201
|
Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Rodriguez JL, Snellman A, Suárez-Calvet M, Zetterberg H, Blennow K, Schöll M. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum. Brain 2021; 144:325-339. [PMID: 33257949 PMCID: PMC7880671 DOI: 10.1093/brain/awaa399] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/31/2022] Open
Abstract
Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer’s disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer’s disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer’s disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer’s disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-β1–42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer’s disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer’s disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer’s disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer’s disease.
Collapse
Affiliation(s)
- Alexis Moscoso
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Michel J Grothe
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Juan Lantero Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Turku PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
202
|
Monllor P, Giraldo E, Badia MC, de la Asuncion JG, Alonso MD, Lloret A, Vina J. Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1067-1077. [PMID: 33646167 DOI: 10.3233/jad-201443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and biomarkers are essential to help in the diagnosis of this disease. Image techniques and cerebrospinal fluid (CSF) biomarkers are limited in their use because they are expensive or invasive. Thus, the search for blood-borne biomarkers is becoming central to the medical community. OBJECTIVE The main objective of this study is the evaluation of three serum proteins as potential biomarkers in AD patients. METHODS We recruited 27 healthy controls, 19 mild cognitive impairment patients, and 17 AD patients. Using the recent A/T/N classification we split our population into two groups (AD and control). We used ELISA kits to determine Aβ42, tau, and p-tau in CSF and clusterin, PKR, and RAGE in serum. RESULTS The levels of serum clusterin, PKR, and RAGE were statistically different in the AD group compared to controls. These proteins showed a statistically significant correlation with CSF Aβ42. So, they were selected to generate an AD detection model showing an AUC-ROC of 0.971 (CI 95%, 0.931-0.998). CONCLUSION The developed model based on serum biomarkers and other co-variates could reflect the AD core pathology. So far, not one single blood-biomarker has been described, with effectiveness offering high sensitivity and specificity. We propose that the complexity of AD pathology could be reflected in a set of biomarkers also including clinical features of the patients.
Collapse
Affiliation(s)
- Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,Principe Felipe Research Center, Valencia, Spain
| | | | | | | | - Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
203
|
Leuzy A, Cullen NC, Mattsson-Carlgren N, Hansson O. Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer's disease. Curr Opin Neurol 2021; 34:266-274. [PMID: 33470669 DOI: 10.1097/wco.0000000000000904] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aβ42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aβ deposition can be detected using Aβ42/Aβ40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY Alzheimer's disease biomarkers, including Aβ, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
| | - Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
- Department of Neurology, Skåne University Hospital
- Wallenberg Centre for Molecular Medicine, Lund University
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
204
|
Chong JR, Ashton NJ, Karikari TK, Tanaka T, Saridin FN, Reilhac A, Robins EG, Nai YH, Vrooman H, Hilal S, Zetterberg H, Blennow K, Lai MKP, Chen CP. Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer's disease patients with concomitant cerebrovascular disease. Alzheimers Dement 2021; 17:1649-1662. [PMID: 33792168 DOI: 10.1002/alz.12332] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There is increasing evidence that phosphorylated tau (P-tau181) is a specific biomarker for Alzheimer's disease (AD) pathology, but its potential utility in non-White patient cohorts and patients with concomitant cerebrovascular disease (CeVD) is unknown. METHODS Single molecule array (Simoa) measurements of plasma P-tau181, total tau, amyloid beta (Aβ)40 and Aβ42, as well as derived ratios were correlated with neuroimaging modalities indicating brain amyloid (Aβ+), hippocampal atrophy, and CeVD in a Singapore-based cohort of non-cognitively impaired (NCI; n = 43), cognitively impaired no dementia (CIND; n = 91), AD (n = 44), and vascular dementia (VaD; n = 22) subjects. RESULTS P-tau181/Aβ42 ratio showed the highest area under the curve (AUC) for Aβ+ (AUC = 0.889) and for discriminating between AD Aβ+ and VaD Aβ- subjects (AUC = 0.903). In addition, P-tau181/Aβ42 ratio was associated with hippocampal atrophy. None of the biomarkers was associated with CeVD. DISCUSSION Plasma P-tau181/Aβ42 ratio may be a noninvasive means of identifying AD with elevated brain amyloid in populations with concomitant CeVD.
Collapse
Affiliation(s)
- Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Psychology and Neuroscience, King's College London, Institute of Psychiatry, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Tomotaka Tanaka
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Francis N Saridin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Edward G Robins
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Technology and Research, Biopolis, Singapore Bioimaging Consortium, A*Star Agency for Science, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Henri Vrooman
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Kent Ridge, Singapore
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| |
Collapse
|
205
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
206
|
Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J Exp Med 2021; 217:151982. [PMID: 32725127 PMCID: PMC7596823 DOI: 10.1084/jem.20200861] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
Highly sensitive and specific plasma biomarkers for Alzheimer’s disease (AD) have the potential to improve diagnostic accuracy in the clinic and facilitate research studies including enrollment in prevention and treatment trials. We recently reported CSF tau hyperphosphorylation, especially on T217, is an accurate predictor of β-amyloidosis at asymptomatic and symptomatic stages. In the current study, we determine by mass spectrometry the potential utility of plasma p-tau isoforms to detect AD pathology and investigate CSF and plasma tau isoforms’ profile relationships. Plasma tau was truncated as previously described in CSF. CSF and plasma measures of p-tau-217 and p-tau-181 were correlated. No correlation was found between CSF and plasma on total-tau levels and pS202 measures. We found p-tau-217 and p-tau-181 were highly specific for amyloid plaque pathology in the discovery cohort (n = 36, AUROC = 0.99 and 0.98 respectively). In the validation cohort (n = 92), p-tau-217 measures were still specific to amyloid status (AUROC = 0.92), and p-tau-181 measures were less specific (AUROC = 0.75).
Collapse
Affiliation(s)
- Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kanta Horie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO.,Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
207
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
208
|
Janeiro MH, Ardanaz CG, Sola-Sevilla N, Dong J, Cortés-Erice M, Solas M, Puerta E, Ramírez MJ. Biomarkers in Alzheimer's disease. ADVANCES IN LABORATORY MEDICINE 2021; 2:27-50. [PMID: 37359199 PMCID: PMC10197496 DOI: 10.1515/almed-2020-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 06/28/2023]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease. AD is the main cause of dementia worldwide and aging is the main risk factor for developing the illness. AD classical diagnostic criteria rely on clinical data. However, the development of a biological definition of AD using biomarkers that reflect the underling neuropathology is needed. Content The aim of this review is to describe the main outcomes when measuring classical and novel biomarkers in biological fluids or neuroimaging. Summary Nowadays, there are three classical biomarkers for the diagnosis of AD: Aβ42, t-Tau and p-Tau. The diagnostic use of cerebrospinal fluid biomarkers is limited due to invasive collection by lumbar puncture with potential side effects. Plasma/serum measurements are the gold standard in clinics, because they are minimally invasive and, in consequence, easily collected and processed. The two main proteins implicated in the pathological process, Aβ and Tau, can be visualized using neuroimaging techniques, such as positron emission tomography. Outlook As it is currently accepted that AD starts decades before clinical symptoms could be diagnosed, the opportunity to detect biological alterations prior to clinical symptoms would allow early diagnosis or even perhaps change treatment possibilities.
Collapse
Affiliation(s)
- Manuel H. Janeiro
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Carlos G. Ardanaz
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Noemí Sola-Sevilla
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Jinya Dong
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - María Cortés-Erice
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| |
Collapse
|
209
|
Devitt G, Crisford A, Rice W, Weismiller HA, Fan Z, Commins C, Hyman BT, Margittai M, Mahajan S, Mudher A. Conformational fingerprinting of tau variants and strains by Raman spectroscopy. RSC Adv 2021; 11:8899-8915. [PMID: 34381596 PMCID: PMC8330415 DOI: 10.1039/d1ra00870f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of disorders in which the deposition of abnormally folded tau protein accompanies neurodegeneration. The development of methods for detection and classification of pathological changes in protein conformation are desirable for understanding the factors that influence the structural polymorphism of aggregates in tauopathies. We have previously demonstrated the utility of Raman spectroscopy for the characterization and discrimination of different protein aggregates, including tau, based on their unique conformational signatures. Building on this, in the present study, we assess the utility of Raman spectroscopy for characterizing and distinguishing different conformers of the same protein which in the case of tau are unique tau strains generated in vitro. We now investigate the impact of aggregation environment, cofactors, post-translational modification and primary sequence on the Raman fingerprint of tau fibrils. Using quantitative conformational fingerprinting and multivariate statistical analysis, we found that the aggregation of tau in different buffer conditions resulted in the formation of distinct fibril strains. Unique spectral markers were identified for tau fibrils generated using heparin or RNA cofactors, as well as for phosphorylated tau. We also determined that the primary sequence of the tau monomer influenced the conformational signature of the resulting tau fibril, including 2N4R, 0N3R, K18 and P301S tau variants. These results highlight the conformational polymorphism of tau fibrils, which is reflected in the wide range of associated neurological disorders. Furthermore, the analyses presented in this study provide a benchmark for the Raman spectroscopic characterization of tau strains, which may shed light on how the aggregation environment, cofactors and post-translational modifications influence tau conformation in vivo in future studies.
Collapse
Affiliation(s)
- George Devitt
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK .,School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Highfield Southampton SO17 1BJ UK.,Institute for Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Anna Crisford
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK .,School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| | - William Rice
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Hilary A Weismiller
- Department of Chemistry and Biochemistry, University of Denver 2190 E. Iliff Ave. Denver CO 80208 USA
| | - Zhanyun Fan
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital Charlestown MA 02129 USA
| | - Caitlin Commins
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital Charlestown MA 02129 USA
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital Charlestown MA 02129 USA
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver 2190 E. Iliff Ave. Denver CO 80208 USA
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Highfield Southampton SO17 1BJ UK.,Institute for Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Amrit Mudher
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK .,Institute for Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
210
|
Menne F, Schipke CG. Diagnose it yourself: will there be a home test kit for Alzheimer's disease? Neurodegener Dis Manag 2021; 11:167-176. [PMID: 33596691 DOI: 10.2217/nmt-2020-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is the most common neurodegenerative process leading to dementia. To date, there is no curative approach; thus, establishing a diagnosis as early as possible is necessary to implement preventive measures. However, today's gold standard for diagnosing Alzheimer's disease is high in both cost and effort and is not readily available. This defines the need for low-effort and economic alternatives that give patients low-threshold access to testing systems at their general practitioners or even at home for an independent retrieval of a biologic specimen. This perspective gives an overview of established and novel approaches in the field and speculates on the future of test strategies eventually technically implementable at home.
Collapse
Affiliation(s)
- Felix Menne
- Predemtec AG, Rudower Chaussee 29, Berlin 12489, Germany
| | | |
Collapse
|
211
|
Daniele S, Baldacci F, Piccarducci R, Palermo G, Giampietri L, Manca ML, Pietrobono D, Frosini D, Nicoletti V, Tognoni G, Giorgi FS, Lo Gerfo A, Petrozzi L, Cavallini C, Franzoni F, Ceravolo R, Siciliano G, Trincavelli ML, Martini C, Bonuccelli U. α-Synuclein Heteromers in Red Blood Cells of Alzheimer's Disease and Lewy Body Dementia Patients. J Alzheimers Dis 2021; 80:885-893. [PMID: 33579836 DOI: 10.3233/jad-201038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Red blood cells (RBCs) contain the majority of α-synuclein (α-syn) in blood, representing an interesting model for studying the peripheral pathological alterations proved in neurodegeneration. OBJECTIVE The current study aimed to investigate the diagnostic value of total α-syn, amyloid-β (Aβ1-42), tau, and their heteroaggregates in RBCs of Lewy body dementia (LBD) and Alzheimer's disease (AD) patients compared to healthy controls (HC). METHODS By the use of enzyme-linked immunosorbent assays, RBCs concentrations of total α-syn, Aβ1-42, tau, and their heteroaggregates (α-syn/Aβ1-42 and α-syn/tau) were measured in 27 individuals with LBD (Parkinson's disease dementia, n = 17; dementia with Lewy bodies, n = 10), 51 individuals with AD (AD dementia, n = 37; prodromal AD, n = 14), and HC (n = 60). RESULTS The total α-syn and tau concentrations as well as α-syn/tau heterodimers were significantly lower in the LBD group and the AD group compared with HC, whereas α-syn/Aβ1-42 concentrations were significantly lower in the AD dementia group only. RBC α-syn/tau heterodimers had a higher diagnostic accuracy for differentiating patients with LBD versus HC (AUROC = 0.80). CONCLUSION RBC α-syn heteromers may be useful for differentiating between neurodegenerative dementias (LBD and AD) and HC. In particular, RBC α-syn/tau heterodimers have demonstrated good diagnostic accuracy for differentiating LBD from HC. However, they are not consistently different between LBD and AD. Our findings also suggest that α-syn, Aβ1-42, and tau interact in vivo to promote the aggregation and accumulation of each other.
Collapse
Affiliation(s)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | | | - Daniela Frosini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valentina Nicoletti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
212
|
Andersson M, Oras J, Thörn SE, Karlsson O, Kälebo P, Zetterberg H, Blennow K, Bergman L. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One 2021; 16:e0246786. [PMID: 33556141 PMCID: PMC7869986 DOI: 10.1371/journal.pone.0246786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cerebral injury is a common cause of maternal mortality due to preeclampsia and is challenging to predict and diagnose. In addition, there are associations between previous preeclampsia and stroke, dementia and epilepsy later in life. The cerebral biomarkers S100B, neuron specific enolase, (NSE), tau protein and neurofilament light chain (NfL) have proven useful as predictors and diagnostic tools in other neurological disorders. This case-control study sought to determine whether cerebral biomarkers were increased in cerebrospinal fluid (CSF) as a marker of cerebral origin and potential cerebral injury in preeclampsia and if concentrations in CSF correlated to concentrations in plasma. METHODS CSF and blood at delivery from 15 women with preeclampsia and 15 women with normal pregnancies were analysed for the cerebral biomarkers S100B, NSE, tau protein and NfL by Simoa and ELISA based methods. MRI brain was performed after delivery and for women with preeclampsia also at six months postpartum. RESULTS Women with preeclampsia demonstrated increased CSF- and plasma concentrations of NfL and these concentrations correlated to each other. CSF concentrations of NSE and tau were decreased in preeclampsia and there were no differences in plasma concentrations of NSE and tau between groups. For S100B, serum concentrations in preeclampsia were increased but there was no difference in CSF concentrations of S100B between women with preeclampsia and normal pregnancy. CONCLUSION NfL emerges as a promising circulating cerebral biomarker in preeclampsia and increased CSF concentrations point to a neuroaxonal injury in preeclampsia, even in the absence of clinically evident neurological complications.
Collapse
Affiliation(s)
- Malin Andersson
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Egron Thörn
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ove Karlsson
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kälebo
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lina Bergman
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
213
|
Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, Grinberg LT, Spina S, Kramer JH, Ramos EM, Coppola G, La Joie R, Rabinovici GD, Perry DC, Gorno-Tempini ML, Seeley WW, Miller BL, Rosen HJ, Blennow K, Boxer AL, Rojas JC. Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease. Neurology 2021; 96:e671-e683. [PMID: 33199433 PMCID: PMC7884995 DOI: 10.1212/wnl.0000000000011226] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. METHODS We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. RESULTS Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. CONCLUSION Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles.
| | - Alberto Lleo
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Anna Karydas
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Adam M Staffaroni
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Henrik Zetterberg
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Rajeev Sivasankaran
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Lea T Grinberg
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Salvatore Spina
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Joel H Kramer
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Eliana M Ramos
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Giovanni Coppola
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Renaud La Joie
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Gil D Rabinovici
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - David C Perry
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Maria Luisa Gorno-Tempini
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - William W Seeley
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Bruce L Miller
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Howard J Rosen
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Kaj Blennow
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Adam L Boxer
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Julio C Rojas
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
214
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes Metab 2021; 23:338-349. [PMID: 33026133 DOI: 10.1111/dom.14220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
AIMS Hypoglycaemia in diabetes (T2D) may increase the risk of Alzheimer's disease (AD). We hypothesized that hypoglycaemia-induced amyloid-related protein changes would be exacerbated in T2D. MATERIALS AND METHODS A prospective, parallel study in T2D (n = 23) and controls (n = 23). Subjects underwent insulin-induced hypoglycaemia with blood sampling at baseline, hypoglycaemia and post-hypoglycaemia; proteomic analysis of amyloid-related proteins was undertaken. RESULTS At baseline, amyloid-precursor protein (APP) (P < .01) was elevated and alpha-synuclein (SNCA) (P < .01) reduced in T2D. At hypoglycaemia, amyloid P-component (P < .01) was elevated and SNCA (P < .05) reduced in T2D; APP (P < .01) and noggin (P < .05) were elevated and SNCA (P < .01) reduced in controls. In the post-hypoglycaemia follow-up period, APP and microtubule-associated protein tau normalized in controls but showed a below-baseline decrease in T2D; noggin normalized in both; SNCA normalized in T2D, with a below-baseline decrease in controls. CONCLUSION The AD-associated protein pattern found in T2D, with basal elevated APP and reduced SNCA, was exaggerated by hypoglycaemia with increased APP and decreased SNCA. Additional AD-associated protein levels that changed in response to hypoglycaemia, particularly in T2D, included amyloid P-component, microtubule-associated protein tau, apolipoproteins A1 and E3, pappalysin and noggin. These results are in accordance with the reported detrimental effects of hypoglycaemia.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
- Leeds Medical School, Leeds, UK
| | | | | | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
215
|
Karikari TK, Benedet AL, Ashton NJ, Lantero Rodriguez J, Snellman A, Suárez-Calvet M, Saha-Chaudhuri P, Lussier F, Kvartsberg H, Rial AM, Pascoal TA, Andreasson U, Schöll M, Weiner MW, Rosa-Neto P, Trojanowski JQ, Shaw LM, Blennow K, Zetterberg H. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative. Mol Psychiatry 2021; 26:429-442. [PMID: 33106600 DOI: 10.1038/s41380-020-00923-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022]
Abstract
Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC = 85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC = 76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
Collapse
Affiliation(s)
- Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, H4H 1R3, Montreal, QC, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden.,King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Juan Lantero Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, H4H 1R3, Montreal, QC, Canada
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexis Moscoso Rial
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, H4H 1R3, Montreal, QC, Canada.,Montreal Neurological Institute, H3A 2B4, Montreal, QC, Canada
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michael W Weiner
- Department of Radiology, Medicine, and Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, H4H 1R3, Montreal, QC, Canada.,Montreal Neurological Institute, H3A 2B4, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Leslie M Shaw
- Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. .,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, London, UK.
| | | |
Collapse
|
216
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
217
|
Deniz K, Ho CCG, Malphrus KG, Reddy JS, Nguyen T, Carnwath TP, Crook JE, Lucas JA, Graff-Radford NR, Carrasquillo MM, Ertekin-Taner N. Plasma Biomarkers of Alzheimer's Disease in African Americans. J Alzheimers Dis 2021; 79:323-334. [PMID: 33252078 PMCID: PMC7902984 DOI: 10.3233/jad-200828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background/Objective: The aim of this study was to determine if plasma concentrations of 5 surrogate markers of Alzheimer’s disease (AD) pathology and neuroinflammation are associated with disease status in African Americans. Methods: We evaluated 321 African Americans (159 AD, 162 controls) from the Florida Consortium for African-American Alzheimer’s Disease Studies (FCA3DS). Five plasma proteins reflecting AD neuropathology or inflammation (Aβ42, tau, IL6, IL10, TNFα) were tested for associations with AD, age, sex, APOE and MAPT genotypes, and for pairwise correlations. Results: Plasma tau levels were higher in AD when adjusted for biological and technical covariates. APOEɛ4 was associated with lower plasma Aβ42 and tau levels. Older age was associated with higher plasma Aβ42, tau, and TNFα. Females had lower IL10 levels. Inflammatory proteins had strong pairwise correlations amongst themselves and with Aβ42. Conclusion: We identified effects of demographic and genetic variants on five potential plasma biomarkers in African Americans. Plasma inflammatory biomarkers and Aβ42 may reflect correlated pathologies and elevated plasma tau may be a biomarker of AD in this population.
Collapse
Affiliation(s)
- Kaancan Deniz
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA
| | | | | | - Joseph S Reddy
- Mayo Clinic, Department of Health Science Research, Jacksonville, FL, USA
| | - Thuy Nguyen
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA
| | - Troy P Carnwath
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA
| | - Julia E Crook
- Mayo Clinic, Department of Health Science Research, Jacksonville, FL, USA
| | - John A Lucas
- Mayo Clinic, Department of Psychiatry and Psychology, Jacksonville, FL, USA
| | | | | | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA.,Mayo Clinic, Department of Neurology, Jacksonville, FL, USA
| |
Collapse
|
218
|
Petersen ME, Rafii MS, Zhang F, Hall J, Julovich D, Ances BM, Schupf N, Krinsky-McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Foroud T, Lai F, Rosas HD, Zaman S, Wang MC, Tycko B, Lee JH, Handen B, Hartley S, Fortea J, O’Bryant S. Plasma Total-Tau and Neurofilament Light Chain as Diagnostic Biomarkers of Alzheimer's Disease Dementia and Mild Cognitive Impairment in Adults with Down Syndrome. J Alzheimers Dis 2021; 79:671-681. [PMID: 33337378 PMCID: PMC8273927 DOI: 10.3233/jad-201167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The need for diagnostic biomarkers of cognitive decline is particularly important among aging adults with Down syndrome (DS). Growing empirical support has identified the utility of plasma derived biomarkers among neurotypical adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, the application of such biomarkers has been limited among the DS population. OBJECTIVE This study aimed to investigate the cross-sectional diagnostic performance of plasma neurofilament light chain (Nf-L) and total-tau, individually and in combination among a cohort of DS adults. METHODS Plasma samples were analyzed from n = 305 (n = 225 cognitively stable (CS); n = 44 MCI-DS; n = 36 DS-AD) participants enrolled in the Alzheimer's Biomarker Consortium -Down Syndrome. RESULTS In distinguishing DS-AD participants from CS, Nf-L alone produced an AUC of 90%, total-tau alone reached 74%, and combined reached an AUC of 86%. When age and gender were included, AUC increased to 93%. Higher values of Nf-L, total-tau, and age were all shown to be associated with increased risk for DS-AD. When distinguishing MCI-DS participants from CS, Nf-L alone produced an AUC of 65%, while total-tau alone reached 56%. A combined model with Nf-L, total-tau, age, and gender produced an AUC of 87%. Both higher values in age and total-tau were found to increase risk for MCI-DS; Nf-L levels were not associated with increased risk for MCI-DS. CONCLUSION Advanced assay techniques make total-tau and particularly Nf-L useful biomarkers of both AD pathology and clinical status in DS and have the potential to serve as outcome measures in clinical trials for future disease-modifying drugs.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, 9860 Mesa Rim Road, San Diego, California, 92121, USA
| | - Fan Zhang
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - James Hall
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - David Julovich
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Beau M. Ances
- Washington University School of Medicine in St. Louis, Center for Advanced Medicine Neuroscience, 4921 Parkview Place, St. Louis, Missouri, 63110, USA
| | - Nicole Schupf
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
- Columbia University, Mailman School of Public Health, Department of Epidemiology, 722 West 168th Street, New York, New York, 10032, USA
- Columbia University Irving Medical Center, Department of Neurology, Neurological Institute 710 West 168 Street, New York, New York, 10032, USA
- Columbia University Medical Center, Department of Psychiatry, 1051 Riverside Drive, New York, New York, 10032, USA
| | - Sharon J. Krinsky-McHale
- NYS Institute for Basic Research in Developmental Disabilities, Department of Psychology, 1050 Forest Hill Road, Staten Island, New York, 10314, USA
| | - Mark Mapstone
- University of California, Irvine, Department of Neurology, 839 Health Sciences Road, Irvine, California, 92697, USA
| | - Wayne Silverman
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - Ira Lott
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - William Klunk
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Elizabeth Head
- University of California, Irvine, Department of Pathology, 1261 Gillespie Neuroscience Facility, Irvine, California, 92697, USA
| | - Brad Christian
- University of Wisconsin Madison, Department of Medical Physics and Psychiatry, 1500 Highland Ave, Madison, Wisconsin, 53705, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, 410 W. 10 Street, Indianapolis, IN. 46202. USA
| | - Florence Lai
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, 149 13 Street, Room 10128, Charlestown, Massachusetts, 02129, USA
| | - H. Diana Rosas
- Massachusetts General Hospital, Departments of Neurology and Radiology, Harvard Medical School, 149 13 Street Room 10126, Charlestown, Massachusetts, 02129, USA
| | - Shahid Zaman
- University of Cambridge, School of Clinical Medicine, Department of Psychiatry, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, CB21 5EF, UK
| | - Mei-Cheng Wang
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205
| | - Benjamin Tycko
- Columbia University Irving Medical Center, Department of Pathology and Cell Biology, 630 West 168 Street, New York, NY 10032
| | - Joseph H. Lee
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
| | - Benjamin Handen
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Sigan Hartley
- University of Wisconsin, School of Human Ecology and Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Juan Fortea
- Barcelona Down Medical Center. Fundació Catalana de Síndrome de Down. Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sid O’Bryant
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| |
Collapse
|
219
|
Kodintsev AN, Kovtun OP, Volkova LI. Saliva Biomarkers in Diagnostics of Early Stages of Alzheimer’s Disease. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
220
|
Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun 2020; 11:6252. [PMID: 33288742 PMCID: PMC7721731 DOI: 10.1038/s41467-020-19957-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers have revolutionized scientific research on neurodegenerative diseases, in particular Alzheimer's disease, transformed drug trial design, and are also increasingly improving patient management in clinical practice. A few key cerebrospinal fluid biomarkers have been robustly associated with neurodegenerative diseases. Several novel biomarkers are very promising, especially blood-based markers. However, many biomarker findings have had low reproducibility despite initial promising results. In this perspective, we identify possible sources for low reproducibility of studies on fluid biomarkers for neurodegenerative diseases, with a focus on Alzheimer's disease. We suggest guidelines for researchers and journal editors, with the aim to improve reproducibility of findings.
Collapse
|
221
|
Fani L, Ahmad S, Ikram MK, Ghanbari M, Ikram MA. Immunity and amyloid beta, total tau and neurofilament light chain: Findings from a community-based cohort study. Alzheimers Dement 2020; 17:446-456. [PMID: 33215849 PMCID: PMC8048997 DOI: 10.1002/alz.12212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
Introduction We investigated how components of immunity relate to biomarkers of Alzheimer's disease (AD) in plasma and explored the influence of AD genetic risk factors in the population‐based Rotterdam Study. Methods In 7397 persons, we calculated the granulocyte‐to‐lymphocyte ratio (GLR), platelet‐to‐lymphocyte ratio (PLR), and systemic immune‐inflammation index (SII). In 3615 of these persons, plasma amyloid‐beta (Aβ)42 and Aβ40 were measured. Next, we constructed an overall genetic risk score (GRS) based on genome‐wide significant variants, both including and excluding APOE ε4. Results All innate immunity phenotypes were related to higher Aβ, most strongly with a doubling in GLR leading to a 1.9% higher Aβ42 (95% confidence interval [95% CI] 0.4 to 3.3%) and 3.2% higher Aβ40 (95% CI 2.0 to 4.3%). Higher AD GRS including APOE ε4 was associated with higher immunity markers. Discussion Higher levels of immunity markers were associated with higher Aβ in plasma. Participants with a higher genetic predisposition to AD had higher immunity markers, where these effects were mainly driven by APOE ε4.
Collapse
Affiliation(s)
- Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Erasmus MC, Department of Neurology, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
222
|
Arastoo M, Lofthouse R, Penny LK, Harrington CR, Porter A, Wischik CM, Palliyil S. Current Progress and Future Directions for Tau-Based Fluid Biomarker Diagnostics in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8673. [PMID: 33212983 PMCID: PMC7698492 DOI: 10.3390/ijms21228673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Despite continued efforts, there remain no disease-modifying drugs approved by the United States Food and Drug Administration (FDA) or European Medicines Agency (EMA) to combat the global epidemic of Alzheimer's disease. Currently approved medicines are unable to delay disease progression and are limited to symptomatic treatment. It is well established that the pathophysiology of this disease remains clinically silent for decades prior to symptomatic clinical decline. Identifying those at risk of disease progression could allow for effective treatment whilst the therapeutic window remains open for preservation of quality of life. This review aims to evaluate critically the current advances in the interpretation of tau-based biomarkers and their use to provide insights into the onset and progression of Alzheimer's disease, whilst highlighting important future directions for the field. This review emphasises the need for a more comprehensive analysis and interrogation of tau within biological fluids, to aid in obtaining a disease specific molecular signature for each stage of Alzheimer's disease. Success in achieving this could provide essential utility for presymptomatic patient selection for clinical trials, monitoring disease progression, and evaluating disease modifying therapies.
Collapse
Affiliation(s)
- Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Lewis K. Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Charles R. Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Genting TauRx Diagnostic Centre Sdn. Bhd., Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Claude M. Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Genting TauRx Diagnostic Centre Sdn. Bhd., Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| |
Collapse
|
223
|
Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H. Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:147. [PMID: 33183357 PMCID: PMC7663867 DOI: 10.1186/s13195-020-00704-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer’s disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood.
Collapse
Affiliation(s)
- Filippo Baldacci
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France. .,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France.,Qynapse, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images (www.cati-neuroimaging.com), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, F-75013, Paris, France
| | - Marie Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | | | | |
Collapse
|
224
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
225
|
Cantero JL, Atienza M, Ramos-Cejudo J, Fossati S, Wisniewski T, Osorio RS. Plasma tau predicts cerebral vulnerability in aging. Aging (Albany NY) 2020; 12:21004-21022. [PMID: 33147571 PMCID: PMC7695405 DOI: 10.18632/aging.104057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Identifying cerebral vulnerability in late life may help prevent or slow the progression of aging-related chronic diseases. However, non-invasive biomarkers aimed at detecting subclinical cerebral changes in the elderly are lacking. Here, we have examined the potential of plasma total tau (t-tau) for identifying cerebral and cognitive deficits in normal elderly subjects. Patterns of cortical thickness and cortical glucose metabolism were used as outcomes of cerebral vulnerability. We found that increased plasma t-tau levels were associated with widespread reductions of cortical glucose uptake, thinning of the temporal lobe, and memory deficits. Importantly, tau-related reductions of glucose consumption in the orbitofrontal cortex emerged as a determining factor of the relationship between cortical thinning and memory loss. Together, these results support the view that plasma t-tau may serve to identify subclinical cerebral and cognitive deficits in normal aging, allowing detection of individuals at risk for developing aging-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Ricardo S. Osorio
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
226
|
Wilczyńska K, Waszkiewicz N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. J Clin Med 2020; 9:jcm9113452. [PMID: 33121040 PMCID: PMC7692800 DOI: 10.3390/jcm9113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of research in progress covering this subject. Research on dementia biomarkers in serum validates anticipated health and economic benefits from early screening tests. Biomarkers are also essential for improving the process of developing new drugs. Methods: The result analysis, of current studies on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in the serum of patients with dementia and mild cognitive disorders, involved a search for papers available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results: The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among people with cognitive disorders and a control group are incoherent. Most of the analyzed papers showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum, whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups. In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising. To date, several studies have only covered the field of biomarker concentrations in dementia disorders other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from imperfection of the used laboratorial techniques or inadequate selection of control groups with their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of prodromal states in mild AD. Due to the insignificant number of studies conducted to date among patients with dementia disorders other than AD, it is not possible to make a sound assessment of their usefulness in dementia differential diagnostics.
Collapse
|
227
|
Quantification of Neurological Blood-Based Biomarkers in Critically Ill Patients With Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0238. [PMID: 33063038 PMCID: PMC7535554 DOI: 10.1097/cce.0000000000000238] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is available in the text. Objectives: To provide an objective characterization of acute neurologic injury in critically ill patients with coronavirus disease 2019. Design: Prospective observational study. Demographics, comorbidities, and daily clinical physiologic and laboratory data were collected. Plasma levels of neurofilament-light chain, total tau, ubiquitin carboxy-terminal hydrolase L1, and glial fibrillary acidic protein were measured. The primary neurologic outcome was delirium defined by the Intensive Care Delirium Screening Checklist (scale 1–8). Associations among plasma biomarkers, respiratory failure, and inflammation were analyzed. Setting: Multicenter study in ICUs. Patients: Critically ill patients with respiratory failure, with coronavirus disease 2019, or without (ICU control). Measurements and Main Results: A total of 27 patients with coronavirus disease 2019 and 19 ICU controls were enrolled. Compared with ICU controls with pneumonia of other etiology, patients with coronavirus disease 2019 had significantly higher glial fibrillary acidic protein (272 pg/mL [150–555 pg/mL] vs 118 pg/mL [78.5–168 pg/mL]; p = 0.0009). In coronavirus disease 2019 patients, glial fibrillary acidic protein (rho = 0.5115, p = 0.0064), ubiquitin carboxy-terminal hydrolase L1 (rho = 0.4056, p = 0.0358), and neurofilament-light chain (rho = 0.6223, p = 0.0005) positively correlated with Intensive Care Delirium Screening Checklist score and were increased in patients with delirium (Intensive Care Delirium Screening Checklist ≥ 4) in the coronavirus disease 2019 group but not in ICU controls. There were no associations between the measures of respiratory function or cytokines with glial fibrillary acidic protein, total tau, ubiquitin carboxy-terminal hydrolase L1, or neurofilament-light chain levels in patients with coronavirus disease 2019. Conclusions: Plasma glial fibrillary acidic protein is two-fold higher in critically ill patients with coronavirus disease 2019 compared with ICU controls. Higher levels of glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1, and neurofilament-light chain associate with delirium in patients with coronavirus disease 2019. Elevated plasma glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1, and neurofilament-light chain are independent of respiratory function and peripheral cytokines.
Collapse
|
228
|
Mengel D, Janelidze S, Glynn RJ, Liu W, Hansson O, Walsh DM. Plasma
NT1
Tau is a Specific and Early Marker of Alzheimer's Disease. Ann Neurol 2020; 88:878-892. [DOI: 10.1002/ana.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
| | - Robert J. Glynn
- Division of Preventive Medicine Brigham & Women's Hospital Boston MA USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
- Memory Clinic Skåne University Hospital Malmö Sweden
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
229
|
Kitaguchi N, Tatebe H, Sakai K, Kawaguchi K, Matsunaga S, Kitajima T, Tomizawa H, Kato M, Sugiyama S, Suzuki N, Mizuno M, Takechi H, Nakai S, Hiki Y, Kushimoto H, Hasegawa M, Yuzawa Y, Tokuda T. Influx of Tau and Amyloid-β Proteins into the Blood During Hemodialysis as a Therapeutic Extracorporeal Blood Amyloid-β Removal System for Alzheimer's Disease. J Alzheimers Dis 2020; 69:687-707. [PMID: 31156161 DOI: 10.3233/jad-190087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The accumulation of amyloid-β protein (Aβ) and tau in the brain is a major pathological change related to Alzheimer's disease. We have continued to develop Extracorporeal Blood Aβ Removal Systems (E-BARS) as a method for enhancing Aβ clearance from the brain. Our previous report revealed that dialyzers effectively remove blood Aβ and evoke large Aβ influxes into the blood, resulting in a decrease in brain Aβ accumulation after initiating hemodialysis, and that patients who underwent hemodialysis had lower brain Aβ accumulation than those who did not. Here, plasma total tau concentrations from 30 patients undergoing hemodialysis were measured using an ultrasensitive immunoassay and compared to those from 11 age-matched controls. Plasma total tau concentrations were higher in patients with renal failure regardless of whether they underwent hemodialysis, suggesting the involvement of the kidneys in tau degradation and excretion. Hemodialyzers effectively removed blood Aβ but not extracorporeal blood tau. The influx of tau into the blood was observed at around the 1 h period during hemodialysis sessions. However, the influx amount of tau was far smaller than that of Aβ. Furthermore, histopathological analysis revealed similar, not significantly less, cerebral cortex phosphorylated tau accumulation between the 17 patients who underwent hemodialysis and the 16 age-matched subjects who did not, although both groups showed sparse accumulation. These findings suggest that hemodialysis may induce both tau and Aβ migration into the blood. However, as a therapeutic strategy for Alzheimer's disease, it may only be effective for removing Aβ from the brain.
Collapse
Affiliation(s)
- Nobuya Kitaguchi
- Faculty of Clinical Engineering, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Harutsugu Tatebe
- Department of Zaitaku (Homecare) Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyoshi Sakai
- Faculty of Clinical Engineering, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazunori Kawaguchi
- Faculty of Clinical Engineering, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Shinji Matsunaga
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Tomoko Kitajima
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Masao Kato
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Satoshi Sugiyama
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | - Hajime Takechi
- Department of Geriatrics and Cognitive Disorders, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeru Nakai
- Faculty of Clinical Engineering, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiyuki Hiki
- Faculty of Clinical Engineering, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Midori Hasegawa
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Yukio Yuzawa
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
230
|
Raket LL, Kühnel L, Schmidt E, Blennow K, Zetterberg H, Mattsson-Carlgren N. Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12099. [PMID: 32995466 PMCID: PMC7507310 DOI: 10.1002/dad2.12099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Several blood-based biomarkers are associated with neuronal injury, but their utility in interventional clinical trials is unclear. This study retrospectively evaluated the utility of plasma neurofilament light (NfL) and total tau (t-tau) in an 18-month trial in mild Alzheimer's disease (AD). METHODS Correlation and conditional independence analyses and Gaussian graphical models were used to investigate cross-sectional and longitudinal relations between NfL, t-tau, and clinical scales. RESULTS NfL had a stronger association than t-tau with clinical scales; t-tau did not hold additional information to that given by NfL (P > 0.05 at all time points). NfL held independent information about shorter-term (3- to 6-month) progression beyond patient age and clinical scores. However, no meaningful gain in power was found when adjusting a longitudinal analysis of cognitive scores for baseline NfL. DISCUSSION Plasma NfL is superior to t-tau in mild AD. The ability of NfL to detect changes before clinical manifestations makes it a promising biomarker of drug response in trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Lars Lau Raket
- H. Lundbeck A/S Valby Denmark
- Clinical Memory Research Unit Department of Clinical Sciences Lund University Malmö Sweden
| | - Line Kühnel
- H. Lundbeck A/S Valby Denmark
- Department of Mathematical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit Department of Clinical Sciences Lund University Malmö Sweden
- Department of Neurology Skåne University Hospital Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
231
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
232
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
233
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
234
|
Lantero Rodriguez J, Karikari TK, Suárez-Calvet M, Troakes C, King A, Emersic A, Aarsland D, Hye A, Zetterberg H, Blennow K, Ashton NJ. Plasma p-tau181 accurately predicts Alzheimer's disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol 2020; 140:267-278. [PMID: 32720099 PMCID: PMC7423866 DOI: 10.1007/s00401-020-02195-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022]
Abstract
The neuropathological confirmation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFT) remains the gold standard for a definitive diagnosis of Alzheimer’s disease (AD). Nowadays, the in vivo diagnosis of AD is greatly aided by both cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. Although highly accurate, their broad implementation is restricted by high cost, limited accessibility and invasiveness. We recently developed a high-performance, ultrasensitive immunoassay for the quantification of tau phosphorylated at threonine-181 (p-tau181) in plasma, which identifies AD pathophysiology with high accuracy. However, it remains unclear whether plasma p-tau181, measured years before the death, can predict the eventual neuropathological confirmation of AD, and successfully discriminates AD from non-AD dementia pathologies. We studied a unique cohort of 115 individuals with longitudinal blood collections with clinical evaluation at 8, 4 and 2 years prior to neuropathological assessment at death. The results demonstrate that plasma p-tau181 associates better with AD neuropathology and Braak staging than a clinical diagnosis 8 years before post-mortem. Moreover, while all patients had a diagnosis of AD dementia during life, plasma p-tau181 proved to discriminate AD from non-AD pathologies with high accuracy (AUC = 97.4%, 95% CI = 94.1–100%) even 8 years before death. Additionally, the longitudinal trajectory of plasma p-tau181 was assessed in all patients. We found that the main increases in plasma p-tau181 occurred between 8 and 4 years prior to death in patients with AD neuropathology and later plateauing. In contrast, non-AD pathologies and controls exhibited minor, albeit significant, increases in p-tau181 up until death. Overall, our study demonstrates that plasma p-tau181 is highly predictive and specific of AD neuropathology years before post-mortem examination. These data add further support for the use of plasma p-tau181 to aid clinical management in primary care and recruitment for clinical trials.
Collapse
Affiliation(s)
- Juan Lantero Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrew King
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andreja Emersic
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
- Department of Psychiatry and Neurochemistry, Wallenberg Centre for Molecular and Translational Medicine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
235
|
Ghemrawi R, Khair M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6127. [PMID: 32854418 PMCID: PMC7503386 DOI: 10.3390/ijms21176127] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association between ER stress, UPR and neuropathology is well established. In this review, we provide up-to-date evidence of UPR activation in neurodegenerative disorders followed by therapeutic strategies targeting the UPR and ameliorating the toxic effects of protein unfolding and aggregation.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, UAE
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, UAE;
| |
Collapse
|
236
|
Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlgren N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dage JL, Reiman EM, Hansson O. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020; 324:772-781. [PMID: 32722745 PMCID: PMC7388060 DOI: 10.1001/jama.2020.12134] [Citation(s) in RCA: 761] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Importance There are limitations in current diagnostic testing approaches for Alzheimer disease (AD). Objective To examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic biomarker for AD. Design, Setting, and Participants Three cross-sectional cohorts: an Arizona-based neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD (dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2), including cognitively unimpaired participants (n = 301) and clinically diagnosed patients with mild cognitive impairment (MCI) (n = 178), AD dementia (n = 121), and other neurodegenerative diseases (n = 99) (April 2017-September 2019); and a Colombian autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers and 257 mutation noncarriers (December 2013-February 2017). Exposures Plasma P-tau217. Main Outcomes and Measures Primary outcome was the discriminative accuracy of plasma P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the association with tau pathology (determined using neuropathology or positron emission tomography [PET]). Results Mean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range, 0.50-0.72; P < .05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range, 0.50-0.81; P < .001) but not significantly different compared with cerebrospinal fluid (CSF) P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P > .15). In cohort 3, plasma P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with noncarriers, from approximately 25 years and older, which is 20 years prior to estimated onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in participants with (Spearman ρ = 0.64; P < .001), but not without (Spearman ρ = 0.15; P = .33), β-amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy than plasma P-tau181, plasma NfL, CSF P-tau181, CSF Aβ42:Aβ40 ratio, and MRI measures (AUC range, 0.67-0.90; P < .05), but its performance was not significantly different compared with CSF P-tau217 (AUC, 0.96; P = .22). Conclusions and Relevance Among 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher accuracy than established plasma- and MRI-based biomarkers, and its performance was not significantly different from key CSF- or PET-based measures. Further research is needed to optimize the assay, validate the findings in unselected and diverse populations, and determine its potential role in clinical care.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Yakeel T. Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, Arizona
| | | | | | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Andres Villegas
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - Diego Sepulveda-Falla
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
- Molecular Neuropathology of Alzheimer’s Disease (MoNeA), Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiyun Chai
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona
- University of Arizona, Phoenix
- Arizona State University, Phoenix
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
237
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
238
|
Frisoni GB, Molinuevo JL, Altomare D, Carrera E, Barkhof F, Berkhof J, Delrieu J, Dubois B, Kivipelto M, Nordberg A, Schott JM, van der Flier WM, Vellas B, Jessen F, Scheltens P, Ritchie C. Precision prevention of Alzheimer's and other dementias: Anticipating future needs in the control of risk factors and implementation of disease-modifying therapies. Alzheimers Dement 2020; 16:1457-1468. [PMID: 32815289 DOI: 10.1002/alz.12132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Empirical evidence suggests that a fair proportion of dementia cases are preventable, that some preventive actions can be taken immediately, and others may soon be implemented. Primary prevention may target cognitively normal persons with modifiable risk factors through lifestyle and multiple domain interventions (including general cardiovascular health). While the effect on individuals may be modest, it might have a large societal impact by decreasing overall dementia incidence by up to 35%. Secondary prevention will target cognitively normal persons at high risk of dementia due to Alzheimer's disease pathology with future anti-amyloid, anti-tau, or other drugs. This approach is likely to have major benefits to both individuals and society. Memory clinics will need structural and functional changes to adapt to novel technologies and increased patients' demands, and brand-new services may need to be developed with specific skills on risk profiling, risk communication, and personalized risk reduction plans.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Emmanuel Carrera
- Stroke Center, Department of Neurology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Johannes Berkhof
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Julien Delrieu
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France.,UMR INSERM 1027, University of Toulouse III, Toulouse, France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, INSERM, Institut du Cerveau et de la Moelle Épinière, UMR-S975, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Aging Theme, Karolinska University Hospital, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.,School of Public Health, Imperial College, London, UK
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Aging Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan M Schott
- Queen Square Institute of Neurology at University College London, London, UK
| | - Wiesje M van der Flier
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France.,UMR INSERM 1027, University of Toulouse III, Toulouse, France
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
239
|
Laing KK, Simoes S, Baena-Caldas GP, Lao PJ, Kothiya M, Igwe KC, Chesebro AG, Houck AL, Pedraza L, Hernández AI, Li J, Zimmerman ME, Luchsinger JA, Barone FC, Moreno H, Brickman AM. Cerebrovascular disease promotes tau pathology in Alzheimer's disease. Brain Commun 2020; 2:fcaa132. [PMID: 33215083 PMCID: PMC7660042 DOI: 10.1093/braincomms/fcaa132] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.
Collapse
Affiliation(s)
- Krystal K Laing
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gloria P Baena-Caldas
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- School of Biomedical Sciences, Health Sciences Division, Universidad del Valle, Cali, Colombia, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexander L Houck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lina Pedraza
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | - A Iván Hernández
- Department of Pathology. SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Jie Li
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | | | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frank C Barone
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
240
|
Current Biomarkers for Alzheimer's Disease: From CSF to Blood. J Pers Med 2020; 10:jpm10030085. [PMID: 32806668 PMCID: PMC7564023 DOI: 10.3390/jpm10030085] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and affects a large portion of the elderly population worldwide. Currently, a diagnosis of AD depends on the clinical symptoms of dementia, magnetic resonance imaging to determine brain volume, and positron emission tomography imaging to detect brain amyloid or tau deposition. The best characterized biological fluid markers for AD are decreased levels of amyloid β-protein (Aβ) 42 and increased levels of phosphorylated tau and total tau in cerebrospinal fluid (CSF). However, less invasive and easily detectable biomarkers for the diagnosis of AD, especially at the early stage, are still under development. Here, we provide an overview of various biomarkers identified in CSF and blood for the diagnostics of AD over the last 25 years. CSF biomarkers that reflect the three hallmarks of AD, amyloid deposition, neurofibrillary tangles, and neurodegeneration, are well established. Based on the need to start treatment in asymptomatic people with AD and to screen for AD risk in large numbers of young, healthy individuals, the development of biomarkers for AD is shifting from CSF to blood. Elements of the core pathogenesis of AD in blood, including Aβ42, tau proteins, plasma proteins, or lipids have shown their usefulness and capabilities in AD diagnosis. We also highlight some novel identified blood biomarkers (including Aβ42/Aβ43, p-tau 181, Aβ42/APP669-711, structure of Aβ in blood, and flotillin) for AD.
Collapse
|
241
|
González A, Guzmán-Martínez L, Maccioni RB. Plasma Tau Variants Detected by a Novel Anti-Tau Monoclonal Antibody: A Potential Biomarker for Alzheimer's Disease. J Alzheimers Dis 2020; 77:877-883. [PMID: 32741827 DOI: 10.3233/jad-200386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND A major drawback in Alzheimer's disease (AD) is the lack of validated biomarkers for routine clinical diagnostic. We have reported earlier a novel blood biomarker, named Alz-tau®, based on variants of platelet tau. This marker evaluates the ratio of high molecular weight tau (HMWtau) and the low molecular weight (LMWtau) tau. OBJECTIVE To analyze a potential novel source of antigen for Alz-tau®, plasma tau, detected by immunoreactivity with the novel monoclonal antibody, tau51. METHODS We evaluated tau variants in plasma precipitated with ammonium sulfate from 36 AD patients and 15 control subjects by western blot with this novel monoclonal antibody. RESULTS The HMW/LMWtau ratio was statistically different between AD patients and controls. CONCLUSIONS Plasma tau variants are suitable to be considered as a novel antigen source for the Alz-tau® biomarker for AD.
Collapse
Affiliation(s)
- Andrea González
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
242
|
Shahim P, Gill JM, Blennow K, Zetterberg H. Fluid Biomarkers for Chronic Traumatic Encephalopathy. Semin Neurol 2020; 40:411-419. [PMID: 32740901 DOI: 10.1055/s-0040-1715095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathological condition that has been described in individuals who have been exposed to repetitive head impacts, including concussions and subconcussive trauma. Currently, there is no fluid or imaging biomarker for diagnosing CTE during life. Based on retrospective clinical data, symptoms of CTE include changes in behavior, cognition, and mood, and may develop after a latency phase following the injuries. However, these symptoms are often nonspecific, making differential diagnosis based solely on clinical symptoms unreliable. Thus, objective biomarkers for CTE pathophysiology would be helpful in understanding the course of the disease as well as in the development of preventive and therapeutic measures. Herein, we review the literature regarding fluid biomarkers for repetitive concussive and subconcussive head trauma, postconcussive syndrome, as well as potential candidate biomarkers for CTE. We also discuss technical challenges with regard to the current fluid biomarkers and potential pathways to advance the most promising biomarker candidates into clinical routine.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
243
|
de Wolf F, Ghanbari M, Licher S, McRae-McKee K, Gras L, Weverling GJ, Wermeling P, Sedaghat S, Ikram MK, Waziry R, Koudstaal W, Klap J, Kostense S, Hofman A, Anderson R, Goudsmit J, Ikram MA. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort study. Brain 2020; 143:1220-1232. [PMID: 32206776 PMCID: PMC7174054 DOI: 10.1093/brain/awaa054] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 01/21/2023] Open
Abstract
CSF biomarkers, including total-tau, neurofilament light chain (NfL) and amyloid-β, are increasingly being used to define and stage Alzheimer’s disease. These biomarkers can be measured more quickly and less invasively in plasma and may provide important information for early diagnosis of Alzheimer’s disease. We used stored plasma samples and clinical data obtained from 4444 non-demented participants in the Rotterdam study at baseline (between 2002 and 2005) and during follow-up until January 2016. Plasma concentrations of total-tau, NfL, amyloid-β40 and amyloid-β42 were measured using the Simoa NF-light® and N3PA assays. Associations between biomarker plasma levels and incident all-cause and Alzheimer’s disease dementia during follow-up were assessed using Cox proportional-hazard regression models adjusted for age, sex, education, cardiovascular risk factors and APOE ε4 status. Moreover, biomarker plasma levels and rates of change over time of participants who developed Alzheimer’s disease dementia during follow-up were compared with age and sex-matched dementia-free control subjects. During up to 14 years follow-up, 549 participants developed dementia, including 374 cases with Alzheimer’s disease dementia. A log2 higher baseline amyloid-β42 plasma level was associated with a lower risk of developing all-cause or Alzheimer’s disease dementia, adjusted hazard ratio (HR) 0.61 [95% confidence interval (CI), 0.47–0.78; P < 0.0001] and 0.59 (95% CI, 0.43–0.79; P = 0.0006), respectively. Conversely, a log2 higher baseline plasma NfL level was associated with a higher risk of all-cause dementia [adjusted HR 1.59 (95% CI, 1.38–1.83); P < 0.0001] or Alzheimer’s disease [adjusted HR 1.50 (95% CI, 1.26–1.78); P < 0.0001]. Combining the lowest quartile group of amyloid-β42 with the highest of NfL resulted in a stronger association with all-cause dementia [adjusted HR 9.5 (95% CI, 2.3–40.4); P < 0.002] and with Alzheimer’s disease [adjusted HR 15.7 (95% CI, 2.1–117.4); P < 0.0001], compared to the highest quartile group of amyloid-β42 and lowest of NfL. Total-tau and amyloid-β40 levels were not associated with all-cause or Alzheimer’s disease dementia risk. Trajectory analyses of biomarkers revealed that mean NfL plasma levels increased 3.4 times faster in participants who developed Alzheimer’s disease compared to those who remained dementia-free (P < 0.0001), plasma values for cases diverged from controls 9.6 years before Alzheimer’s disease diagnosis. Amyloid-β42 levels began to decrease in Alzheimer’s disease cases a few years before diagnosis, although the decline did not reach significance compared to dementia-free participants. In conclusion, our study shows that low amyloid-β42 and high NfL plasma levels are each independently and in combination strongly associated with risk of all-cause and Alzheimer’s disease dementia. These data indicate that plasma NfL and amyloid-β42 levels can be used to assess the risk of developing dementia in a non-demented population. Plasma NfL levels, although not specific, may also be useful in monitoring progression of Alzheimer’s disease dementia.
Collapse
Affiliation(s)
- Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK.,World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Silvan Licher
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kevin McRae-McKee
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Luuk Gras
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Gerrit Jan Weverling
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Paulien Wermeling
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Sanaz Sedaghat
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reem Waziry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wouter Koudstaal
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands.,Lucidity Biomedical Consulting, Calle Emir 11, Granada, Spain
| | - Jaco Klap
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Stefan Kostense
- World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roy Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Jaap Goudsmit
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Immunology and infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
244
|
Jiao F, Yi F, Wang Y, Zhang S, Guo Y, Du W, Gao Y, Ren J, Zhang H, Liu L, Song H, Wang L. The Validation of Multifactor Model of Plasma Aβ 42 and Total-Tau in Combination With MoCA for Diagnosing Probable Alzheimer Disease. Front Aging Neurosci 2020; 12:212. [PMID: 32792940 PMCID: PMC7385244 DOI: 10.3389/fnagi.2020.00212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer disease (AD) has an insidious onset and heterogeneous clinical symptoms. The well-accepted biomarkers for clinical diagnosis of AD include β-amyloid (Aβ) deposition and pathologic tau level within cerebral spinal fluid (CSF) and imaging AD pathology such as positive emission tomography (PET) imaging of the amyloid-binding agent Pittsburgh compound B (PET-PiB). However, the high expense and invasive nature of these methods highly limit their wide usage in clinic practice. Therefore, it is imperious to develop less expensive and invasive methods, and plasma biomarkers are the premium targets. In the current study, we utilized a single-blind comparison method; all the probable AD cases met the core clinical National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria and validated by PET-PiB. We used ultrasensitive immunomagnetic reduction (IMR) assays to measure plasma Aβ42 and total-tau (t-tau) levels, in combination with different variables including Aβ42 × t-tau value, Montreal Cognitive Assessment (MoCA), and Mini Mental State Examination (MMSE). We used logistic regression to analyze the effect of all these variables in the algorism. Our results showed that (1) plasma Aβ42 and t-tau are efficient biomarkers for AD diagnosis using IMR platform, whereas Aβ42 × t-tau value is more efficient for discriminating control and AD; (2) in the control group, Aβ42 level and age demonstrated strong negative correlation; Aβ42 × t-tau value and age demonstrated significant negative correlation; (3) in the AD group, t-tau level and MMSE score demonstrated strong negative correlation; (4) using the model that Aβ42, Aβ42 × t-tau, and MoCA as the variable to generate receiver operating characteristic (ROC) curve, cutoff value = 0.48, sensitivity = 0.973, specificity = 0.982, area under the curve (AUC) = 0.986, offered better categorical efficacy, sensitivity, specificity, and AUC. The multifactor model of plasma Aβ42 and t-tau in combination with MoCA can be a viable model separate health and AD subjects in clinical practice.
Collapse
Affiliation(s)
- Fubin Jiao
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Fang Yi
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Neurology, Lishilu Outpatient, Jingzhong Medical District, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanyuan Wang
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shouzi Zhang
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjin Du
- Department of Neurology, Air Force Medical Center, Chinese People's Liberation Army, Beijing, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Ren
- National Engineering Research Center for Protein Drugs, Beijing, China
| | - Haifeng Zhang
- Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Lixin Liu
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Haifeng Song
- National Engineering Research Center for Protein Drugs, Beijing, China
| | - Luning Wang
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
245
|
Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer's Disease. J Pers Med 2020; 10:jpm10030063. [PMID: 32708853 PMCID: PMC7563364 DOI: 10.3390/jpm10030063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a commonly occurring neurodegenerative disease in the advanced-age population, with a doubling of prevalence for each 5 years of age above 60 years. In the past two decades, there has been a sustained effort to find suitable biomarkers that may not only aide with the diagnosis of AD early in the disease process but also predict the onset of the disease in asymptomatic individuals. Current diagnostic evidence is supportive of some biomarker candidates isolated from cerebrospinal fluid (CSF), including amyloid beta peptide (Aβ), total tau (t-tau), and phosphorylated tau (p-tau) as being involved in the pathophysiology of AD. However, there are a few biomarkers that have been shown to be helpful, such as proteomic, inflammatory, oral, ocular and olfactory in the early detection of AD, especially in the individuals with mild cognitive impairment (MCI). To date, biomarkers are collected through invasive techniques, especially CSF from lumbar puncture; however, non-invasive (radio imaging) methods are used in practice to diagnose AD. In order to reduce invasive testing on the patients, present literature has highlighted the potential importance of biomarkers in blood to assist with diagnosing AD.
Collapse
|
246
|
Nam E, Lee YB, Moon C, Chang KA. Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer's Disease Progression. Int J Mol Sci 2020; 21:ijms21145007. [PMID: 32679907 PMCID: PMC7404390 DOI: 10.3390/ijms21145007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023] Open
Abstract
Total tau (t-tau) and phosphorylated tau (p-tau) protein elevations in cerebrospinal fluid (CFS) are well-established hallmarks of Alzheimer’s disease (AD), while the associations of serum t-tau and p-tau levels with AD have been inconsistent across studies. To identify more accessible non-invasive AD biomarkers, we measured serum tau proteins and associations with cognitive function in age-matched controls (AMC, n = 26), mild cognitive impairment group (MCI, n = 30), and mild-AD group (n = 20) according to the Mini-mental State Examination (MMSE), Clinical Dementia Rating (CDR), and Global Deterioration Scale (GDS) scores. Serum t-tau, but not p-tau, was significantly higher in the mild-AD group than AMC subjects (p < 0.05), and there were significant correlations of serum t-tau with MMSE and GDS scores. Receiver operating characteristic (ROC) analysis distinguished mild-AD from AMC subjects with moderate sensitivity and specificity (AUC = 0.675). We speculated that tau proteins in neuronal cell-derived exosomes (NEX) isolated from serum would be more strongly associated with brain tau levels and disease characteristics, as these exosomes can penetrate the blood-brain barrier. Indeed, ELISA and Western blotting indicated that both NEX t-tau and p-tau (S202) were significantly higher in the mild-AD group compared to AMC (p < 0.05) and MCI groups (p < 0.01). In contrast, serum amyloid β (Aβ1–42) was lower in the mild-AD group compared to MCI groups (p < 0.001). During the 4-year follow-up, NEX t-tau and p-tau (S202) levels were correlated with the changes in GDS and MMSE scores. In JNPL3 transgenic (Tg) mice expressing a human tau mutation, t-tau and p-tau expression levels in NEX increased with neuropathological progression, and NEX tau was correlated with tau in brain tissue exosomes (tEX), suggesting that tau proteins reach the circulation via exosomes. Taken together, our data suggest that serum tau proteins, especially NEX tau proteins, are useful biomarkers for monitoring AD progression.
Collapse
Affiliation(s)
- Eunjoo Nam
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea;
| | - Yeong-Bae Lee
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea;
- Department of Neurology, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Cheil Moon
- Department of Brain Science, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21936, Korea
- Correspondence:
| |
Collapse
|
247
|
Luchsinger JA, Zetterberg H. Tracking the potential involvement of metabolic disease in Alzheimer's disease-Biomarkers and beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:51-77. [PMID: 32739014 DOI: 10.1016/bs.irn.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a vast literature linking systemic metabolic conditions to dementia due to Alzheimer's disease (AD). Advances in in vivo measurements of AD neuropathology using brain imaging, cerebrospinal fluid (CSF), and/or blood biomarkers have led to research in AD that uses in vivo biomarkers as outcomes, focusing primarily on amyloid, tau, and neurodegeneration as constructs. Studies of Type 2 Diabetes Mellitus (T2DM) and AD biomarkers seem to show that T2DM is not related to amyloid deposition, but is related to neurodegeneration and tau deposition. There is a dearth of studies examining adiposity, insulin resistance, and metabolic syndrome in relation to AD biomarkers and the associations in these studies are inconsistent. Metabolomics studies have reported associations of unsaturated fatty acids with AD neuropathology at autopsy, and sphingolipids and glycerophospholipids in relation to neurodegeneration and amyloid and tau. There are other neurodegenerative diseases, such as Lewy body disease that may overlap with AD, and specific biomarkers for these pathologies are being developed and should be integrated into AD biomarker research. More longitudinal studies are needed with concurrent assessment of metabolic factors and AD biomarkers in order to improve the opportunity to assess causality. Ideally, AD biomarkers should be integrated into clinical trials of interventions that affect metabolic factors. Advances in blood-based AD biomarkers, which are less costly and invasive compared with CSF and brain imaging biomarkers, could facilitate widespread implementation of AD biomarkers in studies examining the metabolic contribution to AD.
Collapse
Affiliation(s)
- José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
248
|
Villa C, Lavitrano M, Salvatore E, Combi R. Molecular and Imaging Biomarkers in Alzheimer's Disease: A Focus on Recent Insights. J Pers Med 2020; 10:jpm10030061. [PMID: 32664352 PMCID: PMC7565667 DOI: 10.3390/jpm10030061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Institute for the Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy;
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| |
Collapse
|
249
|
Jack CR. The transformative potential of plasma phosphorylated tau. Lancet Neurol 2020; 19:373-374. [PMID: 32333888 DOI: 10.1016/s1474-4422(20)30112-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
250
|
Toombs J, Zetterberg H. In the blood: biomarkers for amyloid pathology and neurodegeneration in Alzheimer's disease. Brain Commun 2020; 2:fcaa054. [PMID: 32954304 PMCID: PMC7425323 DOI: 10.1093/braincomms/fcaa054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jamie Toombs
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|