201
|
Jungbluth S, Bell E, Lumsden A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 1999; 126:2751-8. [PMID: 10331985 DOI: 10.1242/dev.126.12.2751] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes have been implicated in specifying positional values along the anteroposterior axis of the caudal central nervous system, but their nested and overlapping expression has complicated the understanding of how they confer specific neural identity. We have employed a direct gain-of-function approach using retroviral vectors to misexpress Hoxa2 and Hoxb1 outside of the normal Hox expression domains, thereby avoiding complications resulting from possible interactions with endogenous Hox genes. Misexpression of either Hoxa2 or Hoxb1 in the anteriormost hindbrain (rhombomere1, r1) leads to the generation of motor neurons in this territory, even though it is normally devoid of this cell type. These ectopic neurons have the specific identity of branchiomotor neurons and, in the case of Hoxb1-induced cells, their axons leave the hindbrain either by fasciculating with the resident cranial motor axons at isthmic (trochlear) or r2 (trigeminal) levels of the axis or via novel ectopic exit points in r1. Next, we have attempted to identify the precise branchiomotor subtypes that are generated after misexpression and our results suggest that the ectopic motor neurons generated following Hoxa2 misexpression are trigeminal-like, while those generated following Hoxb1 misexpression are facial-like. Our data demonstrate, therefore, that at least to a certain extent and for certain cell types, the singular activities of individual Hox genes (compared to a combinatorial mode of action, for example) are sufficient to impose on neuronal precursor cells the competence to generate distinctly specified cell types. Moreover, as these particular motor neuron subtypes are normally generated in the most anterior domains of Hoxa2 and Hoxb1 expression, respectively, our data support the idea that the main site of individual Hox gene action is in the anteriormost subdomain of their expression, consistent with the phenomenon of posterior dominance.
Collapse
Affiliation(s)
- S Jungbluth
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Campus, London SE1 9RT, UK
| | | | | |
Collapse
|
202
|
Abstract
The three divisions of the ear (outer, middle and inner) each have an important role in hearing, while the inner ear is also crucial for the sense of balance. How these three major components arise and coalesce to form the peripheral elements of the senses of hearing and balance is now being studied using molecular-genetic approaches. This article summarizes data from studies of knockout and mutant animals in which one or more divisions of the ear are abnormal. The data confirm that development of all three divisions of the ear depends on the genes involved in hindbrain segmentation and segment identity. Genes that are regionally expressed in the inner ear can, when absent or mutated, yield selective ablation of specific inner-ear structures or cell types.
Collapse
Affiliation(s)
- D M Fekete
- Dept of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
203
|
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999; 151:1531-45. [PMID: 10101175 PMCID: PMC1460548 DOI: 10.1093/genetics/151.4.1531] [Citation(s) in RCA: 2545] [Impact Index Per Article: 97.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation. Sidow 1996(p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene. Walsh 1995 (p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely. Nadeau and Sankoff 1997 (p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself. Cooke et al. 1997 (p. 362)
Collapse
Affiliation(s)
- A Force
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Brunschwig K, Wittmann C, Schnabel R, Bürglin TR, Tobler H, Müller F. Anterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13. Development 1999; 126:1537-46. [PMID: 10068646 DOI: 10.1242/dev.126.7.1537] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans lin-39, mab-5 and egl-5 Hox genes specify cell fates along the anterior-posterior body axis of the nematode during postembryonic development, but little is known about Hox gene functions during embryogenesis. Here, we show that the C. elegans labial-like gene ceh-13 is expressed in cells of many different tissues and lineages and that the rostral boundary of its expression domain is anterior to those of the other Hox genes. By transposon-mediated mutagenesis, we isolated a zygotic recessive ceh-13 loss-of-function allele, sw1, that exhibits an embryonic sublethal phenotype. Lineage analyses and immunostainings revealed defects in the organization of the anterior lateral epidermis and anterior body wall muscle cells. The epidermal and mesodermal identity of these cells, however, is correctly specified. ceh-13(sw1) mutant embryos also show fusion and adhesion defects in ectodermal cells. This suggests that ceh-13 plays a role in the anterior organization of the C. elegans embryo and is involved in the regulation of cell affinities.
Collapse
Affiliation(s)
- K Brunschwig
- Institute of Zoology, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
205
|
Davenne M, Maconochie MK, Neun R, Pattyn A, Chambon P, Krumlauf R, Rijli FM. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 1999; 22:677-91. [PMID: 10230789 DOI: 10.1016/s0896-6273(00)80728-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.
Collapse
Affiliation(s)
- M Davenne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Collège de France, Strasbourg
| | | | | | | | | | | | | |
Collapse
|
206
|
Maconochie M, Krishnamurthy R, Nonchev S, Meier P, Manzanares M, Mitchell PJ, Krumlauf R. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126:1483-94. [PMID: 10068641 DOI: 10.1242/dev.126.7.1483] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hoxa2 is expressed in cranial neural crest cells that migrate into the second branchial arch and is essential for proper patterning of neural-crest-derived structures in this region. We have used transgenic analysis to begin to address the regulatory mechanisms which underlie neural-crest-specific expression of Hoxa2. By performing a deletion analysis on an enhancer from the Hoxa2 gene that is capable of mediating expression in neural crest cells in a manner similar to the endogenous gene, we demonstrated that multiple cis-acting elements are required for neural-crest-specific activity. One of these elements consists of a sequence that binds to the three transcription factor AP-2 family members. Mutation or deletion of this site in the Hoxa2 enhancer abrogates reporter expression in cranial neural crest cells but not in the hindbrain. In both cell culture co-transfection assays and transgenic embryos AP-2 family members are able to trans-activate reporter expression, showing that this enhancer functions as an AP-2-responsive element in vivo. Reporter expression is not abolished in an AP-2(alpha) null mutant embryos, suggesting redundancy with other AP-2 family members for activation of the Hoxa2 enhancer. Other cis-elements identified in this study critical for neural-crest-specific expression include an element that influences levels of expression and a conserved sequence, which when multimerized directs expression in a broad subset of neural crest cells. These elements work together to co-ordinate and restrict neural crest expression to the second branchial arch and more posterior regions. Our findings have identified the cis-components that allow Hoxa2 to be regulated independently in rhombomeres and cranial neural crest cells.
Collapse
Affiliation(s)
- M Maconochie
- Laboratory of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | |
Collapse
|
207
|
Buckiová D, Brown NA. Mechanism of hyperthermia effects on CNS development: rostral gene expression domains remain, despite severe head truncation; and the hindbrain/otocyst relationship is altered. TERATOLOGY 1999; 59:139-47. [PMID: 10194804 DOI: 10.1002/(sici)1096-9926(199903)59:3<139::aid-tera5>3.0.co;2-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study the mechanism of hyperthermia on the development of the rostral neural tube, we used a model in which closely-staged presomite 9.5-day rat embryos were exposed in culture to 43 degrees C for 13 min, and then cultured further for 12-48 hr. This treatment had little effect on the development of the rest of the embryo, but resulted in a spectrum of brain defects, the most severe being a lack of all forebrain and midbrain structures. Whole-mount in situ hybridisation was used to monitor the expression domains of Otx2, Emx2, Krox20, and hoxb1. These showed that there were no ectopic expression patterns, for any gene at any stage examined. Even in those embryos which apparently lacked all forebrain and midbrain structures, there were expression domains of Otx2 and Emx2 in the most rostral neural tissue, and these retained their nested dorso-ventral boundaries, showing that cells fated to form rostral brain were not wholly eliminated. Thus, heat-induced rostral neural tube truncation is of a quite different mechanism from the respecification proposed for retinoic acid, despite their very similar phenotypes. In the hindbrain region of treated embryos, we observed decreased intensity of Krox20, staining and an abnormal relationship developed between the position of hoxb1 expression and the otocyst and pharyngeal arches. In the most extreme cases, this domain was shifted to be more caudal than the rostral edge of the otocyst, while the otocyst retained its normal position relative to the pharyngeal arches. We interpret this as a growth imbalance between neuroepithelium and overlying tissues, perhaps due to a disruption of signals from the midbrain/hindbrain boundary.
Collapse
Affiliation(s)
- D Buckiová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague.
| | | |
Collapse
|
208
|
Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R. Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 1999; 126:759-69. [PMID: 9895323 DOI: 10.1242/dev.126.4.759] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During anteroposterior patterning of the developing hindbrain, the anterior expression of 3′ Hox genes maps to distinct rhombomeric boundaries and, in many cases, is upregulated in specific segments. Paralogous genes frequently have similar anterior boundaries of expression but it is not known if these are controlled by common mechanisms. The expression of the paralogous Hoxa3 and Hoxb3 genes extends from the posterior spinal cord up to the rhombomere (r) 4/5 boundary and both genes are upregulated specifically in r5. However, in this study, we have found that Hoxa3 expression is also upregulated in r6, showing that there are differences in segmental expression between paralogues. We have used transgenic analysis to investigate the mechanisms underlying the pattern of segmental expression of Hoxa3. We found that the intergenic region between Hoxa3 and Hoxa4 contains several enhancers, which summed together mediate a pattern of expression closely resembling that of the endogenous Hoxa3 gene. One enhancer specifically directs expression in r5 and r6, in a manner that reflects the upregulation of the endogenous gene in these segments. Deletion analysis localized this activity to a 600 bp fragment that was found to contain a single high-affinity binding site for the Maf bZIP protein Krml1, encoded by the kreisler gene. This site is necessary for enhancer activity and when multimerized it is sufficient to direct a kreisler-like pattern in transgenic embryos. Furthermore the r5/r6 enhancer activity is dependent upon endogenous kreisler and is activated by ectopic kreisler expression. This demonstrates that Hoxa3, along with its paralog Hoxb3, is a direct target of kreisler in the mouse hindbrain. Comparisons between the Krml1-binding sites in the Hoxa3 and Hoxb3 enhancers reveal that there are differences in both the number of binding sites and way that kreisler activity is integrated and restricted by these two control regions. Analysis of the individual sites revealed that they have different requirements for mediating r5/r6 and dorsal roof plate expression. Therefore, the restriction of Hoxb3 to r5 and Hoxa3 to r5 and r6, together with expression patterns of Hoxb3 in other vertebrate species suggests that these regulatory elements have a common origin but have later diverged during vertebrate evolution.
Collapse
Affiliation(s)
- M Manzanares
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
209
|
Krezel W, Kastner P, Chambon P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 1999; 89:1291-300. [PMID: 10362315 DOI: 10.1016/s0306-4522(98)00342-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The immunocytochemical distribution of retinoid receptors has been analysed in the mouse adult central nervous system. All retinoic acid receptors (alpha, beta and gamma) and retinoid X receptors (alpha, beta and gamma) were detected and found to exhibit specific patterns of expression in various areas of the telencephalon, diencephalon and rhombencephalon. The protein localization of several retinoic acid receptors and retinoid X receptors did not correlate with the distribution of the corresponding RNA transcripts, as studied by in situ hybridization and RNase protection assays. This suggests that the expression of retinoid receptors could be post-transcriptionally regulated, which may contribute to their specific localization in the adult nervous system.
Collapse
Affiliation(s)
- W Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP-Collège de France, Illkirch
| | | | | |
Collapse
|
210
|
Helmbacher F, Pujades C, Desmarquet C, Frain M, Rijli FM, Chambon P, Charnay P. Hoxa1 and Krox-20 synergize to control the development of rhombomere 3. Development 1998; 125:4739-48. [PMID: 9806922 DOI: 10.1242/dev.125.23.4739] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor genes Hoxa1 and Krox-20 have been shown to play important roles in vertebrate hindbrain segmentation. In this report, we present evidence for novel functions of these genes which co-operate in specifying cellular identity in rhombomere (r) 3. Although Hoxa1 has not been observed to be expressed rostrally to the prospective r3/r4 boundary, its inactivation results in (i) the appearance of patches of cells presenting an r2-like molecular identity within r3, (ii) early neuronal differentiation in r3, normally characteristic of even-numbered rhombomeres, and (iii) abnormal navigation of r3 motor axons, similar to that observed in even-numbered rhombomeres. These phenotypic manifestations become more severe in the context of the additional inactivation of one allele of the Krox-20 gene, demonstrating that Hoxa1 and Krox-20 synergize in a dosage-dependent manner to specify r3 identity and odd- versus even-numbered rhombomere characters. In addition, these data suggest that the control of the development of r3 may not be autonomous but dependent on interactions with Hoxa1-expressing cells.
Collapse
Affiliation(s)
- F Helmbacher
- Unité 368 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
211
|
White JC, Shankar VN, Highland M, Epstein ML, DeLuca HF, Clagett-Dame M. Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc Natl Acad Sci U S A 1998; 95:13459-64. [PMID: 9811822 PMCID: PMC24841 DOI: 10.1073/pnas.95.23.13459] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin A is required for reproduction and normal embryonic development. We have determined that all-trans-retinoic acid (atRA) can support development of the mammalian embryo to parturition in vitamin A-deficient (VAD) rats. At embryonic day (E) 0.5, VAD dams were fed purified diets containing either 12 micrograms of atRA per g of diet (230 micrograms per rat per day) or 250 micrograms of atRA per g of diet (4.5 mg per rat per day) or were fed the purified diet supplemented with a source of retinol (100 units of retinyl palmitate per day). An additional group was fed both 250 micrograms of atRA per g of diet in combination with retinyl palmitate. Embryonic survival to E12.5 was similar for all groups. However, embryonic development in the group fed 12 micrograms of atRA per g of diet was grossly abnormal. The most notable defects were in the region of the hindbrain, which included a loss of posterior cranial nerves (IX, X, XI, and XII) and postotic pharyngeal arches as well as the presence of ectopic otic vesicles and a swollen anterior cardinal vein. All embryonic abnormalities at E12.5 were prevented by feeding pharmacological amounts of atRA (250 micrograms/g diet) or by supplementation with retinyl palmitate. Embryos from VAD dams receiving 12 micrograms of atRA per g of diet were resorbed by E18.5, whereas those in the group fed 250 micrograms of atRA per g of diet survived to parturition but died shortly thereafter. Equivalent results were obtained by using commercial grade atRA or atRA that had been purified to eliminate any potential contamination by neutral retinoids, such as retinol. Thus, 250 micrograms of atRA per g of diet fed to VAD dams (approximately 4.5 mg per rat per day) can prevent the death of embryos at midgestation and prevents the early embryonic abnormalities that arise when VAD dams are fed insufficient amounts of atRA.
Collapse
Affiliation(s)
- J C White
- School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
212
|
Fritzsch B, Beisel K. Development and maintenance of ear innervation and function: lessons from mutations in mouse and man. Am J Hum Genet 1998; 63:1263-70. [PMID: 9792853 PMCID: PMC1377536 DOI: 10.1086/302126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- B Fritzsch
- Department of Biomedical Sciences, Creigton University, Omaha, NE 68178, USA.
| | | |
Collapse
|
213
|
Schneider-Maunoury S, Gilardi-Hebenstreit P, Charnay P. How to build a vertebrate hindbrain. Lessons from genetics. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:819-34. [PMID: 9835019 DOI: 10.1016/s0764-4469(99)80022-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
During vertebrate embryogenesis, the hindbrain is the site of a segmentation process which leads to the formation, along the anterior-posterior axis, of 7-8 metameres called rhombomeres. This phenomenon plays an essential role in early hindbrain regionalisation and in the specification of the pattern of developing structures in this region of the brain. Data accumulated during the last 10 years have also shown that rhombomeres are units of gene expression and of cell lineage. Hence, a number of regulatory genes are expressed according to segment-specific patterns in the hindbrain and have been implicated in the pattern formation process. In this review, we focus on the analysis of the function and regulation of these genes along the different steps of hindbrain segmentation, from segment delimitation to acquisition of positional identity. On this basis, we propose a model for the control of early hindbrain development.
Collapse
|
214
|
Chen J, Ruley HE. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem 1998; 273:24670-5. [PMID: 9733765 DOI: 10.1074/jbc.273.38.24670] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the hindbrain of the mouse embryo, there is often coincident rhombomere-restricted expression of Eph receptor tyrosine kinases and Hox homeobox genes, raising the possibility of regulatory interactions. In this paper, we have identified cis-acting regulatory sequences of the EphA2 (Eck) gene, which direct node and hindbrain-specific expression in transgenic embryos. An 8-kilobase region of mouse genomic DNA element was sufficient to drive rhombomere 4 (r4)-specific expression while conferring patchy expression in the node. Further analysis localized the rhombomere-specific enhancer to a 0.9-kilobase sequence. This element contains multiple Hox-Pbx consensus binding sites that bind to both HOXA1/Pbx1 and HOXB1/Pbx1 proteins in vitro. Co-expression of either HOXA1 or HOXB1 with Pbx1 transactivated EphA2 enhancer-dependent reporter gene expression. These results, together with observations of reduced EphA2 expression in hoxa1 and hoxb1 double mutant mice, suggest that expression of EphA2 gene in rhombomere 4 is directly regulated by Hoxa1 and Hoxb1 homeobox transcription factors.
Collapse
Affiliation(s)
- J Chen
- Departments of Medicine (Rheumatology) and Cell Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
215
|
Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A 1998; 95:10632-6. [PMID: 9724755 PMCID: PMC27946 DOI: 10.1073/pnas.95.18.10632] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/1998] [Indexed: 11/18/2022] Open
Abstract
Determinative events in vertebrate embryogenesis appear to require the continuous expression of spatial regulators such as the clustered homeobox genes. The mechanisms that govern long-term patterns of gene expression are not well understood. In Drosophila, active and silent states of developmentally regulated loci are maintained by trithorax and Polycomb group. We have examined the developmental role of a mammalian homolog of trx and putative oncogene, Mll. Knockout mice reveal that Mll is required for maintenance of gene expression early in embryogenesis. Downstream targets of Mll including Hoxa7 are activated appropriately in the absence of Mll but require Mll for sustaining their expression. The Mll-/- phenotype manifests later in development and is characterized by branchial arch dysplasia and aberrant segmental boundaries of spinal ganglia and somites. Thus, Mll represents an essential mechanism of transcriptional maintenance in mammalian development, which functions in multiple morphogenetic processes.
Collapse
Affiliation(s)
- B D Yu
- Howard Hughes Medical Institute, Division of Molecular Oncology, Departments of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
216
|
Beckers J, Duboule D. Genetic analysis of a conserved sequence in the HoxD complex: regulatory redundancy or limitations of the transgenic approach? Dev Dyn 1998; 213:1-11. [PMID: 9733096 DOI: 10.1002/(sici)1097-0177(199809)213:1<1::aid-aja1>3.0.co;2-l] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Extensive sequencing in the HoxD complex of several vertebrate species has revealed a set of conserved DNA sequences interspersed between neighboring Hox genes. Their high degree of conservation strongly suggested that they are used for regulatory purposes, a hypothesis that was largely confirmed by using "classical transgenesis" or in vivo mutagenesis through the embryonic stem (ES) cell technology. Here, we show that this is not always the case. We report that the deletion of a conserved regulatory sequence located in the HoxD complex gives different results, depending on the transgenic approach that was used. In "conventional" transgenesis, this sequence was necessary for proper expression in a subdomain of the developing limb. However, a deletion of this sequence in complexo did not confirm this effect, thereby creating an important discrepancy between the classical transgenic and the ES cell-based, targeted mutagenesis. This unexpected observation may show the limitations of the former technology. Alternatively, it could illustrate a redundancy in regulatory circuits and, thus, justify the combination of parallel strategies.
Collapse
Affiliation(s)
- J Beckers
- Department of Zoology and Animal Biology, Sciences III, University of Geneva, Switzerland
| | | |
Collapse
|
217
|
Gould A, Itasaki N, Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998; 21:39-51. [PMID: 9697850 DOI: 10.1016/s0896-6273(00)80513-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anteroposterior (AP) patterning in the vertebrate hindbrain is dependent upon the establishment of segmental domains of Hox expression. We investigated the mechanism that governs the early expression of Hoxb4 and found that transient signaling from the paraxial mesoderm induces expression in the hindbrain. Induction involves a retinoid pathway requiring retinoic acid receptor (RAR) function within the neural plate. Characterization of a prerhombomeric enhancer from Hoxb4 reveals that a retinoic acid (RA) response element is an essential component of the early neural response to somite (s) signaling and can interpret positional information for setting the anterior boundary of expression. These data suggest a mechanism whereby, during normal hindbrain development, Hoxb4 expression is initiated by extrinsic signals and is subsequently maintained by Hox feedback circuits. This mechanism also accounts for the ectopic response of Hoxb4 in rhombomere (r) transpositions and after exposure to retinoids.
Collapse
Affiliation(s)
- A Gould
- Laboratory of Developmental Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|