201
|
Murayama H, Masaki H, Sato H, Hayama T, Yamaguchi T, Nakauchi H. Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin. Stem Cell Reports 2014; 4:103-113. [PMID: 25556568 PMCID: PMC4297867 DOI: 10.1016/j.stemcr.2014.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 11/16/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022] Open
Abstract
Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs. E-cadherin overexpression considerably increases reprogramming efficiency of EpiSCs E-cadherin overexpression negatively regulates β-catenin signaling in EpiSCs Blocking nuclear localization of β-CATENIN enhances reprogramming of EpiSCs
Collapse
Affiliation(s)
- Hideyuki Murayama
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomonari Hayama
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5461, USA.
| |
Collapse
|
202
|
Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 2014; 35:770-7. [PMID: 25547290 DOI: 10.1128/mcb.01293-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps "noisy" control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks.
Collapse
|
203
|
Lu X, Huang W. PiggyBac mediated multiplex gene transfer in mouse embryonic stem cell. PLoS One 2014; 9:e115072. [PMID: 25517991 PMCID: PMC4269400 DOI: 10.1371/journal.pone.0115072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023] Open
Abstract
PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This is the feeder cell line with the most diverse types of antibiotic resistance genes reported so far, which will enable researchers to perform simultaneous multiplex gene transfer or gene targeting experiments in ES cells. With such feeder cell line, we were able to quantitatively characterize the transposition efficiency of PiggyBac system in mouse ES cells using five transposons carrying different inducible fluorescence proteins and antibiotic resistance genes, and the efficiency ranged from about 2% for one transposon to 0.5% for five transposons. The highly efficient multiplex gene transfer mediated by PiggyBac will no doubt provide researchers with more choices in biomedical research and development.
Collapse
Affiliation(s)
- Xibin Lu
- Department of Biochemistry, the University of Hong Kong, Hong Kong, China
| | - Wei Huang
- Department of Biochemistry, the University of Hong Kong, Hong Kong, China
- Department of Biology, Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China
- * E-mail:
| |
Collapse
|
204
|
Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev 2014; 23:3049-64. [PMID: 25144240 PMCID: PMC4267551 DOI: 10.1089/scd.2014.0157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress. We then measured stress-enzyme-dependent regulation of key pluripotency and lineage TFs. Hyperosmotic stress slowed mESC accumulation due to slowing of the cell cycle over 72 h, after a small apoptotic response within 12 h. Phosphoinositide 3-kinase (PI3K) enzymatic signaling was responsible for stem cell survival under stressed conditions. Stress initially triggered mESC differentiation after 4 h through MEK1, c-Jun N-terminal kinase (JNK), and PI3K enzymatic signaling, which led to proteasomal degradation of Oct4, Nanog, Sox2, and Rex1 TF proteins. Concurrent with this post-transcriptional effect was the decreased accumulation of potency TF mRNA transcripts. After 12-24 h of stress, cells adapted, cell cycle resumed, and Oct4 and Nanog mRNA and protein expression returned to approximately normal levels. The TF protein recovery was mediated by p38MAPK and PI3K signaling, as well as by MEK2 and/or MEK1. However, due to JNK signaling, Rex1 expression did not recover. Probing for downstream lineages revealed that although mESCs did not differentiate morphologically during 24 h of stress, they were primed to differentiate by upregulating markers of the first lineage differentiating from mESCs, extraembryonic endoderm. Thus, although two to three TFs that mark pluripotency recover expression by 24 h of stress, there is nonetheless sustained Rex1 suppression and a priming of mESCs for differentiation to the earliest lineage.
Collapse
Affiliation(s)
- Jill A. Slater
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sichang Zhou
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth Ella Puscheck
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A. Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
205
|
Transcriptome analysis of chicken ES, blastodermal and germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than EpiSC. Stem Cell Res 2014; 14:54-67. [PMID: 25514344 PMCID: PMC4305369 DOI: 10.1016/j.scr.2014.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022] Open
Abstract
Pluripotent Embryonic Stem cell (ESC) lines can be derived from a variety of sources. Mouse lines derived from the early blastocyst and from primordial germ cells (PGCs) can contribute to all somatic lineages and to the germ line, whereas cells from slightly later embryos (EpiSC) no longer contribute to the germ line. In chick, pluripotent ESCs can be obtained from PGCs and from early blastoderms. Established PGC lines and freshly isolated blastodermal cells (cBC) can contribute to both germinal and somatic lineages but established lines from the former (cESC) can only produce somatic cell types. For this reason, cESCs are often considered to be equivalent to mouse EpiSC. To define these cell types more rigorously, we have performed comparative microarray analysis to describe a transcriptomic profile specific for each cell type. This is validated by real time RT-PCR and in situ hybridisation. We find that both cES and cBC cells express classic pluripotency-related genes (including cPOUV/OCT4, NANOG, SOX2/3, KLF2 and SALL4), whereas expression of DAZL, DND1, DDX4 and PIWIL1 defines a molecular signature for germ cells. Surprisingly, contrary to the prevailing view, our results also suggest that cES cells resemble mouse ES cells more closely than mouse EpiSC.
Collapse
|
206
|
Abstract
In mice, three pluripotent stem cell lines have been established from different stage of developing embryo, which are embryonic stem (ES) cell, post-implantation epiblast stem cell (EpiSC), and embryonic germ (EG) cell. ES cell and EG cell share many common features including factor requirement, colony morphology, and gene expression pattern. On the other hand, EpiSC needs different external signal inputs, exhibits flattened colony morphology, and a different set of gene expression patterns. In addition, the germ line competency of EpiSCs is still unclear. To distinguish the differences between them, they are defined by the words "naïve" and "primed" pluripotent cells, respectively. This article introduces how pluripotent stem cell lines are established in culture, and how much those cells in vitro are similar or relevant to their in vivo origin and the knowledge about transcription factors to support this state.
Collapse
|
207
|
Signolet J, Hendrich B. The function of chromatin modifiers in lineage commitment and cell fate specification. FEBS J 2014; 282:1692-702. [PMID: 25354247 PMCID: PMC4508967 DOI: 10.1111/febs.13132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022]
Abstract
Proteins that modify the structure of chromatin are known to be important for various aspects of metazoan biology including development, disease and possibly ageing. Yet functional details of why these proteins are important, i.e. how their action influences a given biological process, are lacking. While it is now possible to describe the biochemistry of how these proteins remodel chromatin, their chromatin binding profiles in cell lines, or gene expression changes upon loss of a given protein, in very few cases has this easily translated into an understanding of how the function of that protein actually influences a developmental process. Given that many chromatin modifying proteins will largely exert their influence through control of gene expression, it is useful to consider developmental processes as changes in the gene regulatory network (GRN), with each cell type exhibiting a unique gene expression profile. In this essay we consider the impact of two abundant and highly conserved chromatin modifying complexes, namely the nucleosome remodelling and deacetylation (NuRD) complex and the polycomb repressive complex 2 (PRC2), on the change in GRNs associated with lineage commitment during early mammalian development. We propose that while the NuRD complex limits the stability of cell states and defines the developmental trajectory between two stable states, PRC2 activity is important for stabilizing a new GRN once established. Although these two complexes display different biochemical activities, chromatin binding profiles and mutant phenotypes, we propose a model to explain how they cooperate to facilitate the transition through cell states that is development.
Collapse
Affiliation(s)
- Jason Signolet
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | | |
Collapse
|
208
|
Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 2014; 55:319-31. [PMID: 25038413 PMCID: PMC4104113 DOI: 10.1016/j.molcel.2014.06.029] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/04/2014] [Accepted: 06/18/2014] [Indexed: 01/16/2023]
Abstract
Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the “2i” signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation. smFISH in ESCs reveals two transcriptional states and highly stochastic expression Live-cell expression dynamics reveal the in situ transition rates between states DNA methylation regulates state-switching dynamics “2i” signaling inhibitors impact both gene expression noise and state transitions
Collapse
Affiliation(s)
- Zakary S Singer
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - John Yong
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julia Tischler
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jamie A Hackett
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alphan Altinok
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Biological Network Modeling Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Azim Surani
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Long Cai
- Program in Biochemistry and Molecular Biophysics and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Howard Hughes Medical Institute and Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
209
|
Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming. Stem Cell Reports 2014; 3:915-29. [PMID: 25418733 PMCID: PMC4235142 DOI: 10.1016/j.stemcr.2014.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022] Open
Abstract
The detailed mechanism of reprogramming somatic cells into induced pluripotent stem cells (iPSCs) remains largely unknown. Partially reprogrammed iPSCs are informative and useful for understanding the mechanism of reprogramming but remain technically difficult to generate in a predictable and reproducible manner. Using replication-defective and persistent Sendai virus (SeVdp) vectors, we analyzed the effect of decreasing the expression levels of OCT4, SOX2, KLF4, and c-MYC and found that low KLF4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of KLF4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path toward pluripotency. Paused iPSCs with different KLF4 expression levels remain at distinct intermediate stages of reprogramming. This SeVdp-based stage-specific reprogramming system (3S reprogramming system) is applicable for both mouse and human somatic cells and will facilitate the mechanistic analysis of reprogramming. Reducing KLF4 expression generates partially reprogrammed cells Different KLF4 levels produce iPSCs stably paused at distinct stages of reprogramming Upregulation of KLF4 allows paused iPSCs to resume reprogramming Homogenous populations of paused iPSCs are generated predictably and reproducibly
Collapse
|
210
|
Atlasi Y, Looijenga L, Fodde R. Cancer stem cells, pluripotency, and cellular heterogeneity: a WNTer perspective. Curr Top Dev Biol 2014; 107:373-404. [PMID: 24439813 DOI: 10.1016/b978-0-12-416022-4.00013-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to represent the "beating heart" of malignant growth as they continuously fuel tumors through their ability to self-renew and differentiate. Moreover, they are also believed to underlie malignant behavior, local invasion, and metastasis in distal organ sites upon reversible epithelial-to-mesenchymal transitions (EMTs). Nevertheless, the CSC concept has been the object of controversy, mainly due to the absence of robust operational definitions and to the lack of consistency in the use of the often incorrect nomenclature employed to refer to these cells. Notwithstanding the controversies, it is now generally accepted that primary cancers are organized in hierarchical fashion with neoplastic stem-like cells able to give rise to new CSCs and to more committed malignant cells. Notably, these hierarchical structures are not unidirectional, but are rather characterized by a more dynamic equilibrium where stem-like and more committed cancer cells transit from one meta-state to the other partly because of cues from the microenvironment (niche), but also because of intrinsic and yet incompletely understood characteristics in the activation/silencing of specific signal transduction pathways. Here, we will focus on the Wnt/β-catenin signaling pathway as one of the major regulator of stemness in homeostasis and cancer, and on germ cell tumors as the type of malignancy that most closely mimics normal embryonic development and as such serve as a unique model to study the role of stem cells in neoplasia.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Leendert Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Riccardo Fodde
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
211
|
Abranches E, Guedes AMV, Moravec M, Maamar H, Svoboda P, Raj A, Henrique D. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development 2014; 141:2770-9. [PMID: 25005472 DOI: 10.1242/dev.108910] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous expression of the transcription factor NANOG has been linked to the existence of various functional states in pluripotent stem cells. This heterogeneity seems to arise from fluctuations of Nanog expression in individual cells, but a thorough characterization of these fluctuations and their impact on the pluripotent state is still lacking. Here, we have used a novel fluorescent reporter to investigate the temporal dynamics of NANOG expression in mouse embryonic stem cells (mESCs), and to dissect the lineage potential of mESCs at different NANOG states. Our results show that stochastic NANOG fluctuations are widespread in mESCs, with essentially all expressing cells showing fluctuations in NANOG levels, even when cultured in ground-state conditions (2i media). We further show that fluctuations have similar kinetics when mESCs are cultured in standard conditions (serum plus leukemia inhibitory factor) or ground-state conditions, implying that NANOG fluctuations are inherent to the pluripotent state. We have then compared the developmental potential of low-NANOG and high-NANOG mESCs, grown in different conditions, and confirm that mESCs are more susceptible to enter differentiation at the low-NANOG state. Further analysis by gene expression profiling reveals that low-NANOG cells have marked expression of lineage-affiliated genes, with variable profiles according to the signalling environment. By contrast, high-NANOG cells show a more stable expression profile in different environments, with minimal expression of lineage markers. Altogether, our data support a model in which stochastic NANOG fluctuations provide opportunities for mESCs to explore multiple lineage options, modulating their probability to change functional state.
Collapse
Affiliation(s)
- Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Ana M V Guedes
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Martin Moravec
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hedia Maamar
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Domingos Henrique
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| |
Collapse
|
212
|
Abstract
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
Collapse
|
213
|
Faucon PC, Pardee K, Kumar RM, Li H, Loh YH, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One 2014; 9:e102873. [PMID: 25057990 PMCID: PMC4109943 DOI: 10.1371/journal.pone.0102873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/24/2014] [Indexed: 02/04/2023] Open
Abstract
Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all possible FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this transition matching published experimental data. This work establishes a potential theoretical framework for understanding cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification networks by using auto-activation as a cipher.
Collapse
Affiliation(s)
- Philippe C. Faucon
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Keith Pardee
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Roshan M. Kumar
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
214
|
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, Masutani M, Latos P, Hemberger M. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res 2014; 42:8914-27. [PMID: 25034692 PMCID: PMC4132717 DOI: 10.1093/nar/gku591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem (ES) cells are in a dynamic equilibrium of distinct functional states, characterized by the heterogeneous expression of critical pluripotency factors and regulated by a spectrum of reversible histone modifications. Maintenance of this equilibrium is a hallmark of pluripotency. Here we find that the ADP-ribosyltransferases Parp1 and Parp7 play a critical role in safeguarding this state by occupying key pluripotency genes, notably Nanog, Pou5f1, Sox2, Stella, Tet1 and Zfp42, thereby protecting them from progressive epigenetic repression. In the absence of either Parp1 or Parp7, or upon inhibition of the ADP-ribosylating activity, ES cells exhibit a decrease in ground state pluripotency as they cannot maintain the typical heterogeneity characteristic of the metastable state. As a consequence, they display a higher propensity to differentiate. These findings place Parp1 and Parp7 at the genetic-epigenetic interface of pluripotency networks, fine-tuning the transcriptional heterogeneity and thereby determining the developmental plasticity of ES cells.
Collapse
Affiliation(s)
- Stephen J Roper
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Stephanie Chrysanthou
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Claire E Senner
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Arnold Sienerth
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Stefano Gnan
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Alexander Murray
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Paulina Latos
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
215
|
Hall VJ, Hyttel P. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Stem Cells Dev 2014; 23:2030-45. [PMID: 24742229 DOI: 10.1089/scd.2013.0502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To date, it has been difficult to establish bona fide porcine embryonic stem cells (pESC) and stable induced pluripotent stem cells. Reasons for this remain unclear, but they may depend on inappropriate culture conditions. This study reports the most insights to date on genes expressed in the pluripotent cells of the porcine embryo, namely the inner cell mass (ICM), the trophectoderm-covered epiblast (EPI), and the embryonic disc epiblast (ED). Specifically, we reveal that the early porcine ICM represents a premature state of pluripotency due to lack of translation of key pluripotent proteins, and the late ICM enters a transient, reticent pluripotent state which lacks expression of most genes associated with pluripotency. We describe a unique expression profile of the porcine EPI, reflecting the naive stem cell state, including expression of OCT4, NANOG, CRIPTO, and SSEA-1; weak expression of NrOB1 and REX1; but very limited expression of genes in classical pathways involved in regulating pluripotency. The porcine ED, reflecting the primed stem cell state, can be characterized by the expression of OCT4, NANOG, SOX2, KLF4, cMYC, REX1, CRIPTO, and KLF2. Further cell culture experiments using inhibitors against FGF, JAK/STAT, BMP, WNT, and NODAL pathways on cell cultures derived from day 5 and 10 embryos reveal the importance of FGF, JAK/STAT, and BMP signaling in maintaining cell proliferation of pESCs in vitro. Together, this article provides new insights into the regulation of pluripotency, revealing unique stem cell states in the different porcine stem cell populations derived from the early developing embryo.
Collapse
Affiliation(s)
- Vanessa Jane Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg C, Denmark
| | | |
Collapse
|
216
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Fynes K, Tostoes R, Ruban L, Weil B, Mason C, Veraitch FS. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells. Stem Cells Dev 2014; 23:1910-22. [PMID: 24734982 DOI: 10.1089/scd.2013.0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.
Collapse
Affiliation(s)
- Kate Fynes
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
218
|
Ueda J, Maehara K, Mashiko D, Ichinose T, Yao T, Hori M, Sato Y, Kimura H, Ohkawa Y, Yamagata K. Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, MethylRO. Stem Cell Reports 2014; 2:910-24. [PMID: 24936475 PMCID: PMC4050349 DOI: 10.1016/j.stemcr.2014.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states. Changes in DNA methylation are tracked in living mice Heterochromatin structure changes dynamically during development and differentiation Heterochromatin of preimplantation embryonic cells is highly dynamic than ESCs Heterochromatin pattern in nucleus can be a marker for cell differentiation states
Collapse
Affiliation(s)
- Jun Ueda
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Mashiko
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takako Ichinose
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Mayuko Hori
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Yuko Sato
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
219
|
Abstract
In pluripotent stem cells, the interplay between signaling cues, epigenetic regulators and transcription factors orchestrates developmental potency. Flexibility in gene expression control is imparted by molecular changes to the nucleosomes, the building block of chromatin. Here, we review the current understanding of the role of chromatin as a plastic and integrative platform to direct gene expression changes in pluripotent stem cells, giving rise to distinct pluripotent states. We will further explore the concept of epigenetic asymmetry, focusing primarily on histone stoichiometry and their associated modifications, that is apparent at both the nucleosome and chromosome-wide levels, and discuss the emerging importance of these asymmetric chromatin configurations in diversifying epigenetic states and their implications for cell fate control.
Collapse
Affiliation(s)
- Wee-Wei Tee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
220
|
Torres-Padilla ME, Chambers I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 2014; 141:2173-81. [PMID: 24866112 DOI: 10.1242/dev.102624] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When pluripotent cells are exposed to a uniform culture environment they routinely display heterogeneous gene expression. Aspects of this heterogeneity, such as Nanog expression, are linked to differences in the propensity of individual cells to either self-renew or commit towards differentiation. Recent findings have provided new insight into the underlying causes of this heterogeneity, which we summarise here using Nanog, a key regulator of pluripotency, as a model gene. We discuss the role of transcription factor heterogeneity in facilitating the intrinsically dynamic and stochastic nature of the pluripotency network, which in turn provides a potential benefit to a population of cells that needs to balance cell fate decisions.
Collapse
Affiliation(s)
- Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Cité Universitaire de Strasbourg, Illkirch F-67404, France
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
221
|
Pagliara S, Franze K, McClain CR, Wylde G, Fisher CL, Franklin RJ, Kabla AJ, Keyser UF, Chalut KJ. Auxetic nuclei in embryonic stem cells exiting pluripotency. NATURE MATERIALS 2014; 13:638-644. [PMID: 24747782 PMCID: PMC4283157 DOI: 10.1038/nmat3943] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/11/2014] [Indexed: 05/18/2023]
Abstract
Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.
Collapse
Affiliation(s)
- Stefano Pagliara
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Crystal R. McClain
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Research Institute and Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| | - George Wylde
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Cynthia L. Fisher
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Research Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Robin J.M. Franklin
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Research Institute and Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexandre J. Kabla
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kevin J. Chalut
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Research Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR, UK
| |
Collapse
|
222
|
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014; 16:516-28. [PMID: 24859004 PMCID: PMC4878656 DOI: 10.1038/ncb2965] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
The precise relationship of embryonic stem cells (ESCs) to cells in the mouse embryo remains controversial. We present transcriptional and functional data to identify the embryonic counterpart of ESCs. Marker profiling shows that ESCs are distinct from early inner cell mass (ICM) and closely resemble pre-implantation epiblast. A characteristic feature of mouse ESCs is propagation without ERK signalling. Single-cell culture reveals that cell-autonomous capacity to thrive when the ERK pathway is inhibited arises late during blastocyst development and is lost after implantation. The frequency of deriving clonal ESC lines suggests that all E4.5 epiblast cells can become ESCs. We further show that ICM cells from early blastocysts can progress to ERK independence if provided with a specific laminin substrate. These findings suggest that formation of the epiblast coincides with competence for ERK-independent self-renewal in vitro and consequent propagation as ESC lines.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
| | - Remco Loos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
| | - Paul Bertone
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany,
| | - Austin Smith
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Biochemistry, University of Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK,
| |
Collapse
|
223
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
224
|
PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends Biochem Sci 2014; 39:289-98. [PMID: 24811060 DOI: 10.1016/j.tibs.2014.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
PRDM14 belongs to the PR domain-containing (PRDM) transcriptional regulators. Among the PRDM family members, PRDM14 shows specific expression in preimplantation embryos, primordial germ cells (PGCs), and embryonic stem cells (ESCs) in vitro, and accordingly plays a key role in the regulation of their pluripotency and epigenetic reprogramming, most notably, genome-wide DNA demethylation. The function of PRDM14 appears to be conserved between mice and humans, but it shows several characteristic differences between the two species. A precise understanding of the function of PRDM14 in mice and humans would shed new light on the regulation of pluripotency and the epigenome in these two species, providing a foundation for better control of stem cell fates in a broader context.
Collapse
|
225
|
Chang KH, Li M. Clonal isolation of an intermediate pluripotent stem cell state. Stem Cells 2014; 31:918-27. [PMID: 23341219 DOI: 10.1002/stem.1330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells of different embryonic origin respond to distinct signaling pathways. Embryonic stem cells (ESCs), which are derived from the inner cell mass of preimplantation embryos, are dependent on LIF-Stat3 signaling, while epiblast stem cells (EpiSCs), which are established from postimplantation embryos, require activin-Smad2/3 signaling. Recent studies have revealed heterogeneity of ESCs and the presence of intermediate pluripotent stem cell populations, whose responsiveness to growth factors, gene expression patterns, and associated chromatic signatures are compatible to a state in between ESCs and EpiSCs. However, it remains unknown whether such cell populations represent a stable entity at single-cell level. Here, we describe the identification of clonal stem cells from mouse ESCs with global gene expression profiles representing such a state. These pluripotent stem cells display dual responsiveness to LIF-Stat3 and activin-Smad2/3 at single-cell level and thus named as intermediate epiblast stem cells (IESCs). Furthermore, these cells show accelerated temporal gene expression kinetics during embryoid body differentiation in vitro consistent with a more advanced differentiation stage than that of ESCs. The successful isolation of IESCs supports the notion that traverse from naïve ground state toward lineage commitment occurs gradually in which transition milestones can be captured as clonogenic entity. Our finding provides a new model to better understand the multiple pluripotent states.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Stem Cell Neurogenesis Group, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
226
|
Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS One 2014; 9:e95374. [PMID: 24752154 PMCID: PMC3994037 DOI: 10.1371/journal.pone.0095374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/26/2014] [Indexed: 10/29/2022] Open
Abstract
We detected and characterized the binding sites of the representative Rest complex components Rest, Sin3A, and Lsd1. We compared their binding patterns in mouse embryonic stem (ES) cells and epiblast stem (EpiS) cells. We found few Rest sites unique to the EpiS cells. The ES-unique site features were distinct from those of the common sites, namely, the signal intensities were weaker, and the characteristic gene function categories differed. Our analyses showed that the Rest binding sites do not always overlap with the Sin3A and Lsd1 binding sites. The Sin3A binding pattern differed remarkably between the ES and EpiS cells and was accompanied by significant changes in acetylated-histone patterns in the surrounding regions. A series of transcriptome analyses in the same cell types unexpectedly showed that the putative target gene transcript levels were not dramatically different despite dynamic changes in the Rest complex binding patterns and chromatin statuses, which suggests that Rest is not the sole determinant of repression at its targets. Nevertheless, we identified putative Rest targets with explicitly enhanced transcription upon Rest knock-down in 143 and 60 common and ES-unique Rest target genes, respectively. Among such sites, several genes are involved in ES cell proliferation. In addition, we also found that long, intergenic non-coding RNAs were apparent Rest targets and shared similar features with the protein-coding target genes. Interestingly, such non-coding target genes showed less conservation through evolution than protein-coding targets. As a result of differences in the components and targets of the Rest complex, its functional roles may differ in ES and EpiS cells.
Collapse
Affiliation(s)
- Masahide Seki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takako Arauchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
227
|
Hayashi K, Saitou M. Perspectives of germ cell development in vitro in mammals. Anim Sci J 2014; 85:617-26. [PMID: 24725251 PMCID: PMC4271675 DOI: 10.1111/asj.12199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 01/15/2023]
Abstract
Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are able to differentiate into all cell lineages of the embryo proper, including germ cells. This pluripotent property has a huge impact on the fields of regenerative medicine, developmental biology and reproductive engineering. Establishing the germ cell lineage from ESCs/iPSCs is the key biological subject, since it would contribute not only to dissection of the biological processes of germ cell development but also to production of unlimited numbers of functional gametes in vitro. Toward this goal, we recently established a culture system that induces functional mouse primordial germ cells (PGCs), precursors of all germ cells, from mouse ESCs/iPSCs. The successful in vitro production of PGCs arose from the study of pluripotent cell state, the signals inducing PGCs and the technology of transplantation. However, there are many obstacles to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In this review, we discuss the requirements for a culture system to generate the germ cell lineage from ESCs/iPSCs.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan; CiRA, Graduate School of Medicine, Kyoto University, Kyoto, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | | |
Collapse
|
228
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
229
|
Herberg M, Kalkan T, Glauche I, Smith A, Roeder I. A model-based analysis of culture-dependent phenotypes of mESCs. PLoS One 2014; 9:e92496. [PMID: 24643025 PMCID: PMC3958526 DOI: 10.1371/journal.pone.0092496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/21/2014] [Indexed: 02/02/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells. Recent findings on serum-free culture conditions with specific inhibitors (known as 2i) demonstrate that the inhibition of this pathway reduces transcription factor heterogeneity and is vital to maintain ground state pluripotency of mESCs. We suggest a novel mathematical model to explicitly integrate FGF4/Erk signalling into an interaction network of key pluripotency factors (namely Oct4, Sox2, Nanog and Rex1). The envisaged model allows to explore whether and how proposed mechanisms and feedback regulations can account for different expression patterns in mESC cultures. We demonstrate that an FGF4/Erk-mediated negative feedback is sufficient to induce molecular heterogeneity with respect to Nanog and Rex1 expression and thus critically regulates the propensity for differentiation and the loss of pluripotency. Furthermore, we compare simulation results on the transcription factor dynamics in different self-renewing states and during differentiation with experimental data on a Rex1GFPd2 reporter cell line using flow cytometry and qRT-PCR measurements. Concluding from our results we argue that interaction between FGF4/Erk signalling and Nanog expression qualifies as a key mechanism to manipulate mESC pluripotency. In particular, we infer that ground state pluripotency under 2i is achieved by shifting stable expression pattern of Nanog from a bistable into a monostable regulation impeding stochastic state transitions. Furthermore, we derive testable predictions on altering the degree of Nanog heterogeneity and on the frequency of state transitions in LIF/serum conditions to challenge our model assumptions.
Collapse
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| | - Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
230
|
Peng X, Liu T, Shi C, Zhang L, Wang Y, Zhao W, Jiang L, Wu M, Zhang Y, Qian Q. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice. PLoS One 2014; 9:e90707. [PMID: 24595217 PMCID: PMC3942454 DOI: 10.1371/journal.pone.0090707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Mice embryonic stem (ES) cells have enabled the generation of mouse strains with defined mutation(s) in their genome for putative disease loci analysis. In the study of cataract, the complex genetic background of this disease and lack of long-term self-renewal ES cells have hampered the functional researches of cataract-related genes. In this study, we aimed to establish ES cells from inherited cataract mice (BALB/CCat/Cat). Embryos of cataract mice were cultured in chemical-defined N2B27 medium with the presence of two small molecules PD0325901 and CHIR99021 (2i) and an ES cell line (named EH-BES) was successfully established. EH-BES showed long-term self-renewal in 2i medium and maintained capacity of germline transmission. Most importantly, the produced chimera and offspring developed congenital cataract as well. Flow cytometry assay revealed that EH-BES are homogeneous in expression of Oct4 and Rex1in 2i medium, which may account for their self-renewal ability. With long-term self-renewal ability and germline-competent, EH-BES cell line can facilitate genetic and functional researches of cataract-related genes and better address mechanisms of cataract.
Collapse
Affiliation(s)
- Xinrong Peng
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, ShanXi, China
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Tao Liu
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Chuanyin Shi
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Liqing Zhang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Wuyang Zhao
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Lihua Jiang
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, ShanXi, China
- * E-mail: (YZ); (QQ)
| | - Qijun Qian
- Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- * E-mail: (YZ); (QQ)
| |
Collapse
|
231
|
Transcription regulation and chromatin structure in the pluripotent ground state. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:129-37. [DOI: 10.1016/j.bbagrm.2013.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023]
|
232
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
233
|
Wilson JL, Suri S, Singh A, Rivet CA, Lu H, McDevitt TC. Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomed Microdevices 2014; 16:79-90. [PMID: 24085533 PMCID: PMC3945678 DOI: 10.1007/s10544-013-9807-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The differentiation of pluripotent stem cells as embryoid bodies (EBs) remains a common method for inducing differentiation toward many lineages. However, differentiation via EBs typically yields a significant amount of heterogeneity in the cell population, as most cells differentiate simultaneously toward different lineages, while others remain undifferentiated. Moreover, physical parameters, such as the size of EBs, can modulate the heterogeneity of differentiated phenotypes due to the establishment of nutrient and oxygen gradients. One of the challenges in examining the cellular composition of EBs is the lack of analytical methods that are capable of determining the phenotype of all of the individual cells that comprise a single EB. Therefore, the objective of this work was to examine the ability of a microfluidic cell trapping array to analyze the heterogeneity of cells comprising EBs during the course of early differentiation. The heterogeneity of single cell phenotype on the basis of protein expression of the pluripotent transcription factor OCT-4 was examined for populations of EBs and single EBs of different sizes at distinct stages of differentiation. Results from the cell trap device were compared with flow cytometry and whole mount immunostaining. Additionally, single cells from dissociated pooled EBs or individual EBs were examined separately to discern potential differences in the value or variance of expression between the different methods of analysis. Overall, the analytical method described represents a novel approach for evaluating how heterogeneity is manifested in EB cultures and may be used in the future to assess the kinetics and patterns of differentiation in addition to the loss of pluripotency.
Collapse
Affiliation(s)
- Jenna L. Wilson
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shalu Suri
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ankur Singh
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Catherine A. Rivet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
234
|
Moignard V, Göttgens B. Transcriptional mechanisms of cell fate decisions revealed by single cell expression profiling. Bioessays 2014; 36:419-26. [PMID: 24470343 PMCID: PMC3992849 DOI: 10.1002/bies.201300102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcriptional networks regulate cell fate decisions, which occur at the level of individual cells. However, much of what we know about their structure and function comes from studies averaging measurements over large populations of cells, many of which are functionally heterogeneous. Such studies conceal the variability between cells and so prevent us from determining the nature of heterogeneity at the molecular level. In recent years, many protocols and platforms have been developed that allow the high throughput analysis of gene expression in single cells, opening the door to a new era of biology. Here, we discuss the need for single cell gene expression analysis to gain deeper insights into the transcriptional control of cell fate decisions, and consider the insights it has provided so far into transcriptional regulatory networks in development.
Collapse
Affiliation(s)
- Victoria Moignard
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust - Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
235
|
Nagamatsu G, Kosaka T, Saito S, Honda H, Takubo K, Kinoshita T, Akiyama H, Sudo T, Horimoto K, Oya M, Suda T. Induction of pluripotent stem cells from primordial germ cells by single reprogramming factors. Stem Cells 2014; 31:479-87. [PMID: 23255173 DOI: 10.1002/stem.1303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 11/27/2012] [Indexed: 12/27/2022]
Abstract
Germ cells are similar to pluripotent stem cells in terms of gene expression patterns and the capacity to convert to pluripotent stem cells in culture. The factors involved in germ cell development are also able to reprogram somatic cells. This suggests that germ cells are useful tools for investigating the mechanisms responsible for somatic cell reprograming. In this study, the expression of reprograming factors in primordial germ cells (PGCs) was analyzed. PGCs expressed Oct3/4, Sox2, and c-Myc but not Klf4. However, Klf2, Klf5, Essrb, or Essrg, which were expressed in PGCs, could compensate for Klf4 during somatic cell reprograming. Furthermore, PGCs could be converted to a pluripotent state by infection with any of the known reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc). These cells were designated as multipotent PGCs (mPGCs). Contrary to differences in the origins of somatic cells in somatic cell reprogramming, we hypothesized that the gene expression levels of the reprogramming factors would vary in mPGCs. Candidate genes involved in the regulation of tumorigenicity and/or reprogramming efficiency were identified by comparing the gene expression profiles of mPGCs generated by the exogenous expression of c-Myc or L-Myc.
Collapse
Affiliation(s)
- Go Nagamatsu
- Department of Cell Differentiation, The Sakaguchi Laboratory and , Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Cerulo L, Tagliaferri D, Marotta P, Zoppoli P, Russo F, Mazio C, DeFelice M, Ceccarelli M, Falco G. Identification of a novel gene signature of ES cells self-renewal fluctuation through system-wide analysis. PLoS One 2014; 9:e83235. [PMID: 24392082 PMCID: PMC3879232 DOI: 10.1371/journal.pone.0083235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
Embryonic Stem cells (ESCs) can be differentiated into ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. In regular culture conditions, ESCs' self-renewal is maintained through molecules that inhibit spontaneous differentiation enabling long-term cellular expansion. This undifferentiating condition is characterized by multiple metastable states that fluctuate between self-renewal and differentiation balance. Here, we aim to characterize the high-pluripotent ESC metastate marked by the expression of Zscan4 through a supervised machine learning framework based on an ensemble of support vector machine (SVM) classifiers. Our study revealed a leukaemia inhibitor factor (Lif) dependent not-canonical pluripotency signature (AF067063, BC061212, Dub1, Eif1a, Gm12794, Gm13871, Gm4340, Gm4850, Tcstv1/3, and Zfp352), that specifically marks Zscan4 ESCs' fluctuation. This novel ESC metastate is enhanced by high-pluripotency culture conditions obtained through Extracellular signal Regulated-Kinase (ERK) and Glycogen synthase kinase-3 (Gsk-3) signaling inhibition (2i). Significantly, we reported that the conditional ablation of the novel ESC metastate marked by the expression of Gm12794 is required for ESCs self-renewal maintenance. In conclusion, we extend the comprehension of ESCs biology through the identification of a novel molecular signature associated to pluripotency programming.
Collapse
Affiliation(s)
- Luigi Cerulo
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Science, Università degli Studi del Sannio, Benevento, Italy
| | - Daniela Tagliaferri
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Science, Università degli Studi del Sannio, Benevento, Italy
| | - Pina Marotta
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | - Pietro Zoppoli
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | - Filomena Russo
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | - Claudia Mazio
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | - Mario DeFelice
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Medicina Molecolare e Biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Michele Ceccarelli
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Science, Università degli Studi del Sannio, Benevento, Italy
- * E-mail: (MC); (GF)
| | - Geppino Falco
- Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Science, Università degli Studi del Sannio, Benevento, Italy
- * E-mail: (MC); (GF)
| |
Collapse
|
237
|
|
238
|
Mouse embryonic stem cells cultured under serum- and feeder-free conditions maintain their self-renewal capacity on hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:214-20. [DOI: 10.1016/j.msec.2013.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/02/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
239
|
Kobayashi T, Kageyama R. Expression Dynamics and Functions of Hes Factors in Development and Diseases. Curr Top Dev Biol 2014; 110:263-83. [DOI: 10.1016/b978-0-12-405943-6.00007-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
240
|
Chen T, Dent SYR. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 2013; 15:93-106. [PMID: 24366184 DOI: 10.1038/nrg3607] [Citation(s) in RCA: 468] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular differentiation is, by definition, epigenetic. Genome-wide profiling of pluripotent cells and differentiated cells suggests global chromatin remodelling during differentiation, which results in a progressive transition from a fairly open chromatin configuration to a more compact state. Genetic studies in mouse models show major roles for a variety of histone modifiers and chromatin remodellers in key developmental transitions, such as the segregation of embryonic and extra-embryonic lineages in blastocyst stage embryos, the formation of the three germ layers during gastrulation and the differentiation of adult stem cells. Furthermore, rather than merely stabilizing the gene expression changes that are driven by developmental transcription factors, there is emerging evidence that chromatin regulators have multifaceted roles in cell fate decisions.
Collapse
Affiliation(s)
- Taiping Chen
- 1] Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center. [2] Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, Texas 78957, USA. [3] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Sharon Y R Dent
- 1] Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center. [2] Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, Texas 78957, USA. [3] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
241
|
Hackett JA, Dietmann S, Murakami K, Down TA, Leitch HG, Surani MA. Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency. Stem Cell Reports 2013; 1:518-31. [PMID: 24371807 PMCID: PMC3871394 DOI: 10.1016/j.stemcr.2013.11.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK ; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK ; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Sabine Dietmann
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Kazuhiro Murakami
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK ; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK ; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Thomas A Down
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK ; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK ; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK ; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
242
|
Ren Y, Wu H, Wang X, Xue N, Liang H, Liu D. Analysis of the stem cell characteristics of adult stem cells from Arbas white Cashmere goat. Biochem Biophys Res Commun 2013; 448:121-8. [PMID: 24333446 DOI: 10.1016/j.bbrc.2013.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Studies have shown that multipotent adult stem cells possess differentiation characteristics similar to embryonic stem cells and pluripotent stem cells. We aimed to explore these similarities further by examining the expression of the pluripotency and stemness biomarkers, AKP, IL-6, Nanog, Oct-4, Rex-1, Sox-2 and TERT, as well as the triploblastic biomarkers, Sox-1, Myod1 and Gata-6 in adipose-derived stem cells (ADSCs), bone marrow stem cells (BMSCs) and muscle-derived satellite cells (MDSCs). These were isolated from adult Arbas white Cashmere goats and cultured in vitro. Immunocytochemistry, reverse transcription quantitative PCR and Western blotting were used to analyze the protein and mRNA expression of the markers. To investigate the ability of ADSCs, BMSCs and MDSCs to differentiate and cause tumors in vivo they were injected into immunodeficient mice (NOD-SCID). All results were compared to those for mouse embryonic stem cells (mESCs). Immunocytochemistry showed that AKP, IL-6, Nanog, Oct-4, Rex-1 and TERT were expressed in ADSCs, BMSCs and MDSCs, whereas Sox-2 was not. In ADSCs, the expression of IL-6 mRNA was relatively high, followed by Nanog and Oct-4, while Rex-1 and TERT expression were the lowest (P<0.01). In BMSCs, the expression of Rex-1 was relatively high, followed by IL-6, while Oct-4, Nanog and TERT were comparatively low (P<0.01). In MDSCs, the expression of IL-6, Nanog and Oct-4 were relatively high, while TERT was comparatively low (P<0.01). However, no expression of Sox-2 mRNA was detected in any of the three cell lines. The expression of Sox-1, Myod1 and Gata-6 was observed to different degrees in all three cell lines (P<0.01); the expression pattern in MDSCs was different from that in ADSCs and BMSCs. Western blotting indicated that no expression of Sox-2 and Rex-1 protein occurred in ADSCs, BMSCs and MDSCs, while the other five proteins were all expressed to different degrees (P<0.01); the expression pattern was consistent with the mRNA results. In contrast to the mESCs, no teratoma tissue or triploblastic differentiation appendages were formed in the immunodeficient mice after injection of ADSCs, BMSCs and MDSCs. Our results suggest that the three adult goat stem cell types are non-oncogenic and have stemness characteristics similar to embryonic stem cells. Of these, MDSCs were found to exhibit the most ESC-like properties and would make the best candidates for clinical application.
Collapse
Affiliation(s)
- Yu Ren
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Haiqing Wu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Xiao Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Na Xue
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Hao Liang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Dongjun Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China.
| |
Collapse
|
243
|
Yeo D, Kiparissides A, Cha JM, Aguilar-Gallardo C, Polak JM, Tsiridis E, Pistikopoulos EN, Mantalaris A. Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design. PLoS One 2013; 8:e81728. [PMID: 24339957 PMCID: PMC3858261 DOI: 10.1371/journal.pone.0081728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. METHODOLOGY/PRINCIPAL FINDINGS To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. CONCLUSIONS/SIGNIFICANCE The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.
Collapse
Affiliation(s)
- David Yeo
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | | | - Jae Min Cha
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | | | - Julia M. Polak
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Elefterios Tsiridis
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | | | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
244
|
Paduano V, Tagliaferri D, Falco G, Ceccarelli M. Automated identification and location analysis of marked stem cells colonies in optical microscopy images. PLoS One 2013; 8:e80776. [PMID: 24349016 PMCID: PMC3857180 DOI: 10.1371/journal.pone.0080776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem cells (ESCs) are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal) and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency). Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA), pluripotency (Pou5f1), and pluripotency fluctuation (Nanog). We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the analysis on the control genes showed that they behave as expected.
Collapse
Affiliation(s)
- Vincenzo Paduano
- Bioinformatics Lab, Genetic Research Institute “G. Salvatore” (IRGS) c/o BioGeM s.c.a r.l., Ariano Irpino, Avellino, Italy
- Department of Science and Technologies, University of Sannio, via Port'Arsa, Benevento, Benevento, Italy
| | - Daniela Tagliaferri
- Stem Cell Research Lab, Genetic Research Institute “G. Salvatore” (IRGS) c/o BioGeM s.c.a r.l., c.da Camporeale, Ariano Irpino, Avellino, Italy
| | - Geppino Falco
- Stem Cell Research Lab, Genetic Research Institute “G. Salvatore” (IRGS) c/o BioGeM s.c.a r.l., c.da Camporeale, Ariano Irpino, Avellino, Italy
- Department of Science and Technologies, University of Sannio, via Port'Arsa, Benevento, Benevento, Italy
- * E-mail: (MC); (GF)
| | - Michele Ceccarelli
- Bioinformatics Lab, Genetic Research Institute “G. Salvatore” (IRGS) c/o BioGeM s.c.a r.l., Ariano Irpino, Avellino, Italy
- Department of Science and Technologies, University of Sannio, via Port'Arsa, Benevento, Benevento, Italy
- * E-mail: (MC); (GF)
| |
Collapse
|
245
|
Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, Matlock BK, Weller KP, Wu H, Zhao S, Jin P, Dalton S. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports 2013; 1:532-44. [PMID: 24371808 PMCID: PMC3871385 DOI: 10.1016/j.stemcr.2013.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation. Embryonic stem cells are lineage primed in G1 Transcription of developmentally regulated genes is cell-cycle regulated 5hmC is cell-cycle regulated Stem cells initiate differentiation from G1
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - James Chappell
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Robert Trost
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Li Lin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Tao Wang
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Jie Tang
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Brittany K Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin P Weller
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
246
|
Son MY, Choi H, Han YM, Sook Cho Y. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells 2013; 31:2374-87. [DOI: 10.1002/stem.1509] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hoonsung Choi
- Stem Cell Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| |
Collapse
|
247
|
Peng X, Liu T, Yang B, Shi C, Sun Y, Jiang L, Jin H, Li L, Zhu H, Wu M, Qian Q. Germ-line-competent embryonic stem cells of the Chinese Kunming mouse strain with long-term self-renewal ability. Cell Reprogram 2013; 15:179-84. [PMID: 23713430 DOI: 10.1089/cell.2012.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kunming (KM) mice are the most widely used strain in China. However, authentic embryonic stem cells (ESCs) from KM mice have never been available, and this hampers the genetic manipulation of this valuable mice strain. In this study, we show that KM ESCs can be efficiently derived and maintained in chemically defined N2B27 medium with the presence of two small molecules PD0325901 and CHIR99021 (2i medium). These KM ESCs exhibit all features of ESCs, including long-term self-renewal ability, expression of key molecular markers (Oct4, Nanog, and Sox2), the ability to form teratomas, and the capacity to incorporate into the developing embryo and then transmit through the germ line.
Collapse
Affiliation(s)
- Xinrong Peng
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 2013; 23:2126-35. [PMID: 24179143 PMCID: PMC3847781 DOI: 10.1101/gr.161679.113] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
DNA methylation is crucial for a wide variety of biological processes, yet no technique suitable for the methylome analysis of DNA methylation at single-cell resolution is available. Here, we describe a methylome analysis technique that enables single-cell and single-base resolution DNA methylation analysis based on reduced representation bisulfite sequencing (scRRBS). The technique is highly sensitive and can detect the methylation status of up to 1.5 million CpG sites within the genome of an individual mouse embryonic stem cell (mESC). Moreover, we show that the technique can detect the methylation status of individual CpG sites in a haploid sperm cell in a digitized manner as either unmethylated or fully methylated. Furthermore, we show that the demethylation dynamics of maternal and paternal genomes after fertilization can be traced within the individual pronuclei of mouse zygotes. The demethylation process of the genic regions is faster than that of the intergenic regions in both male and female pronuclei. Our method paves the way for the exploration of the dynamic methylome landscapes of individual cells at single-base resolution during physiological processes such as embryonic development, or during pathological processes such as tumorigenesis.
Collapse
Affiliation(s)
- Hongshan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
249
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
250
|
Maintenance of pluripotency in mouse ES cells without Trp53. Sci Rep 2013; 3:2944. [PMID: 24126347 PMCID: PMC3796736 DOI: 10.1038/srep02944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/27/2013] [Indexed: 02/08/2023] Open
Abstract
Tumor suppressor Trp53 works as a guardian of the genome in somatic cells. In mouse embryonic stem (ES) cells, it was reported that Trp53 represses pluripotency-associated transcription factor Nanog to induce differentiation. However, since Trp53-null mice develop to term, Trp53 is dispensable for both the maintenance and differentiation of the pluripotent stem cell population in vivo, suggesting the differential functions of Trp53 in ES cells and embryos. To reveal the basis of this discrepancy, here we established a new line of Trp53-null ES cells by sequential gene targeting and evaluated their ability to differentiate in vitro and in vivo. We found that Trp53-null ES cells had defects in differentiation in vitro as reported previously, whereas they were able to contribute to normal development in chimeric embryos. These data indicated that the requirement of Trp53 for maintaining and executing the ES pluripotency is not absolute.
Collapse
|