201
|
Devergne O, Ghiglione C, Noselli S. The endocytic control of JAK/STAT signalling in Drosophila. J Cell Sci 2007; 120:3457-64. [PMID: 17855388 DOI: 10.1242/jcs.005926] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Domeless (Dome) is an IL-6-related cytokine receptor that activates a conserved JAK/STAT signalling pathway during Drosophila development. Despite good knowledge of the signal transduction pathway in several models, the role of receptor endocytosis in JAK/STAT activation remains poorly understood. Using both in vivo genetic analysis and cell culture assays, we show that ligand binding of Unpaired 1 (Upd1) induces clathrin-dependent endocytosis of receptor-ligand complexes and their subsequent trafficking through the endosomal compartment towards the lysosome. Surprisingly, blocking trafficking in distinct endosomal compartments using mutants affecting either Clathrin heavy chain, rab5, Hrs or deep orange led to an inhibition of the JAK/STAT pathway, whereas this pathway was unchanged when rab11 was affected. This suggests that internalization and trafficking are both required for JAK/STAT activity. The requirement for clathrin-dependent endocytosis to activate JAK/STAT signalling suggests a model in which the signalling `on' state relies not only on ligand binding to the receptor at the cell surface, but also on the recruitment of the complex into endocytic vesicles on their way to lysozomes. Selective activation of the pool of receptors marked for degradation thus provides a way to tightly control JAK/STAT activity.
Collapse
Affiliation(s)
- Olivier Devergne
- Institute of Developmental Biology and Cancer, CNRS-UMR 6543, University of Nice Sophia-Antipolis, Parc Valrose 06108 Nice cedex 2, France
| | | | | |
Collapse
|
202
|
Bogard N, Lan L, Xu J, Cohen RS. Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary. Development 2007; 134:3413-8. [PMID: 17715175 DOI: 10.1242/dev.008466] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All stem cells have the ability to balance their production of self-renewing and differentiating daughter cells. The germline stem cells (GSCs) of the Drosophila ovary maintain such balance through physical attachment to anterior niche cap cells and stereotypic cell division, whereby only one daughter remains attached to the niche. GSCs are attached to cap cells via adherens junctions, which also appear to orient GSC division through capture of the fusome, a germline-specific organizer of mitotic spindles. Here we show that the Rab11 GTPase is required in the ovary to maintain GSC-cap cell junctions and to anchor the fusome to the anterior cortex of the GSC. Thus, rab11-null GSCs detach from niche cap cells, contain displaced fusomes and undergo abnormal cell division, leading to an early arrest of GSC differentiation. Such defects are likely to reflect a role for Rab11 in E-cadherin trafficking as E-cadherin accumulates in Rab11-positive recycling endosomes (REs) and E-cadherin and Armadillo (beta-catenin) are both found in reduced amounts on the surface of rab11-null GSCs. The Rab11-positive REs through which E-cadherin transits are tightly associated with the fusome. We propose that this association polarizes the trafficking by Rab11 of E-cadherin and other cargoes toward the anterior cortex of the GSC, thus simultaneously fortifying GSC-niche junctions, fusome localization and asymmetric cell division. These studies bring into focus the important role of membrane trafficking in stem cell biology.
Collapse
Affiliation(s)
- Nicholas Bogard
- University of Kansas, Department of Molecular Biosciences, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
203
|
Blankenship JT, Fuller MT, Zallen JA. The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J Cell Sci 2007; 120:3099-110. [PMID: 17698923 DOI: 10.1242/jcs.004770] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polarized architecture of epithelial tissues involves a dynamic balance between apical and basolateral membrane domains. Here we show that epithelial polarity in the Drosophila embryo requires the exocyst complex subunit homolog Exo84. Exo84 activity is essential for the apical localization of the Crumbs transmembrane protein, a key determinant of epithelial apical identity. Adherens junction proteins become mislocalized at the cell surface in Exo84 mutants in a pattern characteristic of defects in apical, but not basolateral, components. Loss of Crumbs from the cell surface precedes the disruption of Bazooka and Armadillo localization in Exo84 mutants. Moreover, Exo84 mutants display defects in apical cuticle secretion that are similar to crumbs mutants and are suppressed by a reduction in the basolateral proteins Dlg and Lgl. In Exo84 mutants at advanced stages of epithelial degeneration, apical and adherens junction proteins accumulate in an expanded recycling endosome compartment. These results suggest that epithelial polarity in the Drosophila embryo is actively maintained by exocyst-dependent apical localization of the Crumbs transmembrane protein.
Collapse
Affiliation(s)
- J Todd Blankenship
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
204
|
Luo W, Wang Y, Reiser G. p24A, a type I transmembrane protein, controls ARF1-dependent resensitization of protease-activated receptor-2 by influence on receptor trafficking. J Biol Chem 2007; 282:30246-55. [PMID: 17693410 DOI: 10.1074/jbc.m703205200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protease-activated receptor-2 (PAR-2), the second member of the G protein-coupled PAR family, is irreversibly activated by trypsin or tryptase and then targeted to lysosomes for degradation. Intracellular presynthesized receptors stored at the Golgi apparatus repopulate the cell surface after trypsin stimulation, thereby leading to rapid resensitization to trypsin signaling. However, the molecular mechanisms of the exocytic trafficking of PAR-2 from the Golgi apparatus to the plasma membrane remain largely unclear. Here we show that p24A, a type I transmembrane protein, which is a crucial constituent of the Golgi apparatus, associates with PAR-2 at the Golgi apparatus. The protein interaction occurs between the N-terminal region of p24A (residues 1-105; p24A-GL (GOLD domain with a small linker)) and the second extracellular loop of PAR-2. After receptor activation, PAR-2 dissociates from p24A. Importantly, we found that ADP-ribosylation factor 1 regulated the dissociation process and initiated PAR-2 trafficking to the plasma membrane. Conversely, overexpression of the fragment p24A-GL, but not other mutants containing the functional coiled-coil domain of p24A, arrested PAR-2 at the Golgi apparatus and inhibited receptor trafficking to the plasma membrane, which consequently prevented resensitization of PAR-2. These findings identify a new function of p24A as a regulator of signal-dependent trafficking that regulates the life cycle of PAR-2, Thus, we reveal a new molecular mechanism underlying resensitization of PAR-2.
Collapse
Affiliation(s)
- Weibo Luo
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
205
|
Leibfried A, Bellaïche Y. Functions of endosomal trafficking in Drosophila epithelial cells. Curr Opin Cell Biol 2007; 19:446-52. [PMID: 17651956 DOI: 10.1016/j.ceb.2007.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/13/2007] [Accepted: 06/08/2007] [Indexed: 12/20/2022]
Abstract
The mechanisms underlying endosomal trafficking have been mostly dissected in yeast and mammalian tissue culture cells. Here, we review recent advances in the understanding of the role of endosomal trafficking in Drosophila epithelial cells. We focus on endosomal pathways that control cell polarization, cell growth, cell fate and epithelial cell rearrangement. We expect that mechanistic studies in mammalian cells and functional studies in invertebrates will continue to synergize to provide a comprehensive view of the role of endosomal trafficking in epithelial tissue organization and functions.
Collapse
Affiliation(s)
- Andrea Leibfried
- Institut CURIE, UMR144, Cell Polarity in Drosophila, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | | |
Collapse
|
206
|
Li BX, Satoh AK, Ready DF. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. ACTA ACUST UNITED AC 2007; 177:659-69. [PMID: 17517962 PMCID: PMC2064211 DOI: 10.1083/jcb.200610157] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sensory neuron terminal differentiation tasks apical secretory transport with delivery of abundant biosynthetic traffic to the growing sensory membrane. We recently showed Drosophila Rab11 is essential for rhodopsin transport in developing photoreceptors and asked here if myosin V and the Drosophila Rab11 interacting protein, dRip11, also participate in secretory transport. Reduction of either protein impaired rhodopsin transport, stunting rhabdomere growth and promoting accumulation of cytoplasmic rhodopsin. MyoV-reduced photoreceptors also developed ectopic rhabdomeres inappropriately located in basolateral membrane, indicating a role for MyoV in photoreceptor polarity. Binary yeast two hybrids and in vitro protein–protein interaction predict a ternary complex assembled by independent dRip11 and MyoV binding to Rab11. We propose this complex delivers morphogenic secretory traffic along polarized actin filaments of the subcortical terminal web to the exocytic plasma membrane target, the rhabdomere base. A protein trio conserved across eukaryotes thus mediates normal, in vivo sensory neuron morphogenesis.
Collapse
Affiliation(s)
- Bingbing X Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
207
|
Protein kinase D regulates several aspects of development in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2007; 7:74. [PMID: 17592635 PMCID: PMC1933421 DOI: 10.1186/1471-213x-7-74] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 06/25/2007] [Indexed: 11/20/2022]
Abstract
Background Protein Kinase D (PKD) is an effector of diacylglycerol-regulated signaling pathways. Three isoforms are known in mammals that have been linked to diverse cellular functions including regulation of cell proliferation, differentiation, motility and secretory transport from the trans-Golgi network to the plasma membrane. In Drosophila, there is a single PKD orthologue, whose broad expression implicates a more general role in development. Results We have employed tissue specific overexpression of various PKD variants as well as tissue specific RNAi, in order to investigate the function of the PKD gene in Drosophila. Apart from a wild type (WT), a kinase dead (kd) and constitutively active (SE) Drosophila PKD variant, we also analyzed two human isoforms hPKD2 and hPKD3 for their capacity to substitute PKD activity in the fly. Overexpression of either WT or kd-PKD variants affected primarily wing vein development. However, overexpression of SE-PKD and PKD RNAi was deleterious. We observed tissue loss, wing defects and degeneration of the retina. The latter phenotype conforms to a role of PKD in the regulation of cytoskeletal dynamics. Strongest phenotypes were larval to pupal lethality. RNAi induced phenotypes could be rescued by a concurrent overexpression of Drosophila wild type PKD or either human isoform hPKD2 and hPKD3. Conclusion Our data confirm the hypothesis that Drosophila PKD is a multifunctional kinase involved in diverse processes such as regulation of the cytoskeleton, cell proliferation and death as well as differentiation of various fly tissues.
Collapse
|
208
|
Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, Fish M, Acar M, Hoskins RA, Bellen HJ, Scott MP. Thirty-one flavors of Drosophila rab proteins. Genetics 2007; 176:1307-22. [PMID: 17409086 PMCID: PMC1894592 DOI: 10.1534/genetics.106.066761] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/21/2007] [Indexed: 11/18/2022] Open
Abstract
Rab proteins are small GTPases that play important roles in transport of vesicle cargo and recruitment, association of motor and other proteins with vesicles, and docking and fusion of vesicles at defined locations. In vertebrates, >75 Rab genes have been identified, some of which have been intensively studied for their roles in endosome and synaptic vesicle trafficking. Recent studies of the functions of certain Rab proteins have revealed specific roles in mediating developmental signal transduction. We have begun a systematic genetic study of the 33 Rab genes in Drosophila. Most of the fly proteins are clearly related to specific vertebrate proteins. We report here the creation of a set of transgenic fly lines that allow spatially and temporally regulated expression of Drosophila Rab proteins. We generated fluorescent protein-tagged wild-type, dominant-negative, and constitutively active forms of 31 Drosophila Rab proteins. We describe Drosophila Rab expression patterns during embryogenesis, the subcellular localization of some Rab proteins, and comparisons of the localization of wild-type, dominant-negative, and constitutively active forms of selected Rab proteins. The high evolutionary conservation and low redundancy of Drosophila Rab proteins make these transgenic lines a useful tool kit for investigating Rab functions in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Karen L. Schulze
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - P. Robin Hiesinger
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Kaye Suyama
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Stream Wang
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Matthew Fish
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Melih Acar
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Roger A. Hoskins
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Hugo J. Bellen
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Matthew P. Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| |
Collapse
|
209
|
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007; 454:821-47. [PMID: 17487503 DOI: 10.1007/s00424-007-0251-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/05/2007] [Indexed: 01/05/2023]
Abstract
Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and G alpha(q) undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
210
|
Simonsen A, Cumming RC, Lindmo K, Galaviz V, Cheng S, Rusten TE, Finley KD. Genetic modifiers of the Drosophila blue cheese gene link defects in lysosomal transport with decreased life span and altered ubiquitinated-protein profiles. Genetics 2007; 176:1283-97. [PMID: 17435236 PMCID: PMC1894590 DOI: 10.1534/genetics.106.065011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Defects in lysosomal trafficking pathways lead to decreased cell viability and are associated with progressive disorders in humans. Previously we have found that loss-of-function (LOF) mutations in the Drosophila gene blue cheese (bchs) lead to reduced adult life span, increased neuronal death, and widespread CNS degeneration that is associated with the formation of ubiquitinated-protein aggregates. To identify potential genes that participate in the bchs functional pathway, we conducted a genetic modifier screen based on alterations of an eye phenotype that arises from high-level overexpression of Bchs. We found that mutations in select autophagic and endocytic trafficking genes, defects in cytoskeletal and motor proteins, as well as mutations in the SUMO and ubiquitin signaling pathways behave as modifiers of the Bchs gain-of-function (GOF) eye phenotype. Individual mutant alleles that produced viable adults were further examined for bchs-like phenotypes. Mutations in several lysosomal trafficking genes resulted in significantly decreased adult life spans and several mutants showed changes in ubiquitinated protein profiles as young adults. This work represents a novel approach to examine the role that lysosomal transport and function have on adult viability. The genes characterized in this study have direct human homologs, suggesting that similar defects in lysosomal transport may play a role in human health and age-related processes.
Collapse
Affiliation(s)
- Anne Simonsen
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Robert C. Cumming
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Karine Lindmo
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Vanessa Galaviz
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Susan Cheng
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Tor Erik Rusten
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Kim D. Finley
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 and Department of Biochemistry, Center for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- Corresponding author: Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, California 92037. E-mail:
| |
Collapse
|
211
|
Cayouette S, Boulay G. Intracellular trafficking of TRP channels. Cell Calcium 2007; 42:225-32. [PMID: 17368756 DOI: 10.1016/j.ceca.2007.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022]
Abstract
Thirteen years ago, it was suggested that exocytotic insertion of store-operated channels into the plasma membrane lead to increased Ca(2+) entry in non-excitable cells upon G protein-coupled or tyrosine kinase receptor stimulation. Since the discovery of the TRP channel superfamily and their involvement in receptor-induced Ca(2+) entry, many studies have shown that different members of the TRP superfamily translocate into the plasma membrane upon stimulation. While the exact molecular mechanism by which TRP channels insert into the plasma membrane is unknown, TRP-binding proteins have been shown to directly regulate this trafficking. This review summarizes recent advances related to the mechanism of TRP channel trafficking, focusing on the role of TRP-binding proteins.
Collapse
Affiliation(s)
- Sylvie Cayouette
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
212
|
Husain N, Pellikka M, Hong H, Klimentova T, Choe KM, Clandinin TR, Tepass U. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 2006; 11:483-93. [PMID: 17011488 DOI: 10.1016/j.devcel.2006.08.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 06/26/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
The formation of epithelial lumina is a fundamental process in animal development. Each ommatidium of the Drosophila retina forms an epithelial lumen, the interrhabdomeral space, which has a critical function in vision as it optically isolates individual photoreceptor cells. Ommatidia containing an interrhabdomeral space have evolved from ancestral insect eyes that lack this lumen, as seen, for example, in bees. In a genetic screen, we identified eyes shut (eys) as a gene that is essential for the formation of matrix-filled interrhabdomeral space. Eys is closely related to the proteoglycans agrin and perlecan and secreted by photoreceptor cells into the interrhabdomeral space. The honeybee ortholog of eys is not expressed in photoreceptors, raising the possibility that recruitment of eys expression has made an important contribution to insect eye evolution. Our findings show that the secretion of a proteoglycan into the apical matrix is critical for the formation of epithelial lumina in the fly retina.
Collapse
Affiliation(s)
- Nicole Husain
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | | | | | | | | | | | |
Collapse
|
213
|
Khodosh R, Augsburger A, Schwarz TL, Garrity PA. Bchs, a BEACH domain protein, antagonizes Rab11 in synapse morphogenesis and other developmental events. Development 2006; 133:4655-65. [PMID: 17079274 DOI: 10.1242/dev.02650] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BEACH proteins, an evolutionarily conserved family characterized by the presence of a BEACH (Beige and Chédiak-Higashi) domain, have been implicated in membrane trafficking, but how they interact with the membrane trafficking machinery is unknown. Here we show that the Drosophila BEACH protein Bchs (Blue cheese) acts during development as an antagonist of Rab11, a small GTPase involved in vesicle trafficking. We find that reduction in, or loss of, bchs function restores viability and normal bristle development in animals with reduced rab11 function, while reductions in rab11 function exacerbate defects caused by bchs overexpression in the eye. Consistent with a role for Bchs in modulating Rab11-dependent trafficking, Bchs protein is associated with vesicles and extensively colocalized with Rab11 at the neuromuscular junction (NMJ). At the NMJ, we find that rab11 is important for synaptic morphogenesis, as reductions in rab11 function cause increases in bouton density and branching. These defects are also suppressed by loss of bchs. Taken together, these data identify Bchs as an antagonist of Rab11 during development and uncover a role for these regulators of vesicle trafficking in synaptic morphogenesis. This raises the interesting possibility that Bchs and other BEACH proteins may regulate vesicle traffic via interactions with Rab GTPases.
Collapse
Affiliation(s)
- Rita Khodosh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue 68-230B, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
214
|
Baumann O, Lutz K. Photoreceptor morphogenesis in the Drosophila compound eye: R1-R6 rhabdomeres become twisted just before eclosion. J Comp Neurol 2006; 498:68-79. [PMID: 16856177 DOI: 10.1002/cne.21030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The photosensitive microvilli of Drosophila photoreceptors R1-R6 are not aligned in parallel over the entire length of the visual cells. In the distal half of each cell, the microvilli are slightly tilted toward one side and, in the proximal half, extremely toward the opposite side. This phenomenon, termed rhabdomere twisting, has been known for several decades, but the developmental and cell biological basis of rhabdomere twisting has not been studied so far. We show that rhabdomere twisting is also manifested as molecular polarization of the visual cell, because phosphotyrosine-containing proteins are selectively partitioned to different sides of the rhabdomere stalk in the distal and proximal sections of each R1-R6 photoreceptor. Both the asymmetrical segregation of phosphotyrosine proteins and the tilting of the microvilli occur shortly before eclosion of the flies, when eye development in all other aspects is considered to be essentially complete. Establishment of rhabdomere twisting occurs in a light-independent manner, because phosphotyrosine staining is unchanged in dark-reared wild-type flies and in mutants with defects in the phototransduction cascade, ninaE(17) and norpA(P24). We conclude that antiphosphotyrosine immunofluorescence can be used as a light microscopic probe for the analysis of rhabdomere twisting and that microvilli tilting represents a type of planar cell polarity that is established by an active process in the last phase of photoreceptor morphogenesis, just prior to eclosion of the flies.
Collapse
Affiliation(s)
- Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14415 Potsdam, Germany.
| | | |
Collapse
|
215
|
Maier D, Hausser A, Nagel AC, Link G, Kugler SJ, Wech I, Pfizenmaier K, Preiss A. Drosophila protein kinase D is broadly expressed and a fraction localizes to the Golgi compartment. Gene Expr Patterns 2006; 6:849-56. [PMID: 16750940 DOI: 10.1016/j.modgep.2006.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 02/17/2006] [Accepted: 03/14/2006] [Indexed: 11/22/2022]
Abstract
Protein kinase D belongs to the subfamily of CaMK. In mammals, three isoforms are known. They have been linked to diverse cellular functions including regulation of cell proliferation, differentiation, apoptosis and motility as well as secretory transport from the trans-Golgi compartment to the plasma membrane. Accordingly, the mammalian PKDs show different intracellular locations, with reported dynamic redistribution, between cytosol, Golgi, plasma membranes and the nucleus, depending on the cell type and exogenous stimuli. The genome of Drosophila melanogaster harbours just one, highly conserved PKD homologue, which is expressed throughout development. PKD mRNA expression during late embryogenesis is restricted to ectodermal derivatives including those involved in cuticle secretion. In imaginal tissues, transcription appears more uniform. PKD protein is detected predominantly in the cytosol with an enrichment in lateral apodemes of late embryos as well as in larval fascicles. In secretory tissues like salivary glands, the protein is concentrated in dotted structures. A PKD-GFP transgene reveals a similar punctuate protein accumulation juxtaposed to a resident Golgi-marker. In cultured cells, transfected Drosophila PKD-GFP colocalizes with a marker of the trans-Golgi compartment like human PKD1-GFP. Similar to the mammalian homologues, Drosophila PKD may be multifunctional including a role in secretory transport in accordance with its subcellular distribution.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik, Garbenstr. 30, 70599 Stuttgart, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Liégeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 173:949-61. [PMID: 16785323 PMCID: PMC2063919 DOI: 10.1083/jcb.200511072] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at the apical plasma membrane. By means of two different genetic approaches, we show that the membrane-bound V0 sector of the vacuolar H+-ATPase (V-ATPase) acts in this pathway, independent of its contribution to the V-ATPase proton pump activity. Specifically, we identified mutations in the V0 “a” subunit VHA-5 that affect either the V0-specific function or the V0+V1 function of the V-ATPase. These mutations allowed us to establish that the V0 sector mediates secretion of Hedgehog-related proteins. Our data raise the possibility that the V0 sector mediates exosome and morphogen release in mammals.
Collapse
Affiliation(s)
- Samuel Liégeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Universite Louis Pasteur, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
217
|
Satoh AK, Ready DF. Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr Biol 2006; 15:1722-33. [PMID: 16213818 DOI: 10.1016/j.cub.2005.08.064] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/23/2022]
Abstract
BACKGROUND Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-mediated GPCR activation of effector kinase pathways. In order to further investigate arrestin function in photoreceptor physiology and survival, we studied Arr2's partner photoreceptor arrestin, Arr1, in developing and adult Drosophila compound eyes. RESULTS We report that Arr1, but not Arr2, is essential for normal, light-induced rhodopsin endocytosis. Also distinct from Arr2, Arr1 is essential for light-independent photoreceptor survival. Photoreceptor cell death caused by loss of Arr1 is strongly suppressed by coordinate loss of Arr2. We further find that Rh1 C-terminal phosphorylation is essential for light-induced endocytosis and also for translocation of Arr1, but not Arr2, from dark-adapted photoreceptor cytoplasm to photosensory membrane rhabdomeres. In contrast to a previous report, we do not find a requirement for photoreceptor myosin kinase NINAC in Arr1 or Arr2 translocation. CONCLUSIONS The two Drosophila photoreceptor arrestins mediate distinct and essential cell pathways downstream of rhodopsin activation. We propose that Arr1 mediates an endocytotic cell-survival activity, scavenging phosphorylated rhodopsin and thereby countering toxic Arr2/Rh1 accumulation; elimination of toxic Arr2/Rh1 in double mutants could thus rescue arr1 mutant photoreceptor degeneration.
Collapse
Affiliation(s)
- Akiko K Satoh
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
218
|
van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 2006; 26:303-12. [PMID: 16354700 PMCID: PMC1317621 DOI: 10.1128/mcb.26.1.303-312.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
219
|
Fader CM, Savina A, Sánchez D, Colombo MI. Exosome secretion and red cell maturation: Exploring molecular components involved in the docking and fusion of multivesicular bodies in K562 cells. Blood Cells Mol Dis 2006; 35:153-7. [PMID: 16099697 DOI: 10.1016/j.bcmd.2005.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/06/2005] [Indexed: 12/22/2022]
Abstract
During reticulocyte maturation, some membrane proteins and organelles that are not required in the mature red cell are lost. These proteins are released into the extracellular medium associated with vesicles present in multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in secretion of the small internal vesicles, termed exosomes. By studying MVBs fusion and exosome release in K562 cells, a human erythroleukemic cell line, we have determined the functional significance of Rab11 and calcium in these events. Additionally, in the transformation process that occurs during erythrocyte maturation, intracellular organelles are likely removed as a consequence of autophagic sequestration and degradation. We propose K562 cells as a useful tool to analyze, at the molecular level, the role of autophagy in the terminal differentiation of red cells.
Collapse
Affiliation(s)
- Claudio M Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
220
|
Pinal N, Goberdhan DCI, Collinson L, Fujita Y, Cox IM, Wilson C, Pichaud F. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 2006; 16:140-9. [PMID: 16431366 DOI: 10.1016/j.cub.2005.11.068] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/09/2005] [Accepted: 11/23/2005] [Indexed: 12/31/2022]
Abstract
BACKGROUND In a specialized epithelial cell such as the Drosophila photoreceptor, a conserved set of proteins is essential for the establishment of polarity, its maintenance, or both--in Drosophila, these proteins include the apical factors Bazooka, D-atypical protein kinase C, and D-Par6 together with D-Ecadherin. However, little is known about the mechanisms by which such apical factors might regulate the differentiation of the apical membrane into functional domains such as an apical-most stack of microvilli or more lateral sub-apical membrane. RESULTS We show that in photoreceptors Bazooka (D-Par3) recruits the tumor suppressor lipid phosphatase PTEN to developing cell-cell junctions (Zonula Adherens, za). za-localized PTEN controls the spatially restricted accumulation of optimum levels of the lipid PtdIns(3,4,5)P3 within the apical membrane domain. This in turn finely tunes activation of Akt1, a process essential for proper morphogenesis of the light-gathering organelle, consisting of a stack of F-actin rich microvilli within the apical membrane. CONCLUSIONS Spatially localized PtdIns(3,4,5)P3 mediates directional sensing during neutrophil and Dictyostelium chemotaxis. We conclude that a conserved mechanism also operates during photoreceptor epithelial cell morphogenesis in order to achieve normal differentiation of the apical membrane.
Collapse
Affiliation(s)
- Noelia Pinal
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
221
|
Richard M, Grawe F, Knust E. DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in theDrosophila eye. Dev Dyn 2006; 235:895-907. [PMID: 16245332 DOI: 10.1002/dvdy.20595] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The establishment of apicobasal polarity in epithelial cells is a prerequisite for their function. Drosophila photoreceptor cells derive from epithelial cells, and their apical membranes undergo elaborate differentiation during pupal development, forming photosensitive rhabdomeres and associated stalk membranes. Crumbs (Crb), a transmembrane protein involved in the maintenance of epithelial polarity in the embryo, defines the stalk as a subdomain of the apical membrane. Crb organizes a complex composed of several PDZ domain-containing proteins, including DPATJ (formerly known as Discs lost). Taking advantage of a DPATJ mutant line in which only a truncated form of the protein is synthesized, we demonstrate that DPATJ is necessary for the stability of the Crb complex at the stalk membrane and is crucial for stalk membrane development and rhabdomere maintenance during late pupal stages. Moreover, DPATJ protects against light-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
222
|
Marois E, Mahmoud A, Eaton S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 2005; 133:307-17. [PMID: 16354714 DOI: 10.1242/dev.02197] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the spread of morphogens is crucial for pattern formation during development. In the Drosophila wing disc, Wingless secreted at the dorsal-ventral compartment boundary forms a concentration gradient in receiving tissue, where it activates short- and long-range target genes. The glypican Dally-like promotes Wingless spreading by unknown mechanisms, while Dynamin-dependent endocytosis is thought to restrict Wingless spread. We have utilized short-term expression of dominant negative Rab proteins to examine the polarity of endocytic trafficking of Wingless and its receptors and to determine the relative contributions of endocytosis, degradation and recycling to the establishment of the Wingless gradient. Our results show that Wingless is internalized via two spatially distinct routes: one on the apical, and one on the basal, side of the disc. Both restrict the spread of Wingless, with little contribution from subsequent degradation or recycling. As previously shown for Frizzled receptors, depleting Arrow does not prevent Wingless from entering endosomes. We find that both Frizzled and Arrow are internalized mainly from the apical membrane. Thus, the basal Wingless internalization route must be independent of these proteins. We find that Dally-like is not required for Wingless spread when endocytosis is blocked, and propose that Dally-like promotes the spread of Wingless by directing it to lateral membranes, where its endocytosis is less efficient. Thus, subcellular localization of Wingless along the apical-basal axis of receiving cells may be instrumental in shaping the Wingless gradient.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Body Patterning
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Endocytosis
- Endosomes/metabolism
- Frizzled Receptors
- Genes, Insect
- Models, Biological
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/metabolism
- Signal Transduction
- Wings, Animal/growth & development
- Wings, Animal/metabolism
- Wnt1 Protein
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
- rab5 GTP-Binding Proteins/genetics
- rab5 GTP-Binding Proteins/metabolism
- rab7 GTP-Binding Proteins
Collapse
Affiliation(s)
- Eric Marois
- Max-Planck Institute for Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
223
|
Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ. Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 2005; 9:351-63. [PMID: 16137928 DOI: 10.1016/j.devcel.2005.06.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/13/2005] [Accepted: 06/30/2005] [Indexed: 01/05/2023]
Abstract
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.
Collapse
Affiliation(s)
- Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 2005; 12:879-85. [PMID: 16155582 DOI: 10.1038/nsmb987] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/03/2005] [Indexed: 12/12/2022]
Abstract
Sec15, a component of the exocyst, recognizes vesicle-associated Rab GTPases, helps target transport vesicles to the budding sites in yeast and is thought to recruit other exocyst proteins. Here we report the characterization of a 35-kDa fragment that comprises most of the C-terminal half of Drosophila melanogaster Sec15. This C-terminal domain was found to bind a subset of Rab GTPases, especially Rab11, in a GTP-dependent manner. We also provide evidence that in fly photoreceptors Sec15 colocalizes with Rab11 and that loss of Sec15 affects rhabdomere morphology. Determination of the 2.5-A crystal structure of the C-terminal domain revealed a novel fold consisting of ten alpha-helices equally distributed between two subdomains (N and C subdomains). We show that the C subdomain, mainly via a single helix, is sufficient for Rab binding.
Collapse
Affiliation(s)
- Shuya Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
225
|
Abstract
What do neurons use the exocyst complex for? In this issue of Neuron, using mutations in one exocyst component, Mehta et al. reach the surprising conclusion that exocyst function is divisible: different components play distinct roles. These studies also suggest that the exocyst may regulate membrane insertion of cell adhesion molecules required for synaptic partner choice.
Collapse
Affiliation(s)
- Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
226
|
Beronja S, Laprise P, Papoulas O, Pellikka M, Sisson J, Tepass U. Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. ACTA ACUST UNITED AC 2005; 169:635-46. [PMID: 15897260 PMCID: PMC2171699 DOI: 10.1083/jcb.200410081] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt plasma membrane growth. In developing photoreceptor cells (PRCs), Sec6 but not Sec5 or Sec8 shows accumulation at adherens junctions. In late PRCs, Sec6, Sec5, and Sec8 colocalize at the rhabdomere, the light sensing subdomain of the apical membrane. PRCs with reduced Sec6 function accumulate secretory vesicles and fail to transport proteins to the rhabdomere, but show normal localization of proteins to the apical stalk membrane and the basolateral membrane. Furthermore, we show that Rab11 forms a complex with Sec5 and that Sec5 interacts with Sec6 suggesting that the exocyst is a Rab11 effector that facilitates protein transport to the apical rhabdomere in Drosophila PRCs.
Collapse
Affiliation(s)
- Slobodan Beronja
- Department of Zoology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | | | | | | | | | |
Collapse
|