studies have therefore come together to form the FTD Prevention Initiative (FPI), which has the overarching aim of promoting clinical trials of new therapies to prevent FTD through creating an international database of participants eligible for trials and uniform standards for conducting such trials. This chapter outlines the work of the FPI so far and its future goals over the next few years.
Collapse
Affiliation(s)
- Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
219
|
Mesulam MM, Coventry C, Bigio EH, Geula C, Thompson C, Bonakdarpour B, Gefen T, Rogalski EJ, Weintraub S. Nosology of Primary Progressive Aphasia and the Neuropathology of Language. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:33-49. [PMID: 33433867 PMCID: PMC8103786 DOI: 10.1007/978-3-030-51140-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary progressive aphasia (PPA) is a dementia syndrome associated with several neuropathologic entities, including Alzheimer's disease (AD) and all major forms of frontotemporal lobar degeneration (FTLD). It is classified into subtypes defined by the nature of the language domain that is most impaired. The asymmetric neurodegeneration of the hemisphere dominant for language (usually left) is one consistent feature of all PPA variants. This feature offers unique opportunities for exploring mechanisms of selective vulnerability in neurodegenerative diseases and the neuroanatomy of language. This chapter reviews some of the current trends in PPA research as well as the challenges that remain to be addressed on the nosology, clinicopathologic correlations, and therapy of this syndrome.
Collapse
Affiliation(s)
- M -Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Neurology, Northwestern University, Chicago, IL, USA.
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Cynthia Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Communication Sciences and Disorders; Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| |
Collapse
|
220
|
Koriath CAM, Kenny J, Ryan NS, Rohrer JD, Schott JM, Houlden H, Fox NC, Tabrizi SJ, Mead S. Genetic testing in dementia - utility and clinical strategies. Nat Rev Neurol 2021; 17:23-36. [PMID: 33168964 DOI: 10.1038/s41582-020-00416-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Techniques for clinical genetic testing in dementia disorders have advanced rapidly but remain to be more widely implemented in practice. A positive genetic test offers a precise molecular diagnosis, can help members of an affected family to determine personal risk, provides a basis for reproductive choices and can offer options for clinical trials. The likelihood of identifying a specific genetic cause of dementia depends on the clinical condition, the age at onset and family history. Attempts to match phenotypes to single genes are mostly inadvisable owing to clinical overlap between the dementias, genetic heterogeneity, pleiotropy and concurrent mutations. Currently, the appropriate genetic test in most cases of dementia is a next-generation sequencing gene panel, though some conditions necessitate specific types of test such as repeat expansion testing. Whole-exome and whole-genome sequencing are becoming financially feasible but raise or exacerbate complex issues such as variants of uncertain significance, secondary findings and the potential for re-analysis in light of new information. However, the capacity for data analysis and counselling is already restricting the provision of genetic testing. Patients and their relatives need to be given reliable information to enable them to make informed choices about tests, treatments and data sharing; the ability of patients with dementia to make decisions must be considered when providing this information.
Collapse
Affiliation(s)
| | - Joanna Kenny
- South West Thames Regional Genetics Service, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK.
| |
Collapse
|
221
|
Onyike CU, Shinagawa S, Ellajosyula R. Frontotemporal Dementia: A Cross-Cultural Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:141-150. [PMID: 33433874 DOI: 10.1007/978-3-030-51140-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is predictable that syndromes of frontotemporal dementia (FTD) may have a worldwide distribution; however, data available on their incidence and prevalence are variable. This variability most likely reflects disparities across regions in the distribution of the expertise, technology, and resources available for FTD research and care. Important discoveries have been made regarding FTD's phenotypes, genetics, and cultural influences on the expression of symptoms; however, in many countries, there are barriers posed by a dearth of resources. There are pressing needs to further develop research on FTD: including first, population studies designed to fill the gaps in our knowledge about FTD's frequency and risk factors in developing regions and among minority groups in developed countries. It is also necessary to facilitate the psychometric characterization of contemporary diagnostic criteria and their translation to different languages and cultural contexts. Furthermore, much needed is the analysis of differences in the genetic risk factors for FTD, particularly non-Mendelian susceptibility factors. It is hoped that reflections on FTD from an international perspective will spur an extension of the vibrant multicenter collaborations, that exist in North America and Europe, toward new centers to be established and supported in the developing regions of the world.
Collapse
Affiliation(s)
- Chiadi U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
222
|
Bogolepova A, Vasenina E, Gomzyakova N, Gusev E, Dudchenko N, Emelin A, Zalutskaya N, Isaev R, Kotovskaya Y, Levin O, Litvinenko I, Lobzin V, Martynov M, Mkhitaryan E, Nikolay G, Palchikova E, Tkacheva O, Cherdak M, Chimagomedova A, Yakhno N. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:6. [DOI: 10.17116/jnevro20211211036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
223
|
Coughlin DG, Dickson DW, Josephs KA, Litvan I. Progressive Supranuclear Palsy and Corticobasal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:151-176. [PMID: 33433875 DOI: 10.1007/978-3-030-51140-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression.
Collapse
Affiliation(s)
| | | | | | - Irene Litvan
- UC San Diego Department of Neurosciences, La Jolla, CA, USA.
| |
Collapse
|
224
|
Morgan JC, Ye X, Mellor JA, Golden KJ, Zamudio J, Chiodo LA, Bao Y, Xie T. Disease course and treatment patterns in progressive supranuclear palsy: A real-world study. J Neurol Sci 2020; 421:117293. [PMID: 33385754 DOI: 10.1016/j.jns.2020.117293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disorder with symptoms including vertical gaze palsy, frequent falls, abnormal gait, and cognitive/language/behavioral changes, making diagnosis and treatment challenging. METHODS Descriptive analysis was undertaken of cross-sectional, real-world data for patients with PSP provided by neurologists in France, Germany, Italy, Spain, UK, and USA. RESULTS Data on 892 PSP patients were obtained from patient records. Common initial symptoms included difficulty walking/maintaining gait, confusion/disorientation, loss of balance/falling, and rigidity. These symptoms and vertical gaze palsy commonly aided diagnosis. At data collection, dysphagia and blepharospasm were also very common. Mean times from symptom-onset to consulting a healthcare professional and PSP diagnosis were 5.2 and 15.0 months, respectively. General practitioners or movement disorder specialists were most commonly consulted initially; 98% of patients were diagnosed with PSP by a movement disorder specialist or general neurologist. Alternative diagnoses, including Parkinson's disease (67%) and dementia (10%), were considered for 41% of patients prior to PSP diagnosis. Non-wheelchair walking aids and wheelchairs were used by 60% and 23% of patients, respectively, with mean times from symptom-onset to use being 20.8 and 39.5 months, respectively. Symptomatic medication, most often levodopa and antidepressants, was prescribed for 87% of patients. CONCLUSION This study provided information on disease course and treatment for a large number of PSP patients from various countries. PSP carries a considerable clinical burden. Diagnosis is often delayed. Consulting a movement disorder specialist might expediate diagnosis. Currently, only symptomatic treatments are available with a poor satisfaction, and there is an urgent need for disease-modifying agents.
Collapse
Affiliation(s)
- John C Morgan
- Movement & Memory Disorders Program, Parkinson Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | | | | | | | | | | | | | - Tao Xie
- Movement Disorder Program, Department of Neurology, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
225
|
Malpetti M, Jones PS, Tsvetanov KA, Rittman T, van Swieten JC, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Frisoni GB, Ghidoni R, Sorbi S, Heller C, Todd EG, Bocchetta M, Cash DM, Convery RS, Peakman G, Moore KM, Rohrer JD, Kievit RA, Rowe JB, Genfi GFI. Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimers Dement 2020; 17:969-983. [PMID: 33316852 PMCID: PMC8247340 DOI: 10.1002/alz.12252] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Introduction Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy. Methods Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling. Results Apathy severity increased over time in presymptomatic carriers, but not in non‐carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions. Discussion Apathy is an early marker of FTD‐related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Department of Neurology, Cognitive Disorders Unit, Donostia Universitary Hospital, San Sebastian, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline Graff
- Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,Centro Dino Ferrari, University of Milan, Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium.,Neurology Service, University Hospitals Leuven, Leuven, Belgium.,KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | | | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Duisburg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sandro Sorbi
- Department of Neuroscience Psychology Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katrina M Moore
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Cognitive Neuroscience Department, Donders Institute for Brain Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
226
|
Koriath C, Kenny J, Adamson G, Druyeh R, Taylor W, Beck J, Quinn L, Mok TH, Dimitriadis A, Norsworthy P, Bass N, Carter J, Walker Z, Kipps C, Coulthard E, Polke JM, Bernal-Quiros M, Denning N, Thomas R, Raybould R, Williams J, Mummery CJ, Wild EJ, Houlden H, Tabrizi SJ, Rossor MN, Hummerich H, Warren JD, Rowe JB, Rohrer JD, Schott JM, Fox NC, Collinge J, Mead S. Predictors for a dementia gene mutation based on gene-panel next-generation sequencing of a large dementia referral series. Mol Psychiatry 2020; 25:3399-3412. [PMID: 30279455 PMCID: PMC6330090 DOI: 10.1038/s41380-018-0224-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022]
Abstract
Next-generation genetic sequencing (NGS) technologies facilitate the screening of multiple genes linked to neurodegenerative dementia, but there are few reports about their use in clinical practice. Which patients would most profit from testing, and information on the likelihood of discovery of a causal variant in a clinical syndrome, are conspicuously absent from the literature, mostly for a lack of large-scale studies. We applied a validated NGS dementia panel to 3241 patients with dementia and healthy aged controls; 13,152 variants were classified by likelihood of pathogenicity. We identified 354 deleterious variants (DV, 12.6% of patients); 39 were novel DVs. Age at clinical onset, clinical syndrome and family history each strongly predict the likelihood of finding a DV, but healthcare setting and gender did not. DVs were frequently found in genes not usually associated with the clinical syndrome. Patients recruited from primary referral centres were compared with those seen at higher-level research centres and a national clinical neurogenetic laboratory; rates of discovery were comparable, making selection bias unlikely and the results generalisable to clinical practice. We estimated penetrance of DVs using large-scale online genomic population databases and found 71 with evidence of reduced penetrance. Two DVs in the same patient were found more frequently than expected. These data should provide a basis for more informed counselling and clinical decision making.
Collapse
Affiliation(s)
- C Koriath
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - J Kenny
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - G Adamson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - R Druyeh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - W Taylor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - J Beck
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - L Quinn
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - T H Mok
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - A Dimitriadis
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - P Norsworthy
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - N Bass
- UCL Division of Psychiatry, Maple House, University College London, London, UK
| | - J Carter
- UCL Division of Psychiatry, Maple House, University College London, London, UK
| | - Z Walker
- UCL Division of Psychiatry, Maple House, University College London, London, UK
- Essex Partnership University NHS Foundation Trust, Essex, SS11 7XX, UK
| | - C Kipps
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - E Coulthard
- Institute of Clinical Neuroscience, University of Bristol, Level 1 Learning and Research Building, Bristol, BS10 5NB, UK
| | - J M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - M Bernal-Quiros
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - N Denning
- Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R Thomas
- Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R Raybould
- Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - J Williams
- Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C J Mummery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - E J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - H Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - S J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - M N Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - H Hummerich
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - J D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - J B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - J D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - J M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - N C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - J Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK
| | - S Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, London, W1W 7FF, UK.
| |
Collapse
|
227
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [PMID: 32998028 DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
228
|
Vivash L, Malpas CB, Churilov L, Walterfang M, Brodtmann A, Piguet O, Ahmed RM, Bush AI, Hovens CM, Kalincik T, Darby D, Velakoulis D, O'Brien TJ. A study protocol for a phase II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying treatment for behavioural variant frontotemporal dementia. BMJ Open 2020; 10:e040100. [PMID: 33199422 PMCID: PMC7670941 DOI: 10.1136/bmjopen-2020-040100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Behavioural variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder often neuropathologically associated with the accumulation of abnormally hyperphosphorylated tau, for which there is currently no disease-modifying treatment. Previous work by our group has shown sodium selenate upregulates the activity of protein phosphatase 2 in the brain, increasing the rate of tau dephosphorylation. The objective of this study is to evaluate the efficacy and safety of sodium selenate as a disease-modifying treatment for bvFTD. METHODS AND ANALYSIS This will be a multisite, phase IIb, double-blind placebo-controlled trial of sodium selenate. One hundred and twenty participants will be enrolled across 4 Australian academic hospitals. Following screening eligible participants will be randomised (1:1) to sodium selenate (15 mg three times a day) or placebo for 52 weeks. Participants will have regular safety and efficacy visits throughout the study period. The primary study outcome will be percentage brain volume change (PBVC) as measured on MRI over 52 weeks of treatment. This will be analysed with a general linear model (analysis of covariance (ANCOVA)) with the PBVC as an output, the treatment as an input and the baseline brain volume as covariate for adjustment purposes. Secondary outcomes include safety and tolerability measures, and efficacy measures; change in cerebrospinal fluid total-tau, Addenbrooke's Cognitive Examination-III and Cambridge Behavioural Inventory-Revised scores over the 52 weeks of treatment. These will also be analysed with ANCOVA where the corresponding baseline measure will be incorporated in the model. Additional exploratory outcomes will include other imaging, cognitive and biospecimen analyses. ETHICS AND DISSEMINATION The study was approved by the Human Research and Ethics Committee of the lead site as part of the Australian Multisite Ethics approval system. The results of the study will be presented at national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12620000236998 .
Collapse
Affiliation(s)
- Lucy Vivash
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark Walterfang
- Department of Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Eastern Cognitive Disorders Clinic, Monash University, Box Hill, Victoria, Australia
- Melbourne Dementia Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Olivier Piguet
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Memory and Cognition Clinic, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ashley I Bush
- Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Melbourne Dementia Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Christopher M Hovens
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - T Kalincik
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - David Darby
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
- Eastern Cognitive Disorders Clinic, Monash University, Box Hill, Victoria, Australia
| | - Dennis Velakoulis
- Department of Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
229
|
de Pablo-Fernández E, González-Herrero B, Cerdán Santacruz D, Rossor MN, Schott JM, Lashley T, Holton JL, Fox NC, Revesz T, Warren JD, Jaunmuktane Z, Rohrer JD, Warner TT. A Clinicopathologic Study of Movement Disorders in Frontotemporal Lobar Degeneration. Mov Disord 2020; 36:632-641. [PMID: 33155746 DOI: 10.1002/mds.28356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Despite the considerable overlap with atypical parkinsonism, a systematic characterization of the movement disorders associated with frontotemporal lobar degeneration (FTLD) is lacking. OBJECTIVE The aim of this study is to provide a detailed description of the phenomenology and neuropathologic correlations of movement disorders in FTLD. METHODS In this cohort study, movement disorder clinical data were retrospectively collected from medical records of consecutive patients with a postmortem diagnosis of FTLD from the Queen Square Brain Bank between January 2010 and December 2018. At postmortem, neurodegenerative pathologies were systematically evaluated following consensus criteria. Degeneration of the substantia nigra was assessed as a marker of presynaptic dopaminergic parkinsonism using semiquantitative methods. RESULTS A total of 55 patients (35 men [64%]) were included with median (interquartile range) age at diagnosis of 58.8 (52.6-63.9) years and a disease duration of 9.6 (6.2-12.9) years. Movement disorders were present in 19 (35%) patients without differences among disease subtypes. The most common syndromes were parkinsonism (9 patients [16%]), usually as an additional late feature, and corticobasal syndrome (CBS, 7 patients [13%]), commonly as a presenting feature. Substantia nigra degeneration was present in 37 (67%) patients although it did not show a good clinical correlation with movement disorders. Those with Pick's disease showed milder substantia nigra degeneration and better response to levodopa. CONCLUSIONS Movement disorders can present in all FTLD subtypes, more commonly as a late additional feature (parkinsonism) or as a presenting symptom (CBS). The underlying pathophysiology is complex and likely to involve structures outside the presynaptic striatonigral system. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eduardo de Pablo-Fernández
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Belén González-Herrero
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Bellvitge University Hospital and Bellvitge Biomedical Research Institute-IDIBELL, University of Barcelona, Barcelona, Spain
| | - Debora Cerdán Santacruz
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Neurology Department, Complejo Asistencial de Segovia, Segovia, Spain
| | - Martin N Rossor
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan M Schott
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tammaryn Lashley
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nick C Fox
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tamas Revesz
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jason D Warren
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan D Rohrer
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
230
|
What is causing this patient's balance and speech problems? JAAPA 2020; 33:55-57. [PMID: 33109987 DOI: 10.1097/01.jaa.0000718416.94952.6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
231
|
VandeVrede L, Ljubenkov PA, Rojas JC, Welch AE, Boxer AL. Four-Repeat Tauopathies: Current Management and Future Treatments. Neurotherapeutics 2020; 17:1563-1581. [PMID: 32676851 PMCID: PMC7851277 DOI: 10.1007/s13311-020-00888-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Four-repeat tauopathies are a neurodegenerative disease characterized by brain parenchymal accumulation of a specific isoform of the protein tau, which gives rise to a wide breadth of clinical syndromes encompassing diverse symptomatology, with the most common syndromes being progressive supranuclear palsy-Richardson's and corticobasal syndrome. Despite the lack of effective disease-modifying therapies, targeted treatment of symptoms can improve quality of life for patients with 4-repeat tauopathies. However, managing these symptoms can be a daunting task, even for those familiar with the diseases, as they span motor, sensory, cognitive, affective, autonomic, and behavioral domains. This review describes current approaches to symptomatic management of common clinical symptoms in 4-repeat tauopathies with a focus on practical patient management, including pharmacologic and nonpharmacologic strategies, and concludes with a discussion of the history and future of disease-modifying therapeutics and clinical trials in this population.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.
| | - Peter A Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ariane E Welch
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
232
|
Holland N, Jones PS, Savulich G, Wiggins JK, Hong YT, Fryer TD, Manavaki R, Sephton SM, Boros I, Malpetti M, Hezemans FH, Aigbirhio FI, Coles JP, O’Brien J, Rowe JB. Synaptic Loss in Primary Tauopathies Revealed by [ 11 C]UCB-J Positron Emission Tomography. Mov Disord 2020; 35:1834-1842. [PMID: 32652635 PMCID: PMC7611123 DOI: 10.1002/mds.28188] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge
| | - P. Simon Jones
- Department of Clinical Neurosciences, University of Cambridge
| | | | | | - Young T. Hong
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Tim D. Fryer
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | | | - Selena Milicevic Sephton
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Istvan Boros
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge
| | - Frank H. Hezemans
- Department of Clinical Neurosciences, University of Cambridge
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge
| | | | - Jonathan P. Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John O’Brien
- Department of Psychiatry, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
233
|
Chen L, Chen X. Commentary: Beyond the face: how context modulates emotion processing in frontotemporal dementia subtypes. Front Aging Neurosci 2020; 12:244. [PMID: 32973485 PMCID: PMC7468379 DOI: 10.3389/fnagi.2020.00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liang Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Xu Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Research Center of Mental Health Education, Southwest University, Chongqing, China
| |
Collapse
|
234
|
Santos ALM, Vitório JG, de Paiva MJN, Porto BLS, Guimarães HC, Canuto GAB, Carvalho MDG, de Souza LC, de Toledo JS, Caramelli P, Duarte-Andrade FF, Gomes KB. Frontotemporal dementia: Plasma metabolomic signature using gas chromatography–mass spectrometry. J Pharm Biomed Anal 2020; 189:113424. [DOI: 10.1016/j.jpba.2020.113424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
|
235
|
Volkmer A, Spector A, Meitanis V, Warren JD, Beeke S. Effects of functional communication interventions for people with primary progressive aphasia and their caregivers: a systematic review. Aging Ment Health 2020; 24:1381-1393. [PMID: 31134821 DOI: 10.1080/13607863.2019.1617246] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Primary progressive aphasia (PPA) is a language led dementia characterised by progressive speech and language difficulties. Impairment focused PPA interventions that seek to remediate, alleviate or improve symptoms, dominate the research literature. Yet speech and language therapists (SLTs) report prioritising functional communication interventions (FCIs), which target engagement in an activity and participation in life situations. This systematic review investigates the research literature on FCIs for PPA to identify the key components of these interventions and their effectiveness.Method: A systematic search of databases identified 19 studies published between 1998 and 2018. Data were extracted from the articles using the Intervention Taxonomy adaptation (ITAX).Results: Results show that the two most common components of FCIs are to build on communication strategies people currently use, and to practise these strategies with a communication partner. There are variations in the interventions, such as location and dosage. All 19 studies report improvements, of which eight report statistically significant results. Forty-two different measures are used across the 19 studies.Conclusion: This study highlights that building on existing strategies and practising these with a CP, are key components of FCIs for people with PPA, yet there remains a lack of clarity around optimal dosage. Further rigorous research using a core set of outcome measures is a priority in this area.
Collapse
Affiliation(s)
- Anna Volkmer
- Division of Psychology and Language Sciences, Language and Cognition, UCL, London, UK
| | - Aimee Spector
- Division of Psychology and Language Sciences, Clinical, Educational and Health Psychology, UCL, London, UK
| | - Vanessa Meitanis
- Division of Psychology and Language Sciences, Language and Cognition, UCL, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology & The National Hospital, London, UK
| | - Suzanne Beeke
- Division of Psychology and Language Sciences, Language and Cognition, UCL, London, UK
| |
Collapse
|
236
|
Murley AG, Jones PS, Coyle Gilchrist I, Bowns L, Wiggins J, Tsvetanov KA, Rowe JB. Metabolomic changes associated with frontotemporal lobar degeneration syndromes. J Neurol 2020; 267:2228-2238. [PMID: 32277260 PMCID: PMC7359154 DOI: 10.1007/s00415-020-09824-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Widespread metabolic changes are seen in neurodegenerative disease and could be used as biomarkers for diagnosis and disease monitoring. They may also reveal disease mechanisms that could be a target for therapy. In this study we looked for blood-based biomarkers in syndromes associated with frontotemporal lobar degeneration. METHODS Plasma metabolomic profiles were measured from 134 patients with a syndrome associated with frontotemporal lobar degeneration (behavioural variant frontotemporal dementia n = 30, non fluent variant primary progressive aphasia n = 26, progressive supranuclear palsy n = 45, corticobasal syndrome n = 33) and 32 healthy controls. RESULTS Forty-nine of 842 metabolites were significantly altered in frontotemporal lobar degeneration syndromes (after false-discovery rate correction for multiple comparisons). These were distributed across a wide range of metabolic pathways including amino acids, energy and carbohydrate, cofactor and vitamin, lipid and nucleotide pathways. The metabolomic profile supported classification between frontotemporal lobar degeneration syndromes and controls with high accuracy (88.1-96.6%) while classification accuracy was lower between the frontotemporal lobar degeneration syndromes (72.1-83.3%). One metabolic profile, comprising a range of different pathways, was consistently identified as a feature of each disease versus controls: the degree to which a patient expressed this metabolomic profile was associated with their subsequent survival (hazard ratio 0.74 [0.59-0.93], p = 0.0018). CONCLUSIONS The metabolic changes in FTLD are promising diagnostic and prognostic biomarkers. Further work is required to replicate these findings, examine longitudinal change, and test their utility in differentiating between FTLD syndromes that are pathologically distinct but phenotypically similar.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Lucy Bowns
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julie Wiggins
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
237
|
Hospitalization Rates and Comorbidities in Patients with Progressive Supranuclear Palsy in Germany from 2010 to 2017. J Clin Med 2020; 9:jcm9082454. [PMID: 32751888 PMCID: PMC7465231 DOI: 10.3390/jcm9082454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Progressive supranuclear palsy (PSP) belongs to the disease spectrum of Parkinsonian syndromes. Due to the chronic and progressive neurodegenerative course of the disease, PSP patients often have to be hospitalized to undergo diagnostic and therapeutic measures. The dynamics and characteristics of PSP inpatient treatment in Germany have not been investigated thus far. The current study analyzed trends of inpatient treatment in Germany for the years 2010–2017 based on the German DRG statistics (“diagnostic-related groups”) in the category G23.- (other degenerative diseases of the basal ganglia) and with special focus on PSP (G23.1). Inpatient case numbers of the G23.- category comprised a total of 21,196 patients from 2010–2017, whereas the PSP subcategory (G23.1) amounted to 10,663 cases. In the analyzed time period, PSP patient numbers constantly increased from 963 in 2010 to 1780 in 2017 with yearly growth rates of up to 20%. Similar trends were observed for other Parkinsonian syndromes such as multiple system atrophy (MSA). Differentiating PSP inpatients by gender demonstrated a higher proportion of males (55–60%) in comparison to female patients for the entire observation period. The average age of hospitalized PSP patients over these years was between 72.3 and 73.4 years without relevant differences for gender. The most common comorbidities consisted of cardiovascular, neurological, muscular and urological disorders. In summary, the analysis demonstrates that PSP patients are increasingly hospitalized in Germany and the current concepts of stationary care have to differentiate standard practices for Parkinson’s disease (PD) to also address the needs of patients with PSP and other Parkinsonian syndromes.
Collapse
|
238
|
Mol MO, van Rooij JGJ, Wong TH, Melhem S, Verkerk AJMH, Kievit AJA, van Minkelen R, Rademakers R, Pottier C, Kaat LD, Seelaar H, van Swieten JC, Dopper EGP. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol Aging 2020; 97:148.e9-148.e16. [PMID: 32843152 DOI: 10.1016/j.neurobiolaging.2020.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.
Collapse
Affiliation(s)
- Merel O Mol
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Jeroen G J van Rooij
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tsz H Wong
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rosa Rademakers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Cyril Pottier
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Laura Donker Kaat
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elise G P Dopper
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
239
|
Volkmer A, Spector A. Speech and language therapy for primary progressive aphasia: Referral patterns and barriers to service provision across the UK. DEMENTIA 2020; 19:1349-1363. [PMID: 30180763 PMCID: PMC7309358 DOI: 10.1177/1471301218797240] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To assess the extent of UK speech and language therapy engagement in assessment and management of primary progressive aphasia, determine the factors contributing to any shortfall and explore a gap in the research literature on current speech and language therapy practices with people with primary progressive aphasia. METHODS A 37-item, pilot-tested survey was distributed electronically via clinical networks and through the Royal College of Speech and Language Therapists. Survey items included questions on intervention approaches, referral numbers and demographics, referral sources and access to services. RESULTS One hundred and five speech and language therapists completed the survey. Over the previous 24 months, respondents reported seeing a total of 353 people with primary progressive aphasia (an average of 3.27 per speech and language therapist). Neurologists were the most commonly reported referrers to speech and language therapy (22.5%). Seventy-eight percent of respondents reported that people with primary progressive aphasia experienced barriers to accessing speech and language therapy. Key barriers were a lack of referrer awareness of a speech and language therapist's role, and restrictive eligibility criteria for services. CONCLUSIONS This study highlighted inequities in access to speech and language therapy for people with primary progressive aphasia. The medical and speech and language therapy professions need to develop appropriate care pathways for people with primary progressive aphasia. Speech and language therapists have a duty to develop a relevant evidence base for speech and language interventions for people with primary progressive aphasia.
Collapse
Affiliation(s)
- Anna Volkmer
- Division of Psychology and Language Sciences, University College, London, UK
| | - Aimee Spector
- Division of Psychology and Language Sciences, University College, London, UK
| |
Collapse
|
240
|
Abstract
Frontotemporal dementia (FTD) encompasses a group of clinical syndromes, including behavioral-variant FTD, nonfluent variant primary progressive aphasia, semantic variant primary progressive aphasia, FTD motor neuron disease, progressive supranuclear palsy syndrome, and corticobasal syndrome. Early on in its course, FTD is commonly seen in psychiatric clinics. We review the clinical features and diagnostic criteria in FTD spectrum disorders.
Collapse
Affiliation(s)
- Kyan Younes
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA.
| | - Bruce L Miller
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA. https://twitter.com/brucemillerucsf
| |
Collapse
|
241
|
Choudhury P, Scharf EL, Paolini MA, Graff-Radford J, Alden EC, Machulda MM, Jones DT, Fields JA, Murray ME, Graff-Radford NR, Constantopoulos E, Reichard RR, Knopman DS, Duffy JR, Dickson DW, Parisi JE, Josephs KA, Petersen RC, Boeve BF. Pick's disease: clinicopathologic characterization of 21 cases. J Neurol 2020; 267:2697-2704. [PMID: 32440921 DOI: 10.1007/s00415-020-09927-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Pick's disease (PiD) is a unique subtype of frontotemporal lobar degeneration characterized pathologically by aggregates of 3-Repeat tau. Few studies have examined the clinical variability and disease progression in PiD. We describe the clinical features, neuropsychological profiles and coexistent pathologies in 21 cases of autopsy-confirmed PiD. METHODS This study was a retrospective analysis of patients with Pick's disease evaluated at Mayo Clinic, Rochester or Jacksonville (1995-2018), and identified through an existing database. RESULTS Twenty-one cases with sufficient clinical data were identified. Behavioral variant FTD (bvFTD; 12/21) was the most common phenotype, followed by primary progressive aphasia (PPA; 7/21), corticobasal syndrome (CBS; 1/21) and amnestic dementia (1/21). Median age at disease onset was 54 years, with PPA cases (median = 52 years) presenting earlier than bvFTD (median = 59). Median disease duration (onset-death) overall was 10 years and did not differ significantly between bvFTD (median = 9.5 years) and PPA (median = 13). Age at death was not significantly different in PPA (median = 66) compared to bvFTD (median = 68.5). A third of the cases (n = 7/21) demonstrated pure PiD pathology, while the remainder showed co-existent other pathologies including Alzheimer's type (n = 6), cerebral amyloid angiopathy (n = 3), combined Alzheimer's and amyloid angiopathy (n = 4), and Lewy body disease (n = 1). CONCLUSIONS Our study shows that bvFTD and PPA are the most common clinical phenotypes associated with PiD, although rare presentations such as CBS were also seen. Coexisting non-Pick's pathology was also present in many cases. Our study highlights the clinical and pathologic heterogeneity in PiD.
Collapse
Affiliation(s)
- Parichita Choudhury
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eugene L Scharf
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Michael A Paolini
- Department of Molecular and Cellular Medicine, Texas A&M, College Station, TX, USA
| | | | - Eva C Alden
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
242
|
Ehrenberg AJ, Khatun A, Coomans E, Betts MJ, Capraro F, Thijssen EH, Senkevich K, Bharucha T, Jafarpour M, Young PNE, Jagust W, Carter SF, Lashley T, Grinberg LT, Pereira JB, Mattsson-Carlgren N, Ashton NJ, Hanrieder J, Zetterberg H, Schöll M, Paterson RW. Relevance of biomarkers across different neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2020; 12:56. [PMID: 32404143 PMCID: PMC7222479 DOI: 10.1186/s13195-020-00601-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/16/2020] [Indexed: 01/11/2023]
Abstract
Background The panel of fluid- and imaging-based biomarkers available for neurodegenerative disease research is growing and has the potential to close important gaps in research and the clinic. With this growth and increasing use, appropriate implementation and interpretation are paramount. Various biomarkers feature nuanced differences in strengths, limitations, and biases that must be considered when investigating disease etiology and clinical utility. For example, neuropathological investigations of Alzheimer’s disease pathogenesis can fall in disagreement with conclusions reached by biomarker-based investigations. Considering the varied strengths, limitations, and biases of different research methodologies and approaches may help harmonize disciplines within the neurodegenerative disease field. Purpose of review Along with separate review articles covering fluid and imaging biomarkers in this issue of Alzheimer’s Research and Therapy, we present the result of a discussion from the 2019 Biomarkers in Neurodegenerative Diseases course at the University College London. Here, we discuss themes of biomarker use in neurodegenerative disease research, commenting on appropriate use, interpretation, and considerations for implementation across different neurodegenerative diseases. We also draw attention to areas where biomarker use can be combined with other disciplines to understand issues of pathophysiology and etiology underlying dementia. Lastly, we highlight novel modalities that have been proposed in the landscape of neurodegenerative disease research and care.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. .,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Ayesha Khatun
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Emma Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Federica Capraro
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Elisabeth H Thijssen
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Konstantin Senkevich
- Petersburg Nuclear Physics Institute names by B.P. Konstantinov of National Research Center, Kurchatov Institute, St. Petersburg, Russia.,First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Tehmina Bharucha
- Oxford Glycobiology Institute, Department of Biochemistry , University of Oxford, Oxford, UK
| | - Mehrsa Jafarpour
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Peter N E Young
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Center for Molecular and Translational Medicine, Lund University, Lund, Sweden
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,University of São Paulo Medical School, São Paulo, Brazil.,Global Brain Health Institute, San Francisco, CA, USA
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Center for Molecular and Translational Medicine, Lund University, Lund, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Center for Molecular and Translational Medicine, Lund University, Lund, Sweden.,King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Jörg Hanrieder
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at University College London, London, UK
| | - Michael Schöll
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ross W Paterson
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| |
Collapse
|
243
|
VandeVrede L, Dale ML, Fields S, Frank M, Hare E, Heuer HW, Keith K, Koestler M, Ljubenkov PA, McDermott D, Ohanesian N, Richards J, Rojas JC, Thijssen EH, Walsh C, Wang P, Wolf A, Quinn JF, Tsai R, Boxer AL. Open-Label Phase 1 Futility Studies of Salsalate and Young Plasma in Progressive Supranuclear Palsy. Mov Disord Clin Pract 2020; 7:440-447. [PMID: 32373661 PMCID: PMC7197321 DOI: 10.1002/mdc3.12940] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disease without approved therapies, and therapeutics are often tried off-label in the hope of slowing disease progression. Results from these experiences are seldom shared, which limits evidence-based knowledge to guide future treatment decisions. OBJECTIVES To describe an open-label experience, including safety/tolerability, and longitudinal changes in biomarkers of disease progression in PSP-Richardson's syndrome (PSP-RS) patients treated with either salsalate or young plasma and compare to natural history data from previous multicenter studies. METHODS For 6 months, 10 PSP-RS patients received daily salsalate 2,250 mg, and 5 patients received monthly infusions of four units of young plasma. Every 3 months, clinical severity was assessed with the Progressive Supranuclear Palsy Rating Scale (PSPRS), and MRI was obtained for volumetric measurement of midbrain. A range of exploratory biomarkers, including cerebrospinal fluid levels of neurofilament light chain, were collected at baseline and 6 months. Interventional data were compared to historical PSP-RS patients from the davunetide clinical trial and the 4-Repeat Tauopathy Neuroimaging Initiative. RESULTS Salsalate and young plasma were safe and well tolerated. PSPRS change from baseline (mean ± standard deviation [SD]) was similar in salsalate (+5.6 ± 9.6), young plasma (+5.0 ± 7.1), and historical controls (+5.6 ± 7.1), and change in midbrain volume (cm3 ± SD) did not differ between salsalate (-0.07 ± 0.03), young plasma (-0.06 ± 0.03), and historical controls (-0.06 ± 0.04). No differences were observed between groups on any exploratory endpoint. CONCLUSIONS Neither salsalate nor young plasma had a detectable effect on disease progression in PSP-RS. Focused open-label clinical trials incorporating historical clinical, neuropsychological, fluid, and imaging biomarkers provide useful preliminary data about the promise of novel PSP-directed therapies.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marian L. Dale
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Scott Fields
- Department of Pharmaceutical ServicesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Megan Frank
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Emma Hare
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Hilary W. Heuer
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kellie Keith
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Mary Koestler
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Peter A. Ljubenkov
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Dana McDermott
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Noelle Ohanesian
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jennifer Richards
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Julio C. Rojas
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Elisabeth H. Thijssen
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Neurochemistry Laboratory, Department of Clinical ChemistryVU University Medical CenterAmsterdamThe Netherlands
| | - Christine Walsh
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ping Wang
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amy Wolf
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joseph F. Quinn
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Richard Tsai
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
244
|
Murley AG, Coyle-Gilchrist I, Rouse MA, Jones PS, Li W, Wiggins J, Lansdall C, Rodríguez PV, Wilcox A, Tsvetanov KA, Patterson K, Lambon Ralph MA, Rowe JB. Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain 2020; 143:1555-1571. [PMID: 32438414 PMCID: PMC7241953 DOI: 10.1093/brain/awaa097] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
The syndromes caused by frontotemporal lobar degeneration have highly heterogeneous and overlapping clinical features. There has been great progress in the refinement of clinical diagnostic criteria in the past decade, but we propose that a better understanding of aetiology, pathophysiology and symptomatic treatments can arise from a transdiagnostic approach to clinical phenotype and brain morphometry. In a cross-sectional epidemiological study, we examined 310 patients with a syndrome likely to be caused by frontotemporal lobar degeneration, including behavioural variant frontotemporal dementia, non-fluent, and semantic variants of primary progressive aphasia (PPA), progressive supranuclear palsy and corticobasal syndrome. We included patients with logopenic PPA and those who met criteria for PPA but not a specific subtype. To date, 49 patients have a neuropathological diagnosis. A principal component analysis identified symptom dimensions that broadly recapitulated the core features of the main clinical syndromes. However, the subject-specific scores on these dimensions showed considerable overlap across the diagnostic groups. Sixty-two per cent of participants had phenotypic features that met the diagnostic criteria for more than one syndrome. Behavioural disturbance was prevalent in all groups. Forty-four per cent of patients with corticobasal syndrome had progressive supranuclear palsy-like features and 30% of patients with progressive supranuclear palsy had corticobasal syndrome-like features. Many patients with progressive supranuclear palsy and corticobasal syndrome had language impairments consistent with non-fluent variant PPA while patients with behavioural variant frontotemporal dementia often had semantic impairments. Using multivariate source-based morphometry on a subset of patients (n = 133), we identified patterns of covarying brain atrophy that were represented across the diagnostic groups. Canonical correlation analysis of clinical and imaging components found three key brain-behaviour relationships, with a continuous spectrum across the cohort rather than discrete diagnostic entities. In the 46 patients with follow-up (mean 3.6 years) syndromic overlap increased with time. Together, these results show that syndromes associated with frontotemporal lobar degeneration do not form discrete mutually exclusive categories from their clinical features or structural brain changes, but instead exist in a multidimensional spectrum. Patients often manifest diagnostic features of multiple disorders while deficits in behaviour, movement and language domains are not confined to specific diagnostic groups. It is important to recognize individual differences in clinical phenotype, both for clinical management and to understand pathogenic mechanisms. We suggest that a transdiagnostic approach to the spectrum of frontotemporal lobar degeneration syndromes provides a useful framework with which to understand disease aetiology, progression, and heterogeneity and to target future treatments to a higher proportion of patients.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ian Coyle-Gilchrist
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Norfolk and Norwich NHS Foundation Trust, Norwich, UK
| | - Matthew A Rouse
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Win Li
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julie Wiggins
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Claire Lansdall
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Alicia Wilcox
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karalyn Patterson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Matthew A Lambon Ralph
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
245
|
Cope TE, Shtyrov Y, MacGregor LJ, Holland R, Pulvermüller F, Rowe JB, Patterson K. Anterior temporal lobe is necessary for efficient lateralised processing of spoken word identity. Cortex 2020; 126:107-118. [PMID: 32065956 PMCID: PMC7253293 DOI: 10.1016/j.cortex.2019.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/22/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
In the healthy human brain, the processing of language is strongly lateralised, usually to the left hemisphere, while the processing of complex non-linguistic sounds recruits brain regions bilaterally. Here we asked whether the anterior temporal lobes, strongly implicated in semantic processing, are critical to this special treatment of spoken words. Nine patients with semantic dementia (SD) and fourteen age-matched controls underwent magnetoencephalography and structural MRI. Voxel based morphometry demonstrated the stereotypical pattern of SD: severe grey matter loss restricted to the anterior temporal lobes, with the left side more affected. During magnetoencephalography, participants listened to word sets in which identity and meaning were ambiguous until word completion, for example PLAYED versus PLATE. Whereas left-hemispheric responses were similar across groups, patients demonstrated increased right hemisphere activity 174-294 msec after stimulus disambiguation. Source reconstructions confirmed recruitment of right-sided analogues of language regions in SD: atrophy of anterior temporal lobes was associated with increased activity in right temporal pole, middle temporal gyrus, inferior frontal gyrus and supramarginal gyrus. Overall, the results indicate that anterior temporal lobes are necessary for normal and efficient lateralised processing of word identity by the language network.
Collapse
Affiliation(s)
- Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Yury Shtyrov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Institute for Cognitive Neuroscience, NRU Higher School of Economics, Moscow, Russia
| | - Lucy J MacGregor
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rachel Holland
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Division of Language and Communication Science, City University London, UK
| | - Friedemann Pulvermüller
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Karalyn Patterson
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| |
Collapse
|
246
|
Correia MM, Rittman T, Barnes CL, Coyle-Gilchrist IT, Ghosh B, Hughes LE, Rowe JB. Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome. Brain Commun 2020; 2:fcaa051. [PMID: 32671340 PMCID: PMC7325838 DOI: 10.1093/braincomms/fcaa051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The early and accurate differential diagnosis of parkinsonian disorders is still a significant challenge for clinicians. In recent years, a number of studies have used magnetic resonance imaging data combined with machine learning and statistical classifiers to successfully differentiate between different forms of Parkinsonism. However, several questions and methodological issues remain, to minimize bias and artefact-driven classification. In this study, we compared different approaches for feature selection, as well as different magnetic resonance imaging modalities, with well-matched patient groups and tightly controlling for data quality issues related to patient motion. Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic Parkinson’s disease (n = 35), progressive supranuclear palsy Richardson’s syndrome (n = 52) and corticobasal syndrome (n = 36). Participants underwent standardized T1-weighted and diffusion-weighted magnetic resonance imaging. Strict data quality control and group matching reduced the control and patient numbers to 43, 32, 33 and 26, respectively. We compared two different methods for feature selection and dimensionality reduction: whole-brain principal components analysis, and an anatomical region-of-interest based approach. In both cases, support vector machines were used to construct a statistical model for pairwise classification of healthy controls and patients. The accuracy of each model was estimated using a leave-two-out cross-validation approach, as well as an independent validation using a different set of subjects. Our cross-validation results suggest that using principal components analysis for feature extraction provides higher classification accuracies when compared to a region-of-interest based approach. However, the differences between the two feature extraction methods were significantly reduced when an independent sample was used for validation, suggesting that the principal components analysis approach may be more vulnerable to overfitting with cross-validation. Both T1-weighted and diffusion magnetic resonance imaging data could be used to successfully differentiate between subject groups, with neither modality outperforming the other across all pairwise comparisons in the cross-validation analysis. However, features obtained from diffusion magnetic resonance imaging data resulted in significantly higher classification accuracies when an independent validation cohort was used. Overall, our results support the use of statistical classification approaches for differential diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group size, age, sex and movement artefacts. With appropriate controls and out-of-sample cross validation, diagnostic biomarker evaluation including magnetic resonance imaging based classifiers may be an important adjunct to clinical evaluation.
Collapse
Affiliation(s)
- Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | | | - Ian T Coyle-Gilchrist
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - Boyd Ghosh
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, UK
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.,Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.,Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| |
Collapse
|
247
|
Vismara M, Cirnigliaro G, Piccoli E, Giorgetti F, Molteni L, Cremaschi L, Fumagalli GG, D'addario C, Dell'Osso B. Crossing Borders Between Frontotemporal Dementia and Psychiatric Disorders: An Updated Overview. J Alzheimers Dis 2020; 75:661-673. [PMID: 32310172 DOI: 10.3233/jad-191333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Frontotemporal dementia (FTD) includes a group of neurocognitive syndromes, clinically characterized by altered behaviors, impairment of language proficiency, and altered executive functioning. FTD is one of the most frequently observed forms of dementia in the elderly population and the most common in presenile age. As for other subtypes of dementia, FTD incidence is constantly on the rise due to the steadily increasing age of the population, and its recognition is now becoming a determinant for clinicians. FTD and psychiatric disorders can overlap in terms of clinical presentations by sharing a common genetic predisposition and neuropathological mechanism in some cases. Nonetheless, this association is often unclear and underestimated. Since its first reports, research into FTD has constantly grown, with the identification of recent findings related to its neuropathology, genetic, clinical, and therapeutic issues. Literature is thriving on this topic, with numerous research articles published in recent years. In the present review, we aimed to provide an updated description of the clinical manifestations that link and potentially confound the diagnosis of FTD and psychiatric disorders in order to improve their differential diagnosis and early detection. In particular, we systematically reviewed the literature, considering articles specifically focused on the behavioral variant FTD, published after 2015 on the PubMed database.
Collapse
Affiliation(s)
- Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Giovanna Cirnigliaro
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Eleonora Piccoli
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Federica Giorgetti
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Laura Molteni
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Laura Cremaschi
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | | | - Claudio D'addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA, USA.,"Aldo Ravelli" Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy.,"Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche", University of Milan, Milan, Italy
| |
Collapse
|
248
|
Update on PET in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level: imaging for differential diagnosis. Curr Opin Neurol 2020; 32:548-556. [PMID: 31107281 DOI: 10.1097/wco.0000000000000706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To give an update on recent findings concerning the use of PET for differential diagnosis in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level. RECENT FINDINGS Although accurate differential diagnosis of dementia can be achieved by imaging disease-specific patterns of cerebral glucose metabolism with [F]fluorodeoxyglucose ([F]FDG)-PET, the diagnostic impact of [F]FDG-PET in primary psychiatric disorders is limited. Amyloid-beta PET provides an incremental value beyond [F]FDG-PET in the differential diagnosis of dementia and was proposed as a biomarker defining the so-called Alzheimer continuum. Recently developed tau-specific tracers might also aid in the diagnostic process (biological definition of Alzheimer's disease together with amyloid-beta). Surpassing the diagnostic accuracy of other techniques, such as MRI, [F]FDG-PET has also gained widespread clinical use for diagnosis and follow-up of paraneoplastic and autoimmune disorders of the central nervous system (CNS) as an important differential diagnosis for rapid progressive dementia and subacute onset of psychiatric syndromes. SUMMARY Molecular neuroimaging with PET is an established method for the differential diagnosis of neurodegenerative and autoimmune CNS disorders manifesting on a behavioural level with significant therapeutic and prognostic impact. Future prospective studies are needed to define the value of tau imaging for diagnosis and prognosis in neurodegenerative disorders.
Collapse
|
249
|
Coughlin DG, Litvan I. Progressive supranuclear palsy: Advances in diagnosis and management. Parkinsonism Relat Disord 2020; 73:105-116. [PMID: 32487421 PMCID: PMC7462164 DOI: 10.1016/j.parkreldis.2020.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Progressive supranuclear palsy (PSP) is a complex clinicopathologic disease with no current cure or disease modulating therapies that can only be definitively confirmed at autopsy. Growing understanding of the phenotypic diversity of PSP has led to expanded clinical criteria and new insights into etiopathogenesis that coupled with improved in vivo biomarkers makes increased access to current clinical trials possible. Current standard-of-care treatment of PSP is multidisciplinary, supportive and symptomatic, and several trials of potentially disease modulating agents have already been completed with disappointing results. Current ongoing clinical trials target the abnormal aggregation of tau through a variety of mechanisms including immunotherapy and gene therapy offer a more direct method of treatment. Here we review PSP clinicopathologic correlations, in vivo biomarkers including MRI, PET, and CSF biomarkers. We additionally review current pharmacologic and non-pharmacologic methods of treatment, prior and ongoing clinical trials in PSP. Newly expanded clinical criteria and improved specific biomarkers will aid in identifying patients with PSP earlier and more accurately and expand access to these potentially beneficial clinical trials.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
250
|
Bilingualism in Primary Progressive Aphasia: A Retrospective Study on Clinical and Language Characteristics. Alzheimer Dis Assoc Disord 2020; 33:47-53. [PMID: 30640254 DOI: 10.1097/wad.0000000000000288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is a neurodegenerative disorder characterized by progressive deterioration of language. Being rare, reports of PPA in multilingual individuals are scarce, despite more than half of the world population being multilingual. METHODS We describe clinical characteristics of 33 bilingual patients with PPA, including symptom presentation and language deficits pattern in their first (L1) and second language (L2), through a systematic literature review and new cases retrospectively identified in 5 countries. RESULTS In total, 14 patients presented with nonfluent/agrammatic variant, 6 with semantic variant, and 13 with logopenic variant, with a median symptom onset of 2 years. Word-finding difficulties was the first symptom in 65% of all cases, initially noticed in L2, and not always the dominant language. Our group had 22 different languages as L1, and 9 as L2. At the whole-group level there was a tendency for parallel impairment in both languages, in line with the shared bilingual neural substrate hypothesis, but each PPA variant showed some heterogeneity. DISCUSSION Each PPA variant showed heterogeneity, showing the need for comprehensive language and cognitive assessment across languages, as well as further clarification on the role of language mediators.
Collapse
|