201
|
Hennig L, Poppe C, Sweere U, Martin A, Schäfer E. Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis. PLANT PHYSIOLOGY 2001; 125:1036-44. [PMID: 11161059 PMCID: PMC64903 DOI: 10.1104/pp.125.2.1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Revised: 10/05/2000] [Accepted: 11/09/2000] [Indexed: 05/18/2023]
Abstract
To study negative interactions between phytochromes, phytochrome B (phyB) overexpressor lines, the mutants phyA-201, phyB-4, phyB-5, phyD-1, phyA-201 phyB-5, phyA-201 phyD-1, and phyB-5 phyD-1 of Arabidopsis were used. Endogenous phyB, but not phytochrome D (phyD), partly suppressed phytochrome A (phyA)-dependent inhibition of hypocotyl elongation in far-red light (FR). Dichromatic irradiation demonstrated that the negative effect of phyB was largely independent of the photoequilibrium, i.e. far-red light absorbing form of phytochrome formation. Moreover, phyB-4, a mutant impaired in signal transduction, did not show a loss of inhibition of phyA by phyB. Overexpression of phyB, conversely, resulted in an enhanced inhibition of phyA function, even in the absence of supplementary carbohydrates. However, overexpression of a mutated phyB, which cannot incorporate the chromophore, had no detectable effect on phyA action. In addition to seedling growth, accumulation of anthocyanins in FR, another manifestation of the high irradiance response, was strongly influenced by phyB holoprotein. Induction of seed germination by FR, a very low fluence response, was suppressed by both endogenous phyB and phyD. In conclusion, we show that both classical response modes of phyA, high irradiance response, and very low fluence response are subject to an inhibitory action of phyB-like phytochromes. Possible mechanisms of the negative interference are discussed.
Collapse
Affiliation(s)
- L Hennig
- Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
202
|
Guo H, Mockler T, Duong H, Lin C. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 2001; 291:487-90. [PMID: 11161203 DOI: 10.1126/science.291.5503.487] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cryptochromes and phytochromes are the major photosensory receptors in plants and often regulate similar photomorphogenic responses. The molecular mechanisms underlying functional interactions of cryptochromes and phytochromes remain largely unclear. We have identified an Arabidopsis photomorphogenic mutant, sub1, which exhibits hypersensitive responses to blue light and far-red light. Genetic analyses indicate that SUB1 functions as a component of a cryptochrome signaling pathway and as a modulator of a phytochrome signaling pathway. The SUB1 gene encodes a Ca2+-binding protein that suppresses light-dependent accumulation of the transcription factor HY5.
Collapse
Affiliation(s)
- H Guo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
203
|
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 2000; 103:815-27. [PMID: 11114337 DOI: 10.1016/s0092-8674(00)00184-7] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair. However, cryptochromes lack photolyase activity and are characterized by distinguishing C-terminal domains. Here we show that the signaling mechanism of Arabidopsis cryptochrome is mediated through the C terminus. On fusion with beta-glucuronidase (GUS), both the Arabidopsis CRY1 C-terminal domain (CCT1) and the CRY2 C-terminal domain (CCT2) mediate a constitutive light response. This constitutive photomorphogenic (COP) phenotype was not observed for mutants of cct1 corresponding to previously described cry1 alleles. We propose that the C-terminal domain of Arabidopsis cryptochrome is maintained in an inactive state in the dark. Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain.
Collapse
Affiliation(s)
- H Q Yang
- Plant Science Institute Department of Biology University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Light is a crucial environmental signal that controls many photomorphogenic and circadian responses in plants. Perception and transduction of light is achieved by at least two principal groups of photoreceptors, phytochromes and cryptochromes. Phytochromes are red/far-red light-absorbing receptors encoded by a gene family of five members (phyA to phyE) in Arabidopsis. Cryptochrome 1 (cry1), cryptochrome 2 (cry2) and phototropin are the blue/ultraviolet-A light receptors that have been characterized in Arabidopsis. Previous studies showed that modulation of many physiological responses in plants is achieved by genetic interactions between different photoreceptors; however, little is known about the nature of these interactions and their roles in the signal transduction pathway. Here we show the genetic interaction that occurs between the Arabidopsis photoreceptors phyB and cry2 in the control of flowering time, hypocotyl elongation and circadian period by the clock. PhyB interacts directly with cry2 as observed in co-immunoprecipitation experiments with transgenic Arabidopsis plants overexpressing cry2. Using fluorescent resonance energy transfer microscopy, we show that phyB and cry2 interact in nuclear speckles that are formed in a light-dependent fashion.
Collapse
Affiliation(s)
- P Más
- Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
205
|
Elzenga JT, Staal M, Prins HB. Modulation by phytochrome of the blue light-induced extracellular acidification by leaf epidermal cells of pea (Pisum sativum l.): a kinetic analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:377-89. [PMID: 10849354 DOI: 10.1046/j.1365-313x.2000.00748.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Blue light induces extracellular acidification, a prerequisite of cell expansion, in epidermis cells of young pea leaves, by stimulation of the proton pumping-ATPase activity in the plasma membrane. A transient acidification, reaching a maximum 2.5-5 min after the start of the pulse, could be induced by pulses as short as 30 msec. A pulse of more than 3000 micromol m-2 saturated this response. Responsiveness to a second light pulse was recovered with a time constant of about 7 min. The fluence rate-dependent lag time and sigmoidal increase of the acidification suggested the involvement of several reactions between light perception and activation of the ATPase. In wild-type pea plants, the fluence response relation for short light pulses was biphasic, with a component that saturates at low fluence and one that saturates at high fluence. The phytochrome-deficient mutant pcd2 showed a selective loss of the high-fluence component, suggesting that the high-fluence component is phytochrome-dependent and the low-fluence component is phytochrome-independent. Treatment with the calmodulin inhibitor W7 also led to the elimination of the phytochrome-dependent high-fluence component. Simple models adapted from the one used to simulate blue light-induced guard cell opening failed to explain one or more elements of the experimental data. The hypothesis that phytochrome and a blue light receptor interact in a short-term photoresponse is endorsed by model calculations based upon a three-step signal transduction cascade, of which one component can be modulated by phytochrome.
Collapse
Affiliation(s)
- J T Elzenga
- Laboratory of Plant Physiology, Department of Plant Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
206
|
Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:391-9. [PMID: 10849355 DOI: 10.1046/j.1365-313x.2000.00753.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The photoperiodic sensitivity 5 (se5) mutant of rice, a short-day plant, has a very early flowering phenotype and is completely deficient in photoperiodic response. We have cloned the SE5 gene by candidate cloning and demonstrated that it encodes a putative heme oxygenase. Lack of responses of coleoptile elongation by light pulses and photoreversible phytochromes in crude extracts of se5 indicate that SE5 may function in phytochrome chromophore biosynthesis. Ectopic expression of SE5 cDNA by the CaMV 35S promoter restored the photoperiodic response in the se5 mutant. Our results indicate that phytochromes confer the photoperiodic control of flowering in rice. Comparison of se5 with hy1, a counterpart mutant of Arabidopsis, suggests distinct roles of phytochromes in the photoperiodic control of flowering in these two species.
Collapse
Affiliation(s)
- T Izawa
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101
| | | | | | | | | |
Collapse
|
207
|
Affiliation(s)
- C Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles 90095-1606, USA.
| |
Collapse
|
208
|
Reed JW, Nagpal P, Bastow RM, Solomon KS, Dowson-Day MJ, Elumalai RP, Millar AJ. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. PLANT PHYSIOLOGY 2000; 122:1149-60. [PMID: 10759510 PMCID: PMC58949 DOI: 10.1104/pp.122.4.1149] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 01/09/2000] [Indexed: 05/18/2023]
Abstract
Light regulates various aspects of plant growth, and the photoreceptor phytochrome B (phyB) mediates many responses to red light. In a screen for Arabidopsis mutants with phenotypes similar to those of phyB mutants, we isolated two new elf3 mutants. One has weaker morphological phenotypes than previously identified elf3 alleles, but still abolishes circadian rhythms under continuous light. Like phyB mutants, elf3 mutants have elongated hypocotyls and petioles, flower early, and have defects in the red light response. However, we found that elf3 mutations have an additive interaction with a phyB null mutation, with phyA or hy4 null mutations, or with a PHYB overexpression construct, and that an elf3 mutation does not prevent nuclear localization of phyB. These results suggest that either there is substantial redundancy in phyB and elf3 function, or the two genes regulate distinct signaling pathways.
Collapse
Affiliation(s)
- J W Reed
- University of North Carolina, Biology Department, CB #3280, Coker Hall, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | | | | | | | |
Collapse
|
209
|
|
210
|
Reeves PH, Coupland G. Response of plant development to environment: control of flowering by daylength and temperature. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:37-42. [PMID: 10679453 DOI: 10.1016/s1369-5266(99)00041-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The transition from vegetative growth to flowering is often controlled by environmental conditions and influenced by the age of the plant. Intensive genetic analysis has identified pathways that regulate flowering time of Arabidopsis in response to daylength or low temperature (vernalization). These pathways are proposed to converge to regulate the expression of genes that act within the floral primordium and promote floral development. In the past year, genes that confer the responses to daylength or vernalization have been cloned and have enabled aspects of the genetic models to be tested at the molecular level.
Collapse
Affiliation(s)
- P H Reeves
- John Innes Centre, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
211
|
Abstract
Many plants are adapted to flower at particular times of year, to ensure optimal pollination and seed maturation. In these plants flowering is controlled by environmental signals that reflect the changing seasons, particularly daylength and temperature. The response to daylength varies, so that plants isolated at higher latitudes tend to flower in response to long daylengths of spring and summer, while plants from lower latitudes avoid the extreme heat of summer by responding to short days. Such responses require a mechanism for measuring time, and the circadian clock that regulates daily rhythms in behaviour also acts as the timer in the measurement of daylength. Plants from high latitudes often also show an extreme response to temperature called vernalisation in which flowering is repressed until the plant is exposed to winter temperatures for an extended time. Genetic approaches in Arabidopsis have identified a number of genes that control vernalisation and daylength responses. These genes are described and models presented for how daylength might regulate flowering by controlling their expression by the circadian clock. BioEssays 22:38-47, 2000.
Collapse
Affiliation(s)
- A Samach
- John Innes Centre, Colney Lane, Norwich, UK
| | | |
Collapse
|
212
|
Casal JJ. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 2000. [PMID: 10649883 DOI: 10.1562/0031-8655(2000)071%3c0001:pcppii%3e2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, natural radiation simultaneously activates more than one photoreceptor. Five phytochromes (phyA through phyD), two cryptochromes (cry1, cry2) and phototropin have been identified in the model species Arabidopsis thaliana. There is light-dependent epistasis among certain photoreceptor genes because the action of one pigment can be affected by the activity of others. Under red light, phyA and phyB are antagonistic, but under far-red light, followed by brief red light, phyA and phyB are synergistic in the control of seedling morphology and the expression of some genes during de-etiolation. Under short photoperiods of red and blue light, cry1 and phyB are synergistic, but under continuous exposure to the same light field the actions of phyB and cry1 become independent and additive. Phototropic bending of the shoot toward unilateral blue light is mediated by phototropin, but cry1, cry2, phyA and phyB positively regulate the response. Finally, cry2 and phyB are antagonistic in the induction of flowering. At least some of these interactions are likely to result from cross talk of the photoreceptor signaling pathways and uncover new avenues to approach signal transduction. Experiments under natural radiation are beginning to show that the interactions create a phototransduction network with emergent properties. This provides a more robust system for light perception in plants.
Collapse
Affiliation(s)
- J J Casal
- IFEVA, Departamento de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
213
|
Abstract
In higher plants, natural radiation simultaneously activates more than one photoreceptor. Five phytochromes (phyA through phyD), two cryptochromes (cry1, cry2) and phototropin have been identified in the model species Arabidopsis thaliana. There is light-dependent epistasis among certain photoreceptor genes because the action of one pigment can be affected by the activity of others. Under red light, phyA and phyB are antagonistic, but under far-red light, followed by brief red light, phyA and phyB are synergistic in the control of seedling morphology and the expression of some genes during de-etiolation. Under short photoperiods of red and blue light, cry1 and phyB are synergistic, but under continuous exposure to the same light field the actions of phyB and cry1 become independent and additive. Phototropic bending of the shoot toward unilateral blue light is mediated by phototropin, but cry1, cry2, phyA and phyB positively regulate the response. Finally, cry2 and phyB are antagonistic in the induction of flowering. At least some of these interactions are likely to result from cross talk of the photoreceptor signaling pathways and uncover new avenues to approach signal transduction. Experiments under natural radiation are beginning to show that the interactions create a phototransduction network with emergent properties. This provides a more robust system for light perception in plants.
Collapse
Affiliation(s)
- J J Casal
- IFEVA, Departamento de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
214
|
Abstract
At a certain stage in their life cycle, plants switch from vegetative to reproductive development. This transition is regulated by multiple developmental and environmental cues. These ensure that the plant switches to flowering at a time when sufficient internal resources have been accumulated and the environmental conditions are favorable. The use of a molecular genetic approach in Arabidopsis has resulted in the identification and cloning of many of the genes involved in regulating floral transition. The current view on the molecular function of these genes, their division into different genetic pathways, and how the pathways interact in a complex regulatory network are summarized.
Collapse
Affiliation(s)
- G G Simpson
- Department of Molecular Genetics, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
215
|
Hennig L, Funk M, Whitelam GC, Schafer E. Functional interaction of cryptochrome 1 and phytochrome D. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:289-94. [PMID: 11089975 DOI: 10.1046/j.1365-313x.1999.t01-1-00599.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana wild-type and single, double and triple mutants lacking phytochrome A (phyA-201), phytochrome B (phyB-5), phytochrome D (phyD-1), phytochrome E (phyE-1), cryptochrome 1 (hy4-2.23n) and cryptochrome 2 (fha-1) were used to study the photoreceptor signal-transduction network. The inhibition of hypocotyl elongation was analysed using pulses of red light preceded by a pre-irradiation of white light. The interactions of phyA, phyB and cry1 have been studied in a series of previous papers. Here we focus on the signal transduction initiated by phyD. We observed that phyD can partly substitute for the loss of phyB. Specifically, in the phyB background, red pulses were only effective if both cry1 and phyD were present. The response to red pulses, enabled by the pre-irradiation of white light, was completely reversible by far-red light. Loss of reversibility occurred with an apparent half-life of 2 h, similar to the half-life of 3 h observed for the effect mediated by phyB. Furthermore, we could show that the response to an end-of-day far-red pulse in phyB depends on both phyD and cry1. In contrast to phyD, a functional interaction of phyE and cry1 could not be detected in Arabidopsis seedlings.
Collapse
|
216
|
Guo H, Duong H, Ma N, Lin C. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:279-287. [PMID: 10476075 DOI: 10.1046/j.1365-313x.1999.00525.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cryptochrome 2 is a flavin-type blue light receptor mediating floral induction in response to photoperiod and a blue light-induced hypocotyl growth inhibition. cry2 is required for the elevated expression of the flowering-time gene CO in response to long-day photoperiods, but the molecular mechanism underlying the function of cry2 is not clear. The carboxyl domain of cry2 bears a basic bipartite nuclear localization signal, and the cry2 protein was co-fractionated with the nucleus. Analysis of transgenic plants expressing a fusion protein of CRY2 and the reporter enzyme GUS (GUS-CRY2) indicated that the GUS-CRY2 fusion protein accumulated in the nucleus of transgenic plants grown in dark or light. The C-terminal domain of cry2 that contains the basic bipartite nuclear localization signal was sufficient to confer nuclear localization of the fusion protein. Phenotypic analysis of transgenic plants expressing the fusion protein GUS-CRY2 demonstrated that GUS-CRY2 acts as a functional photoreceptor in vivo, mediating the blue light-induced inhibition of hypocotyl elongation. These results strongly suggest that cry2 is a nuclear protein. Although no obvious light regulation was found for the nuclear compartmentation of GUS-CRY2 fusion protein, the abundance of GUS-CRY2 was regulated by blue light in a way similar to that of cry2.
Collapse
Affiliation(s)
- H Guo
- Department of Molecular, Cell and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles 90095-1606, USA
| | | | | | | |
Collapse
|