201
|
Wang S, Li Y, Jiang C, Tian H. Fibroblast growth factor 9 subfamily and the heart. Appl Microbiol Biotechnol 2017; 102:605-613. [PMID: 29198068 DOI: 10.1007/s00253-017-8652-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions due to their high degree of sequence homology. Unlike other secreted proteins which have a cleavable N-terminal secreted signal peptide, FGF9/16/20 have non-cleaved N-terminal signal peptides. As an intercellular signaling molecule, they are involved in a variety of complex responses in animal development. Cardiogenesis is controlled by many members of the transcription factor family. Evidence suggests that FGF signaling, including the FGF9 subfamily, has a pretty close association with these cardiac-specific genes. In addition, recent studies have shown that the FGF9 subfamily maintains functional adaptation and survival after myocardial infarction in adult myocardium. Since FGF9/16/20 are secreted proteins, their function characterization in cardiac regeneration can promote their potential to be developed for the treatment of cardioprotection and revascularization. Here, we conclude that the FGF9 subfamily roles in cardiac development and maintenance of postnatal cardiac homeostasis, especially cardiac function maturation and functional maintenance of the heart after injury.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
202
|
Plasticity of the inner cell mass in mouse blastocyst is restricted by the activity of FGF/MAPK pathway. Sci Rep 2017; 7:15136. [PMID: 29123210 PMCID: PMC5680175 DOI: 10.1038/s41598-017-15427-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
In order to ensure successful development, cells of the early mammalian embryo must differentiate to either trophectoderm (TE) or inner cell mass (ICM), followed by epiblast (EPI) or primitive endoderm (PE) specification within the ICM. Here, we deciphered the mechanism that assures the correct order of these sequential cell fate decisions. We revealed that TE-deprived ICMs derived from 32-cell blastocysts are still able to reconstruct TE during in vitro culture, confirming totipotency of ICM cells at this stage. ICMs isolated from more advanced blastocysts no longer retain totipotency, failing to form TE and generating PE on their surface. We demonstrated that the transition from full potency to lineage priming is prevented by inhibition of the FGF/MAPK signalling pathway. Moreover, we found that after this first restriction step, ICM cells still retain fate flexibility, manifested by ability to convert their fate into an alternative lineage (PE towards EPI and vice versa), until peri-implantation stage.
Collapse
|
203
|
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat Commun 2017; 8:1096. [PMID: 29061959 PMCID: PMC5653659 DOI: 10.1038/s41467-017-01076-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression heterogeneity in the pluripotent state of mouse
embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast,
exit from pluripotency and lineage commitment have not been studied systematically
at the single-cell level. Here we measure the gene expression dynamics of retinoic
acid driven mESC differentiation from pluripotency to lineage commitment, using an
unbiased single-cell transcriptomics approach. We find that the exit from
pluripotency marks the start of a lineage transition as well as a transient phase of
increased susceptibility to lineage specifying signals. Our study reveals several
transcriptional signatures of this phase, including a sharp increase of gene
expression variability and sequential expression of two classes of transcriptional
regulators. In summary, we provide a comprehensive analysis of the exit from
pluripotency and lineage commitment at the single cell level, a potential stepping
stone to improved lineage manipulation through timing of differentiation
cues. Commitment to different fates by differentiating pluripotent cells
depends upon integration of external and internal signals. Here the authors analyse
the entry of mouse embryonic stem cells into retinoic acid-mediated differentiation
using single cell transcriptomics with high temporal resolution.
Collapse
|
204
|
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017; 144:175-186. [PMID: 28096211 PMCID: PMC5430762 DOI: 10.1242/dev.145177] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|
205
|
Bessonnard S, Coqueran S, Vandormael-Pournin S, Dufour A, Artus J, Cohen-Tannoudji M. ICM conversion to epiblast by FGF/ERK inhibition is limited in time and requires transcription and protein degradation. Sci Rep 2017; 7:12285. [PMID: 28947813 PMCID: PMC5612930 DOI: 10.1038/s41598-017-12120-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Inner cell Mass (ICM) specification into epiblast (Epi) and primitive endoderm (PrE) is an asynchronous and progressive process taking place between E3.0 to E3.75 under the control of the Fibroblast Growth Factor (FGF)/Extracellular signal-Regulated Kinase (ERK) signaling pathway. Here, we have analyzed in details the kinetics of specification and found that ICM cell responsiveness to the up and down regulation of FGF signaling activity are temporally distinct. We also showed that PrE progenitors are generated later than Epi progenitors. We further demonstrated that, during this late phase of specification, a 4 hours period of FGF/ERK inhibition prior E3.75 is sufficient to convert ICM cells into Epi. Finally, we showed that ICM conversion into Epi in response to inhibition during this short time window requires both transcription and proteasome degradation. Collectively, our data give new insights into the timing and mechanisms involved in the process of ICM specification.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Sabrina Coqueran
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Alexandre Dufour
- Institut Pasteur, Bioimage Analysis Unit, CNRS UMR 3691, Paris, France.,INSERM UMR935, Paul Brousse Hospital, University Paris Sud, Villejuif, France
| | - Jérôme Artus
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France. .,INSERM UMR935, Paul Brousse Hospital, University Paris Sud, Villejuif, France. .,Faculty of Medicine, Kremlin-Bicêtre, University Paris Sud, Paris Saclay, France.
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France.
| |
Collapse
|
206
|
Piliszek A, Madeja ZE, Plusa B. Suppression of ERK signalling abolishes primitive endoderm formation but does not promote pluripotency in rabbit embryo. Development 2017; 144:3719-3730. [PMID: 28935706 PMCID: PMC5675450 DOI: 10.1242/dev.156406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Formation of epiblast (EPI) – the founder line of all embryonic lineages – and extra-embryonic supportive tissues is one of the key events in mammalian development. The prevailing model of early mammalian development is based almost exclusively on the mouse. Here, we provide a comprehensive, stage-by-stage analysis of EPI and extra-embryonic primitive endoderm (PrE) formation during preimplantation development of the rabbit. Although we observed that rabbit embryos have several features in common with mouse embryos, including a stage-related initiation of lineage specification, our results demonstrate the existence of some key differences in lineage specification among mammals. Contrary to the current view, our data suggest that reciprocal repression of GATA6 and NANOG is not fundamental for the initial stages of PrE versus EPI specification in mammals. Furthermore, our results provide insight into the observed discrepancies relating to the role of FGF/ERK signalling in PrE versus EPI specification between mouse and other mammals. Highlighted Article: A comprehensive analysis of rabbit preimplantation development reveals key differences between rabbit and mouse, with some aspects of lineage specification in rabbit more closely resembling that of human and primate embryos.
Collapse
Affiliation(s)
- Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36a, 05-552 Jastrzębiec, Poland
| | - Zofia E Madeja
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Berenika Plusa
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
207
|
Latos PA, Hemberger M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 2017; 143:3650-3660. [PMID: 27802134 DOI: 10.1242/dev.133462] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Trophoblast stem cells (TSCs) retain the capacity to self-renew indefinitely and harbour the potential to differentiate into all trophoblast subtypes of the placenta. Recent studies have shown how signalling cascades integrate with transcription factor circuits to govern the fine balance between TSC self-renewal and differentiation. In addition, breakthroughs in reprogramming strategies have enabled the generation of TSCs from fibroblasts, opening up exciting new avenues that may allow the isolation of this stem cell type from other species, notably humans. Here, we review these recent advances in light of their importance for understanding placental pathologies and developing personalised medicine approaches for pregnancy complications.
Collapse
Affiliation(s)
- Paulina Anna Latos
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
208
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
209
|
Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell 2017; 20:18-28. [PMID: 28061351 DOI: 10.1016/j.stem.2016.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathways underlying mouse embryonic development have always informed efforts to derive, maintain, and drive differentiation of human pluripotent stem cells. However, direct application of mouse embryology to the human system has not always been successful because of fundamental developmental differences between species. The naive pluripotent state of mouse embryonic stem cells (ESCs), in particular, has been difficult to capture in human ESCs, and appears to be transitory in the human embryo itself. Further studies of human and non-human primate embryo development are needed to untangle the complexities of pluripotency networks across mammalian species.
Collapse
Affiliation(s)
- Janet Rossant
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
210
|
Nissen SB, Perera M, Gonzalez JM, Morgani SM, Jensen MH, Sneppen K, Brickman JM, Trusina A. Four simple rules that are sufficient to generate the mammalian blastocyst. PLoS Biol 2017; 15:e2000737. [PMID: 28700688 PMCID: PMC5507476 DOI: 10.1371/journal.pbio.2000737] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 06/09/2017] [Indexed: 11/18/2022] Open
Abstract
Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell-cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell-cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells' competence of fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network.
Collapse
Affiliation(s)
- Silas Boye Nissen
- StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marta Perera
- The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark
| | | | - Sophie M. Morgani
- The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Mogens H. Jensen
- StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- CMOL, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M. Brickman
- StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Centre, DanStem, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JMB); (AT)
| | - Ala Trusina
- StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JMB); (AT)
| |
Collapse
|
211
|
Jia D, Jolly MK, Kulkarni P, Levine H. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers (Basel) 2017; 9:E70. [PMID: 28640191 PMCID: PMC5532606 DOI: 10.3390/cancers9070070] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
212
|
Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Dev Cell 2017; 40:235-247.e7. [PMID: 28171747 PMCID: PMC5300053 DOI: 10.1016/j.devcel.2017.01.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
Abstract
Mammalian development begins with segregation of the extra-embryonic trophectoderm from the embryonic lineage in the blastocyst. While cell polarity and adhesion play key roles, the decisive cue driving this lineage segregation remains elusive. Here, to study symmetry breaking, we use a reduced system in which isolated blastomeres recapitulate the first lineage segregation. We find that in the 8-cell stage embryo, the apical domain recruits a spindle pole to ensure its differential distribution upon division. Daughter cells that inherit the apical domain adopt trophectoderm fate. However, the fate of apolar daughter cells depends on whether their position within the embryo facilitates apical domain formation by Cdh1-independent cell contact. Finally, we develop methods for transplanting apical domains and show that acquisition of this domain is not only required but also sufficient for the first lineage segregation. Thus, we provide mechanistic understanding that reconciles previous models for symmetry breaking in mouse development. A reduced system was established to study symmetry breaking in mouse development 8-cell stage blastomeres acquire the capacity to self-organize the apical domain The apical domain is required and sufficient for the first lineage segregation Contact asymmetry specifies cell fate, leading to self-organized embryo patterning
Collapse
Affiliation(s)
- Ekaterina Korotkevich
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Ritsuya Niwayama
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Aurélien Courtois
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stefanie Friese
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Nicolas Berger
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, 01062 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, 01062 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Takashi Hiiragi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
213
|
Abstract
Embryonic development is a self-organised process during which cells divide, interact, change fate according to a complex gene regulatory network and organise themselves in a three-dimensional space. Here, we model this complex dynamic phenomenon in the context of the acquisition of epiblast and primitive endoderm identities within the inner cell mass of the preimplantation embryo in the mouse. The multiscale model describes cell division and interactions between cells, as well as biochemical reactions inside each individual cell and in the extracellular matrix. The computational results first confirm that the previously proposed mechanism by which extra-cellular signalling allows cells to select the appropriate fate in a tristable regulatory network is robust when considering a realistic framework involving cell division and three-dimensional interactions. The simulations recapitulate a variety of in vivo observations on wild-type and mutant embryos and suggest that the gene regulatory network confers differential plasticity to the different cell fates. A detailed analysis of the specification process emphasizes that developmental transitions and the salt-and-pepper patterning of epiblast and primitive endoderm cells from a homogenous population of inner cell mass cells arise from the interplay between the internal gene regulatory network and extracellular signalling by Fgf4. Importantly, noise is necessary to create some initial heterogeneity in the specification process. The simulations suggest that initial cell-to-cell differences originating from slight inhomogeneities in extracellular Fgf4 signalling, in possible combination with slightly different concentrations of the key transcription factors between daughter cells, are able to break the original symmetry and are amplified in a flexible and self-regulated manner until the blastocyst stage.
Collapse
|
214
|
Geisert RD, Whyte JJ, Meyer AE, Mathew DJ, Juárez MR, Lucy MC, Prather RS, Spencer TE. Rapid conceptus elongation in the pig: An interleukin 1 beta 2 and estrogen‐regulated phenomenon. Mol Reprod Dev 2017; 84:760-774. [DOI: 10.1002/mrd.22813] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Jeffrey J. Whyte
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Ashley E. Meyer
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Daniel J. Mathew
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - María R. Juárez
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Matthew C. Lucy
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | | | | |
Collapse
|
215
|
Thamodaran V, Bruce AW. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol 2017; 6:rsob.160190. [PMID: 27605380 PMCID: PMC5043583 DOI: 10.1098/rsob.160190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical ‘salt and pepper’ expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.
Collapse
Affiliation(s)
- Vasanth Thamodaran
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Alexander W Bruce
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
216
|
Forceful patterning in mouse preimplantation embryos. Semin Cell Dev Biol 2017; 71:129-136. [PMID: 28577924 DOI: 10.1016/j.semcdb.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.
Collapse
|
217
|
Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell 2017; 41:496-510.e5. [PMID: 28552559 DOI: 10.1016/j.devcel.2017.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is the key signal driving specification of primitive endoderm (PrE) versus pluripotent epiblast (EPI) within the inner cell mass (ICM) of the mouse blastocyst. To gain insight into the receptor(s) responding to FGF4 within ICM cells, we combined single-cell-resolution quantitative imaging with single-cell transcriptomics of wild-type and Fgf receptor (Fgfr) mutant embryos. Despite the PrE-specific expression of FGFR2, it is FGFR1, expressed by all ICM cells, that is critical for establishment of a PrE identity. Signaling through FGFR1 is also required to constrain levels of the pluripotency-associated factor NANOG in EPI cells. However, the activity of both receptors is required for lineage establishment within the ICM. Gene expression profiling of 534 single ICM cells identified distinct downstream targets associated with each receptor. These data lead us to propose a model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
218
|
Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency. Dev Cell 2017; 41:511-526.e4. [PMID: 28552557 DOI: 10.1016/j.devcel.2017.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/13/2017] [Accepted: 04/30/2017] [Indexed: 12/23/2022]
Abstract
Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan M Cinalli
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
219
|
Goolam M, Zernicka-Goetz M. The chromatin modifier Satb1 regulates cell fate through Fgf signalling in the early mouse embryo. Development 2017; 144:1450-1461. [PMID: 28289135 PMCID: PMC5399666 DOI: 10.1242/dev.144139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/03/2017] [Indexed: 02/01/2023]
Abstract
The separation of embryonic from extra-embryonic tissues within the inner cell mass to generate the epiblast (EPI), which will form the new organism, from the primitive endoderm (PE), which will form the yolk sac, is a crucial developmental decision. Here, we identify a chromatin modifier, Satb1, with a distinct role in this decision. Satb1 is differentially expressed within 16-cell-stage embryos, with higher expression levels in the inner cell mass progenitor cells. Depleting Satb1 increases the number of EPI cells at the expense of PE. This phenotype can be rescued by simultaneous depletion of both Satb1 and Satb2, owing to their antagonistic effect on the pluripotency regulator Nanog. Consequently, increasing Satb1 expression leads to differentiation into PE and a decrease in EPI, as a result of the modulation of expression of several pluripotency- and differentiation-related genes by Satb1. Finally, we show that Satb1 is a downstream target of the Fgf signalling pathway, linking chromatin modification and Fgf signalling. Together, these results identify a role for Satb1 in the lineage choice between pluripotency and differentiation and further our understanding of early embryonic lineage segregation.
Collapse
Affiliation(s)
- Mubeen Goolam
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
220
|
Mouse blastomeres acquire ability to divide asymmetrically before compaction. PLoS One 2017; 12:e0175032. [PMID: 28362853 PMCID: PMC5376319 DOI: 10.1371/journal.pone.0175032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
The mouse preimplantation embryo generates the precursors of trophectoderm (TE) and inner cell mass (ICM) during the 8- to 16-cell stage transition, when the apico-basal polarized blastomeres undergo divisions that give rise to cells with different fate. Asymmetric segregation of polar domain at 8–16 cell division generate two cell types, polar cells which adopt an outer position and develop in TE and apolar cells which are allocated to inner position as the precursors of ICM. It is still not know when the blastomeres of 8-cell stage start to be determined to undergo asymmetric division. Here, we analyze the frequency of symmetric and asymmetric divisions of blastomeres isolated from 8-cell stage embryo before and after compaction. Using p-Ezrin as the polarity marker we found that size of blastomeres in 2/16 pairs cannot be used as a criterion for distinguishing symmetric and asymmetric divisions. Our results showed that at early 8-cell stage, before any visible signs of cortical polarity, a subset of blastomeres had been already predestined to divide asymmetrically. We also showed that almost all of 8-cell stage blastomeres isolated from compacted embryo divide asymmetrically, whereas in intact embryos, the frequency of asymmetric divisions is significantly lower. Therefore we conclude that in intact embryo the frequency of symmetric and asymmetric division is regulated by cell-cell interactions.
Collapse
|
221
|
Posfai E, Petropoulos S, de Barros FRO, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 2017; 6:22906. [PMID: 28226240 PMCID: PMC5370188 DOI: 10.7554/elife.22906] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling. DOI:http://dx.doi.org/10.7554/eLife.22906.001 In female mammals, conception is a complex process that involves several stages. First, an egg is released from the ovary and travels along a tube called the oviduct, where sperm from a male may fertilize it. If the egg is fertilized, the newly formed embryo moves into the womb, where it will then implant into the walls. In mice, it takes around four days for the embryo to implant and during this time, the cells in the embryo divide several times and start to specialize to form distinct cell types called lineages. The first two lineages to form are known as the inner cell mass and the trophectoderm. The inner cell mass forms a ball of cells within the embryo and contains the precursors of all cells that build the animal’s body. The trophectoderm forms a layer that surrounds the inner cell mass and will become part of the placenta (the organ that supplies the embryo with nutrients while it is in the womb). The embryo can organize these lineages without any instructions from the mother. However, it is still not clear when the cells start to differ from each other, and when they ‘commit’ to stay in these lineages. Cells in the inner cell mass and trophectoderm have different gene expression profiles, meaning that many genes display different levels of activity in these two lineages. Posfai et al. use a technique called single-cell RNA sequencing to analyse gene activity as the inner cell mass and trophectoderm form in mouse embryos. By measuring changes in gene activity, it is possible to track their development and show which genes change expression levels when each lineage specifies and commits. The experiments reveal that the inner cell mass and trophectoderm lineages develop at different times. As the inner cell mass forms, cells adopt the inner cell mass ‘identity’ before they commit to remaining in this lineage, revealing a window of time where different signals could still change the fate of the cells. However, when the early trophectoderm cells show the first signs of specialization, they also commit to their new identity at the same time. These findings suggest that the different timings at which these cell lineages form might provide embryos with the means to organize their own cells. An important future challenge is to understand exactly how the cells commit to their fate. DOI:http://dx.doi.org/10.7554/eLife.22906.002
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | | | - John Paul Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
222
|
Lo Nigro A, de Jaime-Soguero A, Khoueiry R, Cho DS, Ferlazzo GM, Perini I, Abon Escalona V, Aranguren XL, Chuva de Sousa Lopes SM, Koh KP, Conaldi PG, Hu WS, Zwijsen A, Lluis F, Verfaillie CM. PDGFRα + Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports 2017; 8:318-333. [PMID: 28089671 PMCID: PMC5311469 DOI: 10.1016/j.stemcr.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα+ subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα+ cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors. Three subpopulations can be purified from mESC cultures by using PECAM1 and PDGFRα Expression of PDGFRα is associated with a molecular and epigenetic PrE signature PDGFRα+ cells are committed toward PrE derivatives in vitro and in vivo
Collapse
Affiliation(s)
- Antonio Lo Nigro
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium; Ri.Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via Tricomi 5, 90127 Palermo, Italy.
| | - Anchel de Jaime-Soguero
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Dong Seong Cho
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA
| | - Giorgia Maria Ferlazzo
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Ilaria Perini
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Vanesa Abon Escalona
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Xabier Lopez Aranguren
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Pier Giulio Conaldi
- Ri.Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via Tricomi 5, 90127 Palermo, Italy
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| |
Collapse
|
223
|
Cell Fate Specification Based on Tristability in the Inner Cell Mass of Mouse Blastocysts. Biophys J 2017; 110:710-722. [PMID: 26840735 DOI: 10.1016/j.bpj.2015.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023] Open
Abstract
During development, interactions between transcription factors control the specification of different cell fates. The regulatory networks of genetic interactions often exhibit multiple stable steady states; such multistability provides a common dynamical basis for differentiation. During early murine embryogenesis, cells from the inner cell mass (ICM) can be specified in epiblast (Epi) or primitive endoderm (PrE). Besides the intracellular gene regulatory network, specification is also controlled by intercellular interactions involving Erk signaling through extracellular Fgf4. We previously proposed a model that describes the gene regulatory network and its interaction with Erk signaling in ICM cells. The model displays tristability in a range of Fgf4 concentrations and accounts for the self-organized specification process observed in vivo. Here, we further investigate the origin of tristability in the model and analyze in more detail the specification process by resorting to a simplified two-cell model. We also carry out simulations of a population of 25 cells under various experimental conditions to compare their outcome with that of mutant embryos or of embryos submitted to exogenous treatments that interfere with Fgf signaling. The results are analyzed by means of bifurcation diagrams. Finally, the model predicts that heterogeneities in extracellular Fgf4 concentration play a primary role in the spatial arrangement of the Epi/PrE cells in a salt-and-pepper pattern. If, instead of heterogeneities in extracellular Fgf4 concentration, internal fluctuations in the levels of expression of the transcription factors are considered as a source of randomness, simulations predict the occurrence of unrealistic switches between the Epi and the PrE cell fates, as well as the evolution of some cells toward one of these states without passing through the previous ICM state, in contrast to what is observed in vivo.
Collapse
|
224
|
Tóth B, Ben-Moshe S, Gavish A, Barkai N, Itzkovitz S. Early commitment and robust differentiation in colonic crypts. Mol Syst Biol 2017; 13:902. [PMID: 28049136 PMCID: PMC5293156 DOI: 10.15252/msb.20167283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue stem cells produce a constant flux of differentiated cells with distinct proportions. Here, we show that stem cells in colonic crypts differentiate early to form precisely 1:3 ratio of secretory to absorptive cells. This precision is surprising, as there are only eight stem cells making irreversible fate decisions, and so large stochastic effects of this small pool should have yielded much larger noise in cell proportions. We use single molecule FISH, lineage‐tracing mice and simulations to identify the homeostatic mechanisms facilitating robust proportions. We find that Delta‐Notch lateral inhibition operates in a restricted spatial zone to reduce initial noise in cell proportions. Increased dwell time and dispersive migration of secretory cells further averages additional variability added during progenitor divisions and breaks up continuous patches of same‐fate cells. These noise‐reducing mechanisms resolve the trade‐off between early commitment and robust differentiation and ensure spatially uniform spread of secretory cells. Our findings may apply to other cases where small progenitor pools expand to give rise to precise tissue cell proportions.
Collapse
Affiliation(s)
- Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avishai Gavish
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
225
|
Azami T, Waku T, Matsumoto K, Jeon H, Muratani M, Kawashima A, Yanagisawa J, Manabe I, Nagai R, Kunath T, Nakamura T, Kurimoto K, Saitou M, Takahashi S, Ema M. Klf5 maintains the balance of primitive endoderm to epiblast specification during mouse embryonic development by suppression of Fgf4. Development 2017; 144:3706-3718. [DOI: 10.1242/dev.150755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022]
Abstract
The inner cell mass of the mouse blastocyst gives rise to the pluripotent epiblast (EPI), which forms the embryo proper, and the primitive endoderm (PrE), which forms extra-embryonic yolk sac tissues. All inner cells co-express lineage markers such as Nanog and Gata6 at embryonic day (E) 3.25, and the EPI and PrE precursor cells eventually segregate to exclusively express Nanog and Gata6, respectively. Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signalling is involved in segregation of the EPI and PrE lineages; however, the mechanism involved in Fgf4-regulation is poorly understood. Here, we identified Klf5 as an upstream repressor of Fgf4. While Fgf4 was markedly upregulated in Klf5 knockout (KO) embryos at E3.0, it was downregulated in embryos overexpressing Klf5. Furthermore, Klf5 KO and overexpressing blastocysts showed skewed lineage specification phenotypes, similar to FGF4-treated preimplantation embryos and Fgf4 KO embryos, respectively. Inhibitors of the FGF receptor and ERK pathways reversed the skewed lineage specification of Klf5 KO blastocysts. These data demonstrate that Klf5 suppresses Fgf4-Fgfr-ERK signalling, thus preventing precocious activation of the PrE specification programme.
Collapse
Affiliation(s)
- Takuya Azami
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kawashima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jun Yanagisawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo 113-8655, Japan
| | - Ryozo Nagai
- Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine, Life Science Center, and Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
226
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
227
|
White MD, Zenker J, Bissiere S, Plachta N. How cells change shape and position in the early mammalian embryo. Curr Opin Cell Biol 2016; 44:7-13. [PMID: 28033492 DOI: 10.1016/j.ceb.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
During preimplantation development, cells of the mammalian embryo must resolve their shape and position to ensure the future viability of the fetus. These initial changes are established as the embryo expands from one to thirty-two cells, and a group of originally spherical cells is transformed into a more polarized structure with distinct cell geometries and lineages. Recent advances in the application of non-invasive imaging technologies have enabled the discovery of mechanisms regulating patterning of the early mammalian embryo. Here, we review recent findings revealing cell protrusions that trigger early changes in cell shape and embryo compaction, and how anisotropies in mechanical forces drive the first spatial segregation of cells in the embryo to form the pluripotent inner mass.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jennifer Zenker
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
228
|
Brickman JM, Serup P. Properties of embryoid bodies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911036 DOI: 10.1002/wdev.259] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Embryoid bodies (EBs) have been popular in vitro differentiation models for pluripotent stem cells for more than five decades. Initially, defined as aggregates formed by embryonal carcinoma cells, EBs gained more prominence after the derivation of karyotypically normal embryonic stem cells from early mouse blastocysts. In many cases, formation of EBs constitutes an important initial step in directed differentiation protocols aimed at generated specific cell types from undifferentiated stem cells. Indeed state-of-the-art protocols for directed differentiation of cardiomyocytes still rely on this initial EB step. Analyses of spontaneous differentiation of embryonic stem cells in EBs have yielded important insights into the molecules that direct primitive endoderm differentiation and many of the lessons we have learned about the signals and transcription factors governing this differentiation event is owed to EB models, which later were extensively validated in studies of early mouse embryos. EBs show a degree of self-organization that mimics some aspects of early embryonic development, but with important exceptions. Recent studies that employ modern signaling reporters and tracers of lineage commitment have revealed both the strengths and the weaknesses of EBs as a model of embryonic axis formation. In this review, we discuss the history, application, and future potential of EBs as an experimental model. WIREs Dev Biol 2017, 6:e259. doi: 10.1002/wdev.259 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joshua M Brickman
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Serup
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
229
|
FGF treatment of host embryos injected with ES cells increases rates of chimaerism. Transgenic Res 2016; 26:237-246. [PMID: 27873161 PMCID: PMC5350236 DOI: 10.1007/s11248-016-9997-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022]
Abstract
In spite of the emergence of genome editing tools, ES cell mediated transgenesis remains the most controllable way of creating genetically modified animals. Although tetraploid (4N) complementation of 4N host embryos and ES cells, is the only method guaranteeing that offspring are entirely ES cell derived, this technique is challenging, not always successful and difficult to implement in some laboratory settings. The current study shows that pretreatment of host blastocysts with FGF4 prior to ES cell injection can provide an alternative method for the generation of animals displaying high rates of chimaerism. Chimaerism assessment in E11 fetuses and born pups shows that a large percentage of resulting conceptuses show a high ES cell contribution from implantation onwards and that developing pups do not necessitate c-section for delivery.
Collapse
|
230
|
Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst. Nat Commun 2016; 7:13463. [PMID: 27857135 PMCID: PMC5120222 DOI: 10.1038/ncomms13463] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023] Open
Abstract
Intercellular communication is essential to coordinate the behaviour of individual cells during organismal development. The preimplantation mammalian embryo is a paradigm of tissue self-organization and regulative development; however, the cellular basis of these regulative abilities has not been established. Here we use a quantitative image analysis pipeline to undertake a high-resolution, single-cell level analysis of lineage specification in the inner cell mass (ICM) of the mouse blastocyst. We show that a consistent ratio of epiblast and primitive endoderm lineages is achieved through incremental allocation of cells from a common progenitor pool, and that the lineage composition of the ICM is conserved regardless of its size. Furthermore, timed modulation of the FGF-MAPK pathway shows that individual progenitors commit to either fate asynchronously during blastocyst development. These data indicate that such incremental lineage allocation provides the basis for a tissue size control mechanism that ensures the generation of lineages of appropriate size. Early embryonic cell fate and lineage specification is tightly regulated in the preimplantation mammalian embryo. Here, the authors quantitatively examine the ratio of epiblast to primitive endoderm lineages in the blastocyst and show composition of the inner cell mass is conserved, independent of its size.
Collapse
|
231
|
Wu BJ, Zhao LX, Zhu CC, Chen YL, Wei MY, Bao SQ, Sun SC, Li XH. Altered apoptosis/autophagy and epigenetic modifications cause the impaired postimplantation octaploid embryonic development in mice. Cell Cycle 2016; 16:82-90. [PMID: 27830977 DOI: 10.1080/15384101.2016.1252884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polyploids are pervasive in plants and have large impacts on crop breeding, but natural polyploids are rare in animals. Mouse diploid embryos can be induced to become tetraploid by blastomere fusion at the 2-cell stage and tetraploid embryos can develop to the blastocyst stage in vitro. However, there is little information regarding mouse octaploid embryonic development and precise mechanisms contributing to octaploid embryonic developmental limitations are unknown. To investigate the genetic and epigenetic mechanisms underlying octaploid embryonic development, we generated mouse octaploid embryos and evaluated the in vitro/in vivo developmental potential. Here we show that octaploid embryos can develop to the blastocyst stage in vitro, but all fetus impaired immediately after implantation. Our results indicate that cell lineage specification of octaploid embryo was disorganized. Furthermore, these octaploid embryos showed increased apoptosis as well as alterations in epigenetic modifications when compared with diploid embryos. Thus, our cumulative data provide cues for why mouse octaploid embryonic development is limited and its failed postimplantation development.
Collapse
Affiliation(s)
- Bao-Jiang Wu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China.,b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Li-Xia Zhao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Cheng-Cheng Zhu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Yang-Lin Chen
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Meng-Yi Wei
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Si-Qin Bao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xi-He Li
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| |
Collapse
|
232
|
Illingworth RS, Hölzenspies JJ, Roske FV, Bickmore WA, Brickman JM. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. eLife 2016; 5. [PMID: 27723457 PMCID: PMC5056788 DOI: 10.7554/elife.14926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene's developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision.
Collapse
Affiliation(s)
- Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jurriaan J Hölzenspies
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark.,MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, Univeristy of Edinburgh, Edinburgh, United Kingdom
| | - Fabian V Roske
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua M Brickman
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark.,MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, Univeristy of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
233
|
Sozen B, Pehlivanoglu S, Demir N. Differential expression pattern of Twist1 in mouse preimplantation embryos suggests its multiple roles during early development. J Assist Reprod Genet 2016; 33:1533-1540. [PMID: 27544279 DOI: 10.1007/s10815-016-0794-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of the present study is to understand Twist-related protein 1 (Twist1) spatiotemporal expression patterns and functions during early embryo development. METHODS We performed whole-mount double immunofluorescence staining and reverse transcription (RT)-PCR analysis of the Twist1 protein and gene throughout the preimplantation development in mice. RESULTS We determined that after compaction, the expression of Twist1 becomes developmentally differentiated and targeted in the inner cells of embryos. In blastocysts at E4.5, uniform staining of the inner cell mass was apparent, and it had been gradually translocated to the nucleus of hatched embryonic cells at E4.75. Furthermore, the effect of potential regulators of Twist on its expression level during blastocyst development was also sought. Accordingly, Twist1 expression appeared to be upregulated in both mRNA and protein level following culture of embryos in the presence of high glucose. CONCLUSIONS Our study revealed the dynamic Twist localization within the early stage of embryo. The results are discussed in terms of potential roles of Twist1 in the processes of lineage segregation, hatching, and implantation in post-compaction embryos and in blastocysts.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey.
| |
Collapse
|
234
|
Stumpf PS, Ewing R, MacArthur BD. Single-cell pluripotency regulatory networks. Proteomics 2016; 16:2303-12. [PMID: 27357612 DOI: 10.1002/pmic.201500528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a popular model system for investigating development, tissue regeneration, and repair. Although much is known about the molecular mechanisms that regulate the balance between self-renewal and lineage commitment in PSCs, the spatiotemporal integration of responsive signaling pathways with core transcriptional regulatory networks are complex and only partially understood. Moreover, measurements made on populations of cells reveal only average properties of the underlying regulatory networks, obscuring their fine detail. Here, we discuss the reconstruction of regulatory networks in individual cells using novel single-cell transcriptomics and proteomics, in order to expand our understanding of the molecular basis of pluripotency, including the role of cell-cell variability within PSC populations, and ways in which networks may be controlled in order to reliably manipulate cell behavior.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rob Ewing
- Institute for Life Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Department of Mathematics, University of Southampton, Southampton, UK.
| |
Collapse
|
235
|
Sakurai N, Takahashi K, Emura N, Fujii T, Hirayama H, Kageyama S, Hashizume T, Sawai K. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Cell Reprogram 2016; 18:309-318. [PMID: 27500421 DOI: 10.1089/cell.2015.0081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functions of POU class 5 transcription factor 1 (Oct-4) and caudal-type homeobox 2 (Cdx2) in the differentiation of the murine inner cell mass (ICM) and trophectoderm (TE) have been described in detail. However, little is known about the roles of OCT-4 and CDX2 in preimplantation bovine embryos. To elucidate their functions during early development in bovine embryos, we performed OCT-4 and CDX2 downregulation using RNA interference. We injected OCT-4- or CDX2-specific short interfering RNAs (siRNAs) into bovine zygotes. The rate of blastocyst development of OCT-4-downregulated embryos was lower compared with uninjected or control siRNA-injected embryos. Gene expression analysis revealed decreased CDX2 and fibroblast growth factor 4 expression in OCT-4-downregulated embryos. CDX2-downregulated embryos developed to the blastocyst stage; however, in most cases, blastocoel formation was delayed. Gene expression analysis revealed decreased GATA3 expression and elevated NANOG expression in CDX2-downregulated embryos. In conclusion, OCT-4 and CDX2 are essential for early development and gene expression involved in differentiation of ICM and TE lineages in bovine embryos.
Collapse
Affiliation(s)
- Nobuyuki Sakurai
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan
| | - Kazuki Takahashi
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan
| | - Natsuko Emura
- 2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Takashi Fujii
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Hiroki Hirayama
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Soichi Kageyama
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Tsutomu Hashizume
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan .,2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Ken Sawai
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan .,2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| |
Collapse
|
236
|
Li LY, Li MM, Yang SF, Zhang J, Li Z, Zhang H, Zhu L, Zhu X, Verma V, Liu Q, Shi D, Huang B. Inhibition of FGF Signalling Pathway Augments the Expression of Pluripotency and Trophoblast Lineage Marker Genes in Porcine Parthenogenetic Blastocyst. Reprod Domest Anim 2016; 51:649-56. [DOI: 10.1111/rda.12725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- LY Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - MM Li
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - SF Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - J Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - H Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - L Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - X Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - V Verma
- Centre of Biotechnology; Nehru Science Centre; University of Allahabad; Allahabad India
| | - Q Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| |
Collapse
|
237
|
Humięcka M, Krupa M, Guzewska MM, Maleszewski M, Suwińska A. ESCs injected into the 8-cell stage mouse embryo modify pattern of cleavage and cell lineage specification. Mech Dev 2016; 141:40-50. [PMID: 27345419 DOI: 10.1016/j.mod.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
During mouse embryogenesis initial specification of the cell fates depends on the type of division during 8- to 16- and 16- to 32-cell stage transition. A conservative division of a blastomere creates two polar outer daughter cells, which are precursors of the trophectoderm (TE), whereas a differentiative division gives rise to a polar outer cell and an apolar inner (the presumptive inner cell mass - ICM) cell. We hypothesize that the type of division may depend on the interactions between blastomeres of the embryo. To investigate whether modification of these interactions influences divisions, we analyzed the pattern of blastomere division and cell lineage specification in chimeric embryos obtained by injection of a different number of mouse embryonic stem cells (ESCs) into 8-cell embryos. As the ESCs populate only the ICM of the resulting chimeric blastocysts, they emulated in our model additional inner cells. We found that introduction of ESCs decreased the number of inner, apolar blastomeres at the 8- to 16-cell stage transition and reduced the number of ICM cells of host embryo-origin during formation of the blastocyst. Moreover, we showed that the proportion of inner blastomeres and their fate (EPI or PE) in chimeric blastocysts was dependent on the number of ESCs injected. Our results suggest the existence of a regulative mechanism, which links number of inner cells with a proportion of conservative vs. differentiative blastomere divisions during the cleavage and thus dictates their developmental fate.
Collapse
Affiliation(s)
- Monika Humięcka
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Krupa
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria M Guzewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Aneta Suwińska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
238
|
Vrij E, Rouwkema J, LaPointe V, van Blitterswijk C, Truckenmüller R, Rivron N. Directed Assembly and Development of Material-Free Tissues with Complex Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4032-4039. [PMID: 27000493 DOI: 10.1002/adma.201505723] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Material-free tissues are assembled using solely cells. Microstructured hydrogel templates and high content screening allow the formation of centimeter-scale tissues with precise architectures. Similar to developing tissues, these contract autonomously, controllably shift shape, self-scaffold by secreting extracellular matrix, and undergo morphogenesis.
Collapse
Affiliation(s)
- Erik Vrij
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherland
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Vanessa LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherland
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherland
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherland
| | - Nicolas Rivron
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherland
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| |
Collapse
|
239
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
240
|
Lokken AA, Ralston A. The Genetic Regulation of Cell Fate During Preimplantation Mouse Development. Curr Top Dev Biol 2016; 120:173-202. [PMID: 27475852 DOI: 10.1016/bs.ctdb.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adult body is estimated to contain several hundred distinct cell types, each with a specialized physiological function. Failure to maintain cell fate can lead to devastating diseases and cancer, but understanding how cell fates are assigned and maintained during animal development provides new opportunities for human health intervention. The mouse is a premier model for evaluating the genetic regulation of cell fate during development because of the wide variety of tools for measuring and manipulating gene expression levels, the ability to access embryos at desired developmental stages, and the similarities between mouse and human development, particularly during the early stages of development. During the first 3 days of mouse development, the preimplantation embryo sets aside cells that will contribute to the extraembryonic tissues. The extraembryonic tissues are essential for establishing pregnancy and ensuring normal fetal development in both mice and humans. Genetic analyses of mouse preimplantation development have permitted identification of genes that are essential for specification of the extraembryonic lineages. In this chapter, we review the tools and concepts of mouse preimplantation development. We describe genes that are essential for cell fate specification during preimplantation stages, and we describe diverse models proposed to account for the mechanisms of cell fate specification during early development.
Collapse
Affiliation(s)
- A A Lokken
- Michigan State University, East Lansing, MI, United States
| | - A Ralston
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
241
|
Pfeuty B, Kaneko K. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition. Phys Biol 2016; 13:026007. [PMID: 27172110 DOI: 10.1088/1478-3975/13/2/026007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.
Collapse
Affiliation(s)
- B Pfeuty
- Université de Lille, CNRS, Laboratoire de Physique des Lasers, Atomes, et Molécules, F-59000, Lille, France
| | | |
Collapse
|
242
|
Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016; 165:1012-26. [PMID: 27062923 PMCID: PMC4868821 DOI: 10.1016/j.cell.2016.03.023] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research. Transcriptomes of 1,529 individual cells from 88 human preimplantation embryos Lineage segregation of trophectoderm, primitive endoderm, and pluripotent epiblast X chromosome dosage compensation in the human blastocyst
Collapse
|
243
|
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development 2016; 143:1063-74. [DOI: 10.1242/dev.128314] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During mouse preimplantation embryo development, totipotent blastomeres generate the first three cell lineages of the embryo: trophectoderm, epiblast and primitive endoderm. In recent years, studies have shown that this process appears to be regulated by differences in cell-cell interactions, gene expression and the microenvironment of individual cells, rather than the active partitioning of maternal determinants. Precisely how these differences first emerge and how they dictate subsequent molecular and cellular behaviours are key questions in the field. As we review here, recent advances in live imaging, computational modelling and single-cell transcriptome analyses are providing new insights into these questions.
Collapse
Affiliation(s)
- Claire Chazaud
- Université Clermont Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, 1160 Pine Avenue West, rm419, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
244
|
Donate-Correa J, Martín-Núñez E, Delgado NP, de Fuentes MM, Arduan AO, Mora-Fernández C, Navarro González JF. Implications of Fibroblast growth factor/Klotho system in glucose metabolism and diabetes. Cytokine Growth Factor Rev 2016; 28:71-77. [PMID: 26706229 DOI: 10.1016/j.cytogfr.2015.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus, especially type 2 diabetes, remains the dominant metabolic disease worldwide, with an expected increase in prevalence of over 50% in the next 20 years. Our knowledge about the pathophysiology of type 2 diabetes continues to be incomplete, with unmet medical need for new therapies. The characterization of the fibroblast growth factor (FGF) family and the discovery of endocrine FGFs provided new information on the mechanisms of regulation and homeostasis of carbohydrate metabolism. More specifically, FGF19 and FGF21 signaling pathways have been linked to different glucose metabolic processes, including hepatic glucose synthesis, glycogen synthesis, glucose uptake, and insulin sensitivity, among others, and these molecules have been further related to the pathophysiology of diabetes mellitus. In-depth comprehension of these growth factors may bring to light new potential therapeutic targets for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Nayra Pérez Delgado
- Clinical Analysis Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Mercedes Muros de Fuentes
- Clinical Analysis Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz Arduan
- IIS-Fundacion Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo-IRSIN and REDinREN, Madrid, Spain; Department of Nephrology, Fundación Jiménez Díaz, Madrid, Spain
| | - Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro González
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Nephrology Service, University Hospital Nuestra Señora de Candelaria, REDinREN, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
245
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
246
|
Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A, Hupalowska A, Voet T, Marioni JC, Zernicka-Goetz M. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos. Cell 2016; 165:61-74. [PMID: 27015307 PMCID: PMC4819611 DOI: 10.1016/j.cell.2016.01.047] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/10/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation.
Collapse
Affiliation(s)
- Mubeen Goolam
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Antonio Scialdone
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah J L Graham
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Agnieszka Jedrusik
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Anna Hupalowska
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - John C Marioni
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Cancer Research UK-Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
247
|
Rizzino A, Wuebben EL. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:780-91. [PMID: 26992828 DOI: 10.1016/j.bbagrm.2016.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
Considerable progress has been made in understanding the roles of Sox2 and Oct4 in embryonic stem cells and mammalian embryogenesis. Specifically, significant progress has been made in answering three questions about the functions of Sox2 and Oct4, which are the focus of this review. 1) Are the first or second cell lineage decisions during embryogenesis controlled by Oct4 and/or Sox2? 2) Do the levels of Oct4 and Sox2 need to be maintained within narrow limits to promote normal development and to sustain the self-renewal of pluripotent stem cells? 3) Do Oct4 and Sox2 work closely together or is the primary role of Sox2 in pluripotent cells to ensure the expression of Oct4? Although significant progress has been made in answering these questions, additional studies are needed to resolve several important remaining issues. Nonetheless, the preponderance of the evidence suggests there is considerable crosstalk between Sox2 and Oct4, and further suggests Sox2 and Oct4 function as molecular rheostats and utilize negative feedback loops to carefully balance their expression and other critical genes during embryogenesis. This article is part of a Special Issue entitled: The Oct transcription factor family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States.
| | - Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| |
Collapse
|
248
|
Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, Bai Y, Han X, Kim H, He Q, Wan M, Shi FT, Feng XH, Liu D, Huang J, Songyang Z. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells 2016; 33:1782-93. [PMID: 25802002 DOI: 10.1002/stem.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Actl6a (actin-like protein 6A, also known as Baf53a or Arp4) is a subunit shared by multiple complexes including esBAF, INO80, and Tip60-p400, whose main components (Brg1, Ino80, and p400, respectively) are crucial for the maintenance of embryonic stem cells (ESCs). However, whether and how Actl6a functions in ESCs has not been investigated. ESCs originate from the epiblast (EPI) that is derived from the inner cell mass (ICM) in blastocysts, which also give rise to primitive endoderm (PrE). The molecular mechanisms for EPI/PrE specification remain unclear. In this study, we provide the first evidence that Actl6a can protect mouse ESCs (mESCs) from differentiating into PrE. While RNAi knockdown of Actl6a, which appeared highly expressed in mESCs and downregulated during differentiation, induced mESCs to differentiate towards the PrE lineage, ectopic expression of Actl6a was able to repress PrE differentiation. Our work also revealed that Actl6a could interact with Nanog and Sox2 and promote Nanog binding to pluripotency genes such as Oct4 and Sox2. Interestingly, cells depleted of p400, but not of Brg1 or Ino80, displayed similar PrE differentiation patterns. Mutant Actl6a with impaired ability to bind Tip60 and p400 failed to block PrE differentiation induced by Actl6a dysfunction. Finally, we showed that Actl6a could target to the promoters of key PrE regulators (e.g., Sall4 and Fgf4), repressing their expression and inhibiting PrE differentiation. Our findings uncover a novel function of Actl6a in mESCs, where it acts as a gatekeeper to prevent mESCs from entering into the PrE lineage through a Yin/Yang regulating pattern.
Collapse
Affiliation(s)
- Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lekun Fang
- Guangdong Gastroenterology Institute, Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Urology, The First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoquan Zhan
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaofu Bai
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ma Wan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng-Tao Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
249
|
Bessonnard S, Gonze D, Dupont G. [Epiblast and primitive endoderm cell specification during mouse preimplantation development: a combination between biology and mathematical modeling]. Med Sci (Paris) 2016; 32:192-7. [PMID: 26936177 DOI: 10.1051/medsci/20163202013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upon its implantation in the uterus of the mother in mammals, the embryo is composed by three morphologically distinct tissues: the Epiblast (Epi), the Trophectoderm (TE) and the Primitive Endoderm (PrE). Both Epi and PrE are formed from the same cell homogeneous population called the Inner Cell Mass (ICM). Based on our studies, we discuss in this review what molecular interactions are necessary for the specification of these two lineages. For this, we have combined a biological approach with mathematical modeling. We have shown the central role of the gene regulation group composed by NANOG, FGF4, GATA6 and FGFR2 for Epi/PrE cell specification.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- GReD, Inserm U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, BP38, 63001 Clermont-Ferrand Cedex, France
| | - Didier Gonze
- Unité de chronobiologie théorique, faculté des Sciences, université libre de Bruxelles (ULB), campus Plaine, CP 231, B-1050 Bruxelles, Belgique
| | - Geneviève Dupont
- Unité de chronobiologie théorique, faculté des Sciences, université libre de Bruxelles (ULB), campus Plaine, CP 231, B-1050 Bruxelles, Belgique
| |
Collapse
|
250
|
Parenti A, Halbisen MA, Wang K, Latham K, Ralston A. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:447-455. [PMID: 26947975 PMCID: PMC4834035 DOI: 10.1016/j.stemcr.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023] Open
Abstract
The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming.
Collapse
Affiliation(s)
- Anthony Parenti
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael A Halbisen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kai Wang
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Keith Latham
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|