201
|
Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 2010; 115:5259-69. [PMID: 20215637 DOI: 10.1182/blood-2009-11-252692] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes with lumen and tube formation resulting from a lack of Cdc42 activation, inhibition of Cdc42-GTP-dependent signal transduction, and blockade of MT1-MMP-dependent proteolysis. This process requires interdependent Cdc42 and MT1-MMP signaling, which involves Par3 binding to the Jam-B and Jam-C cytoplasmic tails, an interaction that is necessary to physically couple the components of the lumen signaling complex. MT1-MMP proteolytic activity is necessary for Cdc42 activation during EC tube formation in 3D collagen matrices but not on 2D collagen surfaces, whereas Cdc42 activation is necessary for MT1-MMP to create vascular guidance tunnels and tube networks in 3D matrices through proteolytic events. This work reveals a novel interdependent role for Cdc42-dependent signaling and MT1-MMP-dependent proteolysis, a process that occurs selectively in 3D collagen matrices and that requires EC lumen signaling complexes, to control human EC tubulogenesis during vascular morphogenesis.
Collapse
|
202
|
JAM-A is a novel surface marker for NG2-Glia in the adult mouse brain. BMC Neurosci 2010; 11:27. [PMID: 20184779 PMCID: PMC2837050 DOI: 10.1186/1471-2202-11-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 02/26/2010] [Indexed: 11/28/2022] Open
Abstract
Background Junctional adhesion molecule-A (JAM-A) is an adhesive protein expressed in various cell types. JAM-A localizes to the tight junctions between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesion and to the control of paracellular permeability. Results So far, the expression pattern of JAM-A has not been described in detail for the different cell types of the adult brain. Here we show that a subset of proliferating cells in the adult mouse brain express JAM-A. We further clarify that these cells belong to the lineage of NG2-glia cells. Although these mitotic NG2-glia cells express JAM-A, the protein never shows a polarized subcellular distribution. Also non-mitotic NG2-glia cells express JAM-A in a non-polarized pattern on their surface. Conclusions Our data show that JAM-A is a novel surface marker for NG2-glia cells of the adult brain.
Collapse
|
203
|
LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys J 2010; 96:285-93. [PMID: 18849408 DOI: 10.1529/biophysj.108.135491] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/16/2008] [Indexed: 01/12/2023] Open
Abstract
Leukocyte transendothelial migration into inflamed areas is regulated by the integrity of endothelial cell junctions and is stabilized by adhesion molecules including junctional adhesion molecule-A (JAM-A). JAM-A has been shown to participate in homophilic interactions with itself and in heterophilic interactions with leukocyte function-associated antigen-1 (LFA-1) via its first and second immunoglobulin domains, respectively. Using competitive binding assays in conjunction with atomic force microscopy adhesion measurements, we provide compelling evidence that the second domain of JAM-A stabilizes the homophilic interaction because its deletion suppresses the dynamic strength of the JAM-A homophilic interaction. Moreover, binding of the LFA-1 inserted domain to the second domain of JAM-A reduces the dynamic strength of the JAM-A homophilic interaction to the level measured with the JAM-A domain 2 deletion mutant. This finding suggests that LFA-1 binding cancels the stabilizing effects of the second immunoglobulin domain of JAM-A. Finally, our atomic force microscopy measurements reveal that the interaction of JAM-A with LFA-1 is stronger than the JAM-A homophilic interaction. Taken together, these results suggest that LFA-1 binding to JAM-A destabilizes the JAM-A homophilic interaction. In turn, the greater strength of the LFA-1/JAM-A complex permits it to support the tension needed to disrupt the JAM-A homophilic interaction, thus allowing transendothelial migration to proceed.
Collapse
|
204
|
Tight junctions in salivary epithelium. J Biomed Biotechnol 2010; 2010:278948. [PMID: 20182541 PMCID: PMC2825559 DOI: 10.1155/2010/278948] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/12/2009] [Accepted: 11/27/2009] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell tight junctions (TJs) consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins) define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.
Collapse
|
205
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
206
|
Abstract
The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the “great wall” against external agents and the surrounding hostile environment. During the host-pathogen evolution, viruses somehow found the key to unlock the gate for their entry into cells and to exploit and exhaust the host cells. In the liver, an array of TJ molecules is localized along the bile canaliculi forming the blood-biliary barrier, where they play pivotal roles in paracellular permeability, bile secretion, and cell polarity. In pathology, certain hepatic TJ molecules mediate virus entry causing hepatitis infection; deregulation and functional abnormality of the TJ have also been implicated in triggering liver cancer development and metastasis. All these findings shed new insights on the understanding of hepatic TJs in the development of liver disease and provide new clues for potential intervention.
Collapse
|
207
|
Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol 2010; 20:142-9. [PMID: 20061152 DOI: 10.1016/j.tcb.2009.12.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
Tight junctions are intercellular adhesion complexes in vertebrates that are required for the formation of functional epithelial and endothelial barriers. Their morphological appearance and biochemical composition, that includes large multimeric protein complexes, have long fostered the belief that they are relatively rigid, non-dynamic structures. Recent observations now suggest that at least some junctional elements and proteins can be very dynamic, and that such dynamic properties are important for different tight junction functions ranging from the regulation of paracellular permeability to junction-associated signalling mechanisms that guide cell behaviour. Combining such dynamic properties with existing tight junction models will help us to advance our understanding of the molecular mechanisms that underlie the functional properties of tight junctions.
Collapse
Affiliation(s)
- Emily Steed
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
208
|
Claudins and Renal Magnesium Handling. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
209
|
Noda K, Zhang J, Fukuhara S, Kunimoto S, Yoshimura M, Mochizuki N. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell 2009; 21:584-96. [PMID: 20032304 PMCID: PMC2820423 DOI: 10.1091/mbc.e09-07-0580] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vascular endothelial (VE)-cadherin is a cell-cell adhesion molecule involved in endothelial barrier function. Here, we show that initial circumferential actin bundling induced by cyclic AMP-Epac-Rap1 signal and its linkage to VE-cadherin through α- and β-catenins lead to the stabilization of VE-cadherin at cell-cell contacts. Vascular endothelial (VE)-cadherin is a cell–cell adhesion molecule involved in endothelial barrier functions. Previously, we reported that cAMP-Epac-Rap1 signal enhances VE-cadherin–dependent cell adhesion. Here, we further scrutinized how cAMP-Epac-Rap1 pathway promotes stabilization of VE-cadherin at the cell–cell contacts. Forskolin induced circumferential actin bundling and accumulation of VE-cadherin fused with green fluorescence protein (VEC-GFP) on the bundled actin filaments. Fluorescence recovery after photobleaching (FRAP) analyses using VEC-GFP revealed that forskolin stabilizes VE-cadherin at cell–cell contacts. These effects of forskolin were mimicked by an activator for Epac but not by that for protein kinase A. Forskolin-induced both accumulation and stabilization of junctional VEC-GFP was impeded by latrunculin A. VE-cadherin, α-catenin, and β-catenin were dispensable for forskolin-induced circumferential actin bundling, indicating that homophilic VE-cadherin association is not the trigger of actin bundling. Requirement of α- and β-catenins for forskolin-induced stabilization of VE-cadherin on the actin bundles was confirmed by FRAP analyses using VEC-GFP mutants, supporting the classical model that α-catenin could potentially link the bundled actin to cadherin. Collectively, circumferential actin bundle formation and subsequent linkage between actin bundles and VE-cadherin through α- and β-catenins are important for the stabilization of VE-cadherin at the cell–cell contacts in cAMP-Epac-Rap1 signal-activated cells.
Collapse
Affiliation(s)
- Kazuomi Noda
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
210
|
Steed E, Rodrigues NTL, Balda MS, Matter K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 2009; 10:95. [PMID: 20028514 PMCID: PMC2805614 DOI: 10.1186/1471-2121-10-95] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/22/2009] [Indexed: 02/06/2023] Open
Abstract
Background Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction. Results Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link) domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance. Conclusions Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties.
Collapse
Affiliation(s)
- Emily Steed
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | | | | | | |
Collapse
|
211
|
Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y. Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 2009; 285:5003-12. [PMID: 20008323 DOI: 10.1074/jbc.m109.043760] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Although critical for cell adhesion and migration during normal immune-mediated reactions, leukocyte integrins are also involved in the pathogenesis of diverse clinical conditions including autoimmune diseases and chronic inflammation. Leukocyte integrins therefore have been targets for anti-adhesive therapies to treat the inflammatory disorders. Recently, the therapeutic potential of integrin antagonists has been demonstrated in psoriasis and multiple sclerosis. However, current therapeutics broadly affect integrin functions and, thus, yield unfavorable side effects. This review discusses the major leukocyte integrins and the anti-adhesion strategies for treating immune diseases.
Collapse
Affiliation(s)
- Young-Min Hyun
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|
213
|
Correale J, Villa A. Cellular elements of the blood-brain barrier. Neurochem Res 2009; 34:2067-77. [PMID: 19856206 DOI: 10.1007/s11064-009-0081-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 01/09/2023]
Abstract
The Blood-brain-barrier (BBB) provides both anatomical and physiological protection for the central nervous system (CNS), shielding the brain for toxic substances in the blood, supplying brain tissues with nutrients and filtering harmful compounds from the brain back to the bloodstream. The BBB is composed of four main cellular elements: endothelial cells (ECs), astrocyte end-feet, microglial cells, and pericytes. Transport across the BBB is limited by both physical and metabolic barriers (enzymes, and different transport systems). Tight junctions (TJs) present between ECs form an important barrier against diffusion, excluding most blood-borne substances for entering the brain.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea (FLENI), Montañeses 2325, 1428 Buenos Aires, Argentina.
| | | |
Collapse
|
214
|
Sadowska GB, Malaeb SN, Stonestreet BS. Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol 2009; 298:H179-88. [PMID: 19855054 DOI: 10.1152/ajpheart.00828.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined the expression of tight junction (TJ) proteins in the cerebral cortex, cerebellum, and spinal cord of fetuses after maternal treatment with single and multiple courses of dexamethasone. Ewes received either single courses of four 6-mg dexamethasone or placebo injections every 12 h for 48 h between 104 and 107 days or the same treatment once a week between 76-78 and 104-107 days of gestation. TJ protein expression was determined by Western immunoblot analysis on tissue harvested at 105-108 days of gestation. Blood-brain barrier permeability has been previously quantified with the blood-to-brain transfer constant (K(i)) with alpha-aminoisobutyric acid (39). After a single course of dexamethasone, claudin-5 increased (P < 0.05) in the cerebral cortex, occludin and claudin-1 increased in the cerebellum, and occludin increased in the spinal cord. After multiple dexamethasone courses, occludin and zonula occludens (ZO)-1 increased in the cerebral cortex, and occludin and claudin-1 increased in the cerebellum. Junctional adhesion molecule-A and ZO-2 expressions did not change. Linear regression comparing K(i) to TJ proteins showed inverse correlations with claudin-1 and claudin-5 in the cerebral cortex after a single course and ZO-2 in the spinal cord after multiple courses and direct correlations with ZO-1 in the cerebellum and spinal cord after multiple courses. We conclude that maternal glucocorticoid treatment increases the expression of specific TJ proteins in vivo, patterns of TJ protein expression vary after exposure to single and multiple glucocorticoid courses, and decreases in blood-brain barrier permeability are associated with increases in claudin-1, claudin-5, and ZO-2 expression and decreases in ZO-1 expression. In utero glucocorticoid exposure alters the molecular composition of the barrier and affects fetal blood-brain barrier function.
Collapse
Affiliation(s)
- Grazyna B Sadowska
- The Warren Alpert Medical School of Brown University, Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Providence, RI 02905-2499, USA
| | | | | |
Collapse
|
215
|
Francavilla C, Maddaluno L, Cavallaro U. The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 2009; 19:298-309. [PMID: 19482088 DOI: 10.1016/j.semcancer.2009.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/20/2009] [Indexed: 12/18/2022]
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins that mediate the physical interactions between adjacent cells and between cells and the surrounding extracellular matrix. CAMs belong to different protein families, depending on their structural and functional properties. Furthermore, the expression of certain CAMs under physiological conditions is restricted to specific cell types. Besides playing a key homeostatic role in maintaining the architecture of quiescent tissues, CAMs have also to adapt to the microenvironmental changes that occur during certain physiological and pathological processes. This is best exemplified by cancer vascularization, where the expression and function of vascular CAMs are dynamically regulated in response to tissue alterations induced by tumor growth as well as by changes in the surrounding stroma. This enables endothelial cells (ECs) to leave the quiescent state and re-enter the angiogenic cascade. The latter is a multistep process carried out by different types of specialized ECs. This review describes the actual or supposed function of the various CAM subsets in the sequential series of events that underlie vascular changes during tumor angiogenesis. Notably, elucidating the mechanism of action of endothelial CAMs in cancer vasculature is expected to open new therapeutic avenues aimed at interfering with tumor growth and dissemination.
Collapse
|
216
|
Kondylis V, Pizette S, Rabouille C. The early secretory pathway in development: A tale of proteins and mRNAs. Semin Cell Dev Biol 2009; 20:817-27. [DOI: 10.1016/j.semcdb.2009.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
|
217
|
Fanning AS, Anderson JM. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009; 1165:113-20. [PMID: 19538295 DOI: 10.1111/j.1749-6632.2009.04440.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The integrity of the tight junction barrier in epithelial and endothelial cells is critical to human health, but we still lack a detailed mechanistic knowledge of how the barrier is formed during development or responds to pathological and pharmacological insults. This limits our understanding of barrier dysfunction in disease and slows the development of therapeutic strategies. Recent studies confirm the long-maintained but previously unsupported view that the zonula occludens (ZO) proteins ZO-1 and ZO-2 are critical determinants of barrier formation. However, ZO proteins can also be components of adherens junctions, and recent studies suggest that ZO proteins may also promote the assembly and function of these junctions during epithelial morphogenesis. We review these studies and outline several recent observations that suggest that one role of ZO proteins is to regulate cytoskeletal dynamics at cell junctions. Finally, we propose a model by which the functional activities of ZO proteins in the adherens junction and tight junction are differentiated by a novel regulatory motif known as the U6 or acidic motif.
Collapse
Affiliation(s)
- Alan S Fanning
- The Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
218
|
Morris AP, Tawil A, Berkova Z, Wible L, Smith CW, Cunningham SA. Junctional Adhesion Molecules (JAMs) are Differentially Expressed in Fibroblasts and Co-Localize with ZO-1 to Adherens-Like Junctions. ACTA ACUST UNITED AC 2009; 13:233-47. [PMID: 16916751 DOI: 10.1080/15419060600877978] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Junctional Adhesion Molecules (JAMs) are components and regulators of the well-characterized epithelial and endothelial tight junction. Since the molecular components of native fibroblast adherens-like junctions remain poorly described we determined JAM expression profiles in fibroblasts. We found JAM-C on human dermal, lung, and corneal primary fibroblast cultures. Within murine lines, JAM-A was found in L-cells, JAM-C in 3T3 L1 cells, and both JAM-A and JAM-C were co-expressed in NIH 3T3 fibroblasts. In primary dermal fibroblasts, JAM-C concentrated at zipper-like junctions that formed between apposing cells. Dual immunostaining showed JAM-C co-localization with the ZO-1 intracellular scaffolding molecule at cell contacts that ranged from 7 microm to over 25 microm in length. JAM-C also labeled similar zipper-like junctions detected with N-Cadherin and Cadherin-11 antibodies. We conclude that endogenous JAM-C is an integral component of the dermal fibroblast adherens-like junction, and our data extend the expression and potential function of JAMs into mesenchymal tissues.
Collapse
Affiliation(s)
- Andrew P Morris
- Department of Integrative Biology and Pharmacology, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
219
|
Felinski EA, Antonetti DA. Glucocorticoid Regulation of Endothelial Cell Tight Junction Gene Expression: Novel Treatments for Diabetic Retinopathy. Curr Eye Res 2009; 30:949-57. [PMID: 16282129 DOI: 10.1080/02713680500263598] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Loss of blood-retinal barrier (BRB) integrity and vascular permeability characterizes diabetic retinopathy, and new therapies to reverse or prevent vascular permeability are needed to treat this debilitating disease. Glucocorticoids are currently under investigation for use as a local therapeutic treatment for diabetic retinopathy. This review examines the changes that occur to barrier properties in diabetic retinopathy and the potential to use glucocorticoids to restore vascular barrier properties in the retina. Glucocorticoids are useful in preserving the integrity of the blood-brain barrier in the treatment of brain tumors, and these steroids show similar effects on the retinal vasculature suggesting their potential usefulness in treating diabetic retinopathy. Recent progress has been made toward the goal of elucidating the precise mechanism underlying the protective effects of glucocorticoids on the retinal vasculature. Glucocorticoids may act by both suppressing inflammation and by directly affecting the endothelial cells by regulating phosphorylation, organization, and content of tight junction proteins. Further work will advance our understanding of glucocorticoid regulation of barrier properties allowing the ultimate goal of developing a specific and safe therapy to treat or prevent loss of the blood-neural barrier in a number of diseases, including brain tumors and diabetic retinopathy.
Collapse
Affiliation(s)
- Edward A Felinski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
220
|
Abstract
At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte-endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte-endothelial and leukocyte-platelet interactions in inflammation.
Collapse
Affiliation(s)
- Harald F Langer
- Experimental Immunology Branch, National Cancer InstituteNIH, Bethesda, MD
| | | |
Collapse
|
221
|
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124:3-20; quiz 21-2. [PMID: 19560575 PMCID: PMC4266989 DOI: 10.1016/j.jaci.2009.05.038] [Citation(s) in RCA: 1228] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
Collapse
Affiliation(s)
- Katherine R. Groschwitz
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
222
|
Betanzos A, Schnoor M, Severson EA, Liang TW, Parkos CA. Evidence for cross-reactivity of JAM-C antibodies: implications for cellular localization studies. Biol Cell 2009; 101:441-53. [PMID: 19143587 PMCID: PMC2877264 DOI: 10.1042/bc20080130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND INFORMATION JAM-C (junctional adhesion molecule C) has been implicated in the regulation of leukocyte migration, cell polarity, spermatogenesis, angiogenesis and nerve conduction. JAM-C has been also reported to concentrate at TJs (tight junctions) and desmosomes, although detailed localization studies remain incomplete. RESULTS Monoclonal (LUCA14, MAB1189, Gi11, and PACA4) and polyclonal (40-9000) antibodies were employed to evaluate JAM-C expression/localization in various epithelial cell lines. However, RT-PCR (reverse transcription-PCR) assays revealed no JAM-C mRNA in SK-CO15, HeLa and HPAF-II cells, whereas abundant mRNA was detected in platelets, Caco-2 and ARPE cells. Interestingly, immunofluorescence localization in all cells revealed strong intercellular junctional staining with all of the above antibodies, except PACA4. Given the positive staining results in cells lacking JAM-C mRNA, immunoblot analyses were performed. Western blots revealed a prominent protein band at 52 kDa in all cells tested with all antibodies except PACA4. However, the correct size of JAM-C (37 kDa) was only detected in cells containing JAM-C mRNA. Immunofluorescence staining of JAM-C mRNA-expressing Caco-2 cells using mAb PACA4 revealed co-localization with occludin and ZO-1 (zonula occludens 1) at TJs. Analyses by MS identified the cross-reactive 52 kDa protein band as K8 (keratin 8). Furthermore, siRNA (small interfering RNA)-mediated downregulation of K8 in JAM-C mRNA-negative cells resulted in diminished junctional staining along with a reduction in the intensity of the 52 kDa protein band. Using an antibody specific for K8 phosphorylated at Ser73, the 52 kDa protein was identified as this phosphorylated form of K8. CONCLUSIONS The results from the present study demonstrate that a majority of available anti-human JAM-C antibodies cross-react with phosphorylated K8 and suggest that cellular localization studies using these reagents should be interpreted with caution. Of the JAM-C antibodies tested, only mAb PACA4 is monospecific for human JAM-C. Analyses using PACA4 reveal that JAM-C expression is variable in different epithelial cell lines with co-localization at TJs.
Collapse
Affiliation(s)
- Abigail Betanzos
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Michael Schnoor
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Eric A. Severson
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Tony W. Liang
- Raven Biotechnologies, Inc., South San Francisco, CA 94080, U.S.A
| | - Charles A. Parkos
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, U.S.A
| |
Collapse
|
223
|
Oki K, Tsuji F, Ohashi K, Kageyama M, Aono H, Sasano M. The investigation of synovial genomic targets of bucillamine with microarray technique. Inflamm Res 2009; 58:571-84. [PMID: 19290479 DOI: 10.1007/s00011-009-0021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/16/2008] [Accepted: 02/01/2009] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1 beta-stimulated human fibroblast-like synovial cells (FLS). METHODS Normal human FLS were treated with IL-1 beta in the presence or absence of 10 and 100 microM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis. RESULTS Numerous pathways were activated by IL-1 beta stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1 beta. CONCLUSIONS Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1 beta in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.
Collapse
Affiliation(s)
- Kenji Oki
- Research & Development Center, Santen Pharmaceutical Co., Ltd., 8916-16 Takayama-cho, Ikoma-shi, Nara, 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
224
|
Peltoniemi H, Joenväärä S, Renkonen R. De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology 2009; 19:707-14. [PMID: 19270074 DOI: 10.1093/glycob/cwp034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of our study is to automatically analyze the glycan and peptide structures of N-glycopeptides without a need to release glycans from the glycopeptides. Our wet laboratory raw data represent a series of MS/MS mass spectra obtained from a reverse-phase liquid chromatography run of size-exclusion-enriched tryptic-digested glycopeptides from glycoproteins. The MS/MS spectra are first analyzed in order to identify glycosylated peptides and N-glycan monosaccharide compositions present on each glycopeptide. We further developed a Branch-and-Bound algorithm to search de novo N-glycan structures, i.e., monosaccharide compositions and their ordered sequences from native glycopeptides. Our de novo algorithm is based on iterative growth and selection of a population of glycan structures and it does not use databases of known glycan structures. We validate the algorithm with (i) in silico-generated spectra, with or without deteriorating deletions, (ii) with a purified glycoprotein transferrin, and (iii) with a complex mixture of N-glycopeptides enriched from human plasma. Our Branch-and-Bound algorithm depicted glycan structures from all the above-mentioned three input data types. Due to the large diversity of glycan structures, the results typically contained several proposed structures matching almost equally well to the spectra. In conclusion, this algorithm automatically identifies glycopeptides and their structures from the MS/MS spectra and thus greatly reduces the number of possible glycan structures from the vast amount of potential ones.
Collapse
Affiliation(s)
- Hannu Peltoniemi
- Transplantation Laboratory & Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | | | | |
Collapse
|
225
|
Economopoulou M, Hammer J, Wang F, Fariss R, Maminishkis A, Miller SS. Expression, localization, and function of junctional adhesion molecule-C (JAM-C) in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2009; 50:1454-63. [PMID: 19060272 PMCID: PMC2752302 DOI: 10.1167/iovs.08-2129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To determine the localization of JAM-C in human RPE and characterize its functions. METHODS Immunofluorescence, Western blot, and PCR was used to identify the localization and expression of JAM-C, ZO-1, N-cadherin, and ezrin in cultures of human fetal RPE (hfRPE) with or without si-RNA mediated JAM-C knockdown and in adult native RPE wholemounts. A transepithelial migration assay was used to study the migration of leukocytes through the hfRPE monolayer. RESULTS JAM-C localized at the tight junctions of cultured hfRPE cells and adult native RPE. During initial junction formation JAM-C was recruited to the primordial cell-cell contacts and after JAM-C knockdown, the organization of N-cadherin and ZO-1 at those contacts was disrupted. JAM-C knockdown caused a delay in the hfRPE cell polarization, as shown by reduced apical staining of ezrin. JAM-C inhibition significantly decreased the chemokine-induced transmigration of granulocytes but not monocytes through the hfRPE monolayer. CONCLUSIONS JAM-C localizes specifically in the tight junctions of hfRPE and adult native RPE. It is important for tight junction formation in hfRPE, possibly by regulating the recruitment of N-cadherin and ZO-1 at the cell-cell contacts, and has a role in the polarization of hfRPE cells. Finally, JAM-C promotes the basal-to-apical transmigration of granulocytes but not monocytes through the hfRPE monolayer.
Collapse
Affiliation(s)
- Matina Economopoulou
- Section for Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | | | | | | | | | | |
Collapse
|
226
|
Stoffel W, Holz B, Jenke B, Binczek E, Günter RH, Kiss C, Karakesisoglou I, Thevis M, Weber AA, Arnhold S, Addicks K. Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J 2009; 27:2281-92. [PMID: 19172737 DOI: 10.1038/emboj.2008.156] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian cell viability is dependent on the supply of the essential fatty acids (EFAs) linoleic and alpha-linolenic acid. EFAs are converted into omega3- and omega6-polyunsaturated fatty acids (PUFAs), which are essential constituents of membrane phospholipids and precursors of eicosanoids, anandamide and docosanoids. Whether EFAs, PUFAs and eicosanoids are essential for cell viability has remained elusive. Here, we show that deletion of delta6-fatty acid desaturase (FADS2) gene expression in the mouse abolishes the initial step in the enzymatic cascade of PUFA synthesis. The lack of PUFAs and eicosanoids does not impair the normal viability and lifespan of male and female fads2 -/- mice, but causes sterility. We further provide the molecular evidence for a pivotal role of PUFA-substituted membrane phospholipids in Sertoli cell polarity and blood-testis barrier, and the gap junction network between granulosa cells of ovarian follicles. The fads2 -/- mouse is an auxotrophic mutant. It is anticipated that FADS2 will become a major focus in membrane, haemostasis, inflammation and atherosclerosis research.
Collapse
Affiliation(s)
- Wilhelm Stoffel
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Paton JFR, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev 2009; 33:89-94. [PMID: 18585782 DOI: 10.1016/j.neubiorev.2008.05.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 01/12/2023]
Abstract
Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1 (JAM-1), were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat) compared to normotensive Wistar-Kyoto rats (WKY). Over expression of JAM-1 in NTS of WKY rats was pro-hypertensive and induced leukocyte adherence to the microvasculature. Since leukocyte adhesion causes cytokine release, we found expression of monocyte chemoattractant protein-1 (MCP-1) was higher in the NTS of SHR while inter-leukin-6 (IL-6) was lower compared to the WKY rat. Inflammation of the brainstem microvasculature may increase vascular resistance within the brainstem. High brainstem vascular resistance and its inflammation may release pathological paracrine signaling molecules affecting central neural cardiovascular activity conducive to neurogenic hypertension.
Collapse
Affiliation(s)
- Julian F R Paton
- Department of Physiology & Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
228
|
Kruger JM, Osborne CA, Lulich JP. Changing Paradigms of Feline Idiopathic Cystitis. Vet Clin North Am Small Anim Pract 2009; 39:15-40. [DOI: 10.1016/j.cvsm.2008.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
229
|
Abstract
The epithelial tissues of the C. elegans embryo provide a "minimalist" system for examining phylogenetically conserved proteins that function in epithelial polarity and cell-cell adhesion in a multicellular organism. In this review, we provide an overview of three major molecular complexes at the apical surface of epithelial cells in the C. elegans embryo: the cadherin-catenin complex, the more basal DLG-1/AJM-1 complex, and the apical membrane domain, which shares similarities with the subapical complex in Drosophila and the PAR/aPKC complex in vertebrates. We discuss how the assembly of these complexes contributes to epithelial polarity and adhesion, proteins that act as effectors and/or regulators of each subdomain, and how these complexes functionally interact during embryonic morphogenesis. Although much remains to be clarified, significant progress has been made in recent years to clarify the role of these protein complexes in epithelial morphogenesis, and suggests that C. elegans will continue to be a fruitful system in which to elucidate functional roles for these proteins in a living embryo.
Collapse
Affiliation(s)
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison
- Department of Zoology, University of Wisconsin-Madison
| |
Collapse
|
230
|
Koshiba H, Hosokawa K, Kubo A, Tokumitsu N, Watanabe A, Honjo H. Junctional Adhesion Molecule: An Expression in Human Endometrial Carcinoma. Int J Gynecol Cancer 2009; 19:208-13. [DOI: 10.1111/igc.0b013e31819bc6e9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Junctional adhesion molecule A (JAM-A) is involved in cell-cell contact and tight junction formation. Loss of cell adhesion molecules may be associated with high histologic grade and invasiveness of endometrial carcinoma. We attempted to determine JAM-A expression in human endometrial carcinoma and its correlations with pathologic features, stage, and survival. Junctional adhesion molecule A expression in human endometrial carcinoma was evaluated by immunohistochemistry. In addition, we cultured human well and poorly differentiated endometrial adenocarcinoma cell lines, Ishikawa cells, and KLE in 3-dimensional basement membrane preparation, and JAM-A expression in these cells was assessed by real-time reverse transcription-polymerase chain reaction and immunohistochemistry. Junctional adhesion molecule A immunostaining intensity was negatively correlated with histologic grade (τ = −0.420, P < 0.0001), myometrial invasion (τ = −0.306, P < 0.01), and stage (τ = −0.383, P < 0.0001). Low JAM-A immunostaining intensity was associated with positive vascular space involvement (P < 0.01). Moreover, low immunostain intensity was significantly (P < 0.0001) related to low overall survival rate and progression-free survival rate. Additionally, in our 3-dimensional epithelial cell culture, JAM-A expression in poorly differentiated adenocarcinoma was significantly lower than that in well-differentiated adenocarcinoma (P < 0.001). Junctional adhesion molecule A expression seems to be reduced in high-grade or advanced endometrial carcinoma and may be a prognostic factor.
Collapse
|
231
|
Abstract
Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.
Collapse
|
232
|
Mruk DD, Lau ASN. RAB13 participates in ectoplasmic specialization dynamics in the rat testis. Biol Reprod 2008; 80:590-601. [PMID: 19074001 DOI: 10.1095/biolreprod.108.071647] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermatogenesis, leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) to gain entry into the adluminal compartment for further development. At the same time, these as well as other germ cell types in the epithelium must retain their close association with Sertoli cells via specialized cell junctions. In this study, we demonstrate that RAB13-a guanosine triphosphatase (GTPase) known to participate in tight junction function in other epithelia-also participates in the dynamics of the ectoplasmic specialization, a testis-specific type of anchoring junction. By immunohistochemistry microscopy, RAB13 localized to the ectoplasmic specialization. Moreover, RAB13 was found to associate with vinculin (VCL) and espin (ESPN), two putative ectoplasmic specialization actin (ACT)-binding proteins, by coimmunoprecipitation and immunofluorescence microscopy experiments. To address the role of RAB13 in ectoplasmic specialization dynamics, an in vivo model was used in which administration of Adjudin induced the disassembly of Sertoli-germ cell anchoring junctions. Following administration of this drug, the RAB13 level decreased steadily when the loss in testicular weight was taken into account. Similarly, the association of RAB13 with VCL decreased but was not completely lost during Adjudin-mediated ectoplasmic specialization restructuring. Taken collectively, these results suggest that RAB13 functions in ectoplasmic specialization dynamics in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065, USA.
| | | |
Collapse
|
233
|
Luissint AC, Lutz PG, Calderwood DA, Couraud PO, Bourdoulous S. JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by alpha4beta1 integrin activation. ACTA ACUST UNITED AC 2008; 183:1159-73. [PMID: 19064666 PMCID: PMC2600739 DOI: 10.1083/jcb.200805061] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L–VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris F-75014, France
| | | | | | | | | |
Collapse
|
234
|
Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 2008; 6:10. [PMID: 19055814 PMCID: PMC2627905 DOI: 10.1186/1478-811x-6-10] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/04/2008] [Indexed: 12/15/2022] Open
Abstract
The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, Stockumer Str, 10, 58448 Witten, Germany.
| | | |
Collapse
|
235
|
Affiliation(s)
- Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
236
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Specific inflammatory condition in nucleus tractus solitarii of the SHR: novel insight for neurogenic hypertension? Auton Neurosci 2008; 142:25-31. [PMID: 18722165 DOI: 10.1016/j.autneu.2008.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 11/28/2022]
Abstract
Human essential hypertension is a complex polygenic trait with underlying genetic components that remain unknown. Since the brainstem structure--the nucleus of the solitary tract (NTS)--is a pivotal region for regulating the set-point of arterial pressure, we proposed a role for it in the development of primary hypertension. Using microarray and real-time RT-PCR, we have recently identified that some pro-inflammatory molecules, such as junctional adhesion molecule-1 (JAM-1; a leukocyte/platelet adhesion molecule), were over expressed in endothelial cells in the NTS of an animal model of human essential hypertension--the spontaneously hypertensive rat (SHR) compared to normotensive Wistar Kyoto rats (WKY). Adenoviral mediated over expression of JAM-1 in NTS of WKY rats produced both hypertension and localized leukocyte adherence to the microvasculature. With a known effect of leukocyte adhesion causing cytokine release, we predicted differences in the level of gene expression of cytokines in the NTS of SHR relative to WKY. Gene expression of monocyte chemoattractant protein-1 (MCP-1) was higher in the NTS of SHR while inter-leukin-6 (IL-6) was lower in the NTS of SHR compared to the WKY. Because both inflammatory molecules are known to affect neural functions, our data suggest that the microvasculature of NTS of the SHR exhibits a specific inflammatory state. We propose a new hypothesis that as a consequence of enhanced expression of leukocyte adhesion molecules within the microvasculature of NTS there is a specific inflammatory response that leads to cardiovascular autonomic dysfunction contributing to neurogenic hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | |
Collapse
|
237
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Gene expression profiles of major cytokines in the nucleus tractus solitarii of the spontaneously hypertensive rat. Auton Neurosci 2008; 142:40-4. [PMID: 18703386 DOI: 10.1016/j.autneu.2008.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 12/22/2022]
Abstract
Since the nucleus of the solitary tract (NTS) is a pivotal region for regulating the set-point of arterial pressure, we proposed a role for it in the development of neurogenic hypertension. Recent studies have suggested that pro-inflammatory molecules are highly expressed in the NTS of an animal model of human essential hypertension--the spontaneously hypertensive rat (SHR), compared to normotensive Wistar-Kyoto rat (WKY). Based on this evidence, we hypothesized that inflammatory mediators such as cytokines are up-regulated in the hypertensive NTS. In the present study, we have assessed the level of gene expression of some cytokines in the NTS of SHR compared to WKY. In addition, for further confirmation of abnormal inflammatory condition within the NTS of SHR, we identified gene expression levels of an inflammatory marker, glycoprotein-39 (gp39) precursor, which is homologous to chitinase 3-like protein 1, human cartilage-gp39 or YKL40. The NTS was micro-dissected from 15-week-old male SHR and WKY rats. Total RNA was extracted and quantitative RT-PCR was performed. Gene expression of gp39 precursor and monocyte chemoattractant protein-1 were higher in the NTS of SHR while inter-leukin-6 was lower in the NTS of SHR compared to the WKY. In contrast, there were no significant differences in the expression of other cytokines including: inter-leukin-1 beta, tumor necrosis factor-alpha and transforming growth factor beta 1. These data together with our previous published finding of an over expression of junctional adhesion molecule-1 suggest that the NTS of the SHR exhibits a specific inflammatory state.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama City 641-8509, Japan.
| | | | | | | |
Collapse
|
238
|
Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 2008; 335:17-25. [PMID: 18855014 DOI: 10.1007/s00441-008-0694-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/03/2008] [Indexed: 01/19/2023]
Abstract
Adhesive intercellular junctions between endothelial cells are formed by tight junctions and adherens junctions. In addition to promoting cell-to-cell adhesion, these structures regulate paracellular permeability, contact inhibition of endothelial cell growth, cell survival, and maintenance of cell polarity. Furthermore, adherens junctions are required for the correct organization of new vessels during embryo development or during tissue proliferation in the adult. Extensive research on cultured epithelial and endothelial cells has resulted in the identification of many molecular components of tight junctions and adherens junctions. Such studies have revealed the complexity of these structures, which are formed by membrane-associated adhesion proteins and a network of several intracellular signaling partners. This review focuses on the structural organization of junctional structures and their functional interactions in the endothelium of blood vessels and lymphatics. We emphasize the way that these structures regulate endothelial cell homeostasis by transferring specific intracellular signals and by modulating activation and signaling of growth factor receptors.
Collapse
Affiliation(s)
- Elisabetta Dejana
- IFOM , FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | |
Collapse
|
239
|
Fasano A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1243-52. [PMID: 18832585 DOI: 10.2353/ajpath.2008.080192] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields.
Collapse
Affiliation(s)
- Alessio Fasano
- University of Maryland School of Medicine, Mucosal Biology Research Center, Health Science Facility II, Baltimore, MD 21201, USA.
| |
Collapse
|
240
|
Li X, Penes M, Odermatt B, Willecke K, Nagy JI. Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions. Eur J Neurosci 2008; 28:1503-17. [PMID: 18973575 PMCID: PMC2746910 DOI: 10.1111/j.1460-9568.2008.06431.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47-knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were colocalized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47-knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32-knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47-knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase in immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47-knockout mice may arise not only from a loss of Cx47 but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated for by elevated levels of Cx32 along myelinated fibers.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Manitoba, Canada
| | | | | | | | | |
Collapse
|
241
|
Pacquelet-Cheli S, Aurrand-Lions M. [JAM-C, adhesion molecule or intercellular junctional organizer: lessons from knock-out mice]. Med Sci (Paris) 2008; 24:677-8. [PMID: 18789204 DOI: 10.1051/medsci/20082489677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
242
|
Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D, Jackson DG. A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res 2008; 68:7293-303. [PMID: 18794116 DOI: 10.1158/0008-5472.can-07-6506] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invasion of lymphatic vessels is a key step in the metastasis of primary tumors to draining lymph nodes. Although the process is enhanced by tumor lymphangiogenesis, it is unclear whether this is a consequence of increased lymphatic vessel number, altered lymphatic vessel properties, or both. Here we have addressed the question by comparing the RNA profiles of primary lymphatic endothelial cells (LEC) isolated from the vasculature of normal tissue and from highly metastatic T-241/vascular endothelial growth factor (VEGF)-C fibrosarcomas implanted in C57BL/6 mice. Our findings reveal significant differences in expression of some 792 genes (i.e., >or=2-fold up- or down-regulated, P
Collapse
Affiliation(s)
- Steven Clasper
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Franssen EH, De Bree FM, Essing AH, Ramon-Cueto A, Verhaagen J. Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia. Glia 2008; 56:1285-98. [DOI: 10.1002/glia.20697] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
244
|
Pfeiffer F, Kumar V, Butz S, Vestweber D, Imhof B, Stein J, Engelhardt B. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol 2008; 38:2142-55. [DOI: 10.1002/eji.200838140] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
245
|
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 2008; 335:75-96. [DOI: 10.1007/s00441-008-0658-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/03/2008] [Indexed: 02/01/2023]
|
246
|
Abstract
The number of proteins found associated with cell-cell adhesion substructures is growing rapidly. Based on potential protein-protein interactions, complex protein networks at cell-cell contacts can be modeled. Traditional studies to examine protein-protein interactions include co-immunoprecipitation or pull-down experiments of tagged proteins. These studies provide valuable information that proteins can associate directly or indirectly through other proteins in a complex. However, they do not clarify if a given protein is part of other protein complexes or inform about the specificity of those interactions in the context of adhesion substructures. Thus, it is not clear if models compiled from these types of studies reflect the combination of protein interactions in the adhesion complex in vivo for a specific cell type. Therefore, we present here a method to separate cell-cell contact membrane substructures with their associated protein complexes based on their buoyant behavior in iodixanol density gradients. Analysis of 16 proteins of the apical junctional complex (AJC) in epithelial Madin-Darby canine kidney cells revealed a more simple organization of the AJC adhesion complex than that predicted from the combination of all possible protein-protein interactions defined from co-immunoprecipitation and pull-down experiments.
Collapse
Affiliation(s)
- Roger Vogelmann
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University of Medicine, Stanford, CA, USA
| | | |
Collapse
|
247
|
Nishimura N, Sasaki T. Regulation of epithelial cell adhesion and repulsion: role of endocytic recycling. THE JOURNAL OF MEDICAL INVESTIGATION 2008; 55:9-16. [PMID: 18319540 DOI: 10.2152/jmi.55.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A proper balance between cell adhesion and repulsion is essential for cellular morphogenesis during epithelial-mesenchymal transition and mesenchymal-epithelial transition. A number of ligand-receptor pairs including hepatocyte growth factor/scatter factor-Met and semaphorin-plexin are known to control this balance through the complex intracellular signaling pathways. Cell adhesion to other cells and extracellular matrix (ECM) is mediated by cell adhesion molecules (CAMs) and ECM receptors, respectively, which are associated with cytoskeleton through a variety of plaque proteins strengthening and/or weakening adhesion activities. Cell repulsion requires the downregulation of cell adhesion and the extensive changes in cytoskeletal dynamics. The endocytic recycling of CAMs and ECM receptors has recently emerged as an important mechanism to control the balance between cell adhesion and repulsion. Molecule interacting with CasL (MICAL) family proteins are originally identified as a plaque protein associated with ECM receptors integrins and implicated in semaphorin-plexin dependent repulsive axon guidance. We have recently shown that MICAL family protein JRAB/MICAL-L2 functions as an effector protein for Rab family small G protein Rab13 and regulates the endocytic recycling of tight junctional CAM occludin and controls the adhesion and repulsion of epithelial cells.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | |
Collapse
|
248
|
Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 2008; 130:55-70. [PMID: 18415116 PMCID: PMC2413111 DOI: 10.1007/s00418-008-0424-9] [Citation(s) in RCA: 452] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2008] [Indexed: 12/22/2022]
Abstract
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease.
Collapse
Affiliation(s)
- Carola Förster
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
| |
Collapse
|
249
|
Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. ACTA ACUST UNITED AC 2008; 265:1-54. [PMID: 18275885 DOI: 10.1016/s0074-7696(07)65001-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin, cadherin, and growth factor receptor are key molecules for fundamental cellular functions including cell movement, proliferation, differentiation, adhesion, and survival. These cell surface molecules cross-talk with each other in the regulation of such cellular functions. Nectin and nectin-like molecule (Necl) have been identified as cell adhesion molecules that belong to the immunoglobulin superfamily. Nectin and Necl play important roles in the integration of integrin, cadherin, and growth factor receptor at the cell-cell adhesion sites of contacting cells and at the leading edges of moving cells, and thus are also involved in the fundamental cellular functions together with integrin, cadherin, and growth factor receptor. This chapter describes how newly identified cell adhesion molecules, nectin and Necl, modulate the cross-talk among integrin, cadherin, and growth factor receptor and how these integrated molecules act in the regulation of fundamental cellular functions.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
250
|
Palmer G, Busso N, Aurrand-Lions M, Talabot-Ayer D, Chobaz-Péclat V, Zimmerli C, Hammel P, Imhof BA, Gabay C. Expression and function of junctional adhesion molecule-C in human and experimental arthritis. Arthritis Res Ther 2008; 9:R65. [PMID: 17612407 PMCID: PMC2206366 DOI: 10.1186/ar2223] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/11/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022] Open
Abstract
Junctional adhesion molecule-C (JAM-C) is an adhesion molecule involved in transendothelial migration of leukocytes. In this study, we examined JAM-C expression in the synovium and investigated the role of this molecule in two experimental mouse models of arthritis. JAM-C expression was investigated by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of a monoclonal anti-JAM-C antibody were assessed in antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis. JAM-C was expressed by synovial fibroblasts in the lining layer and associated with vessels in the sublining layer in human and mouse arthritic synovial tissue. In human tissue, JAM-C expression was increased in rheumatoid arthritis (RA) as compared to osteoarthritis synovial samples (12.7 ± 1.3 arbitrary units in RA versus 3.3 ± 1.1 in OA; p < 0.05). Treatment of mice with a monoclonal anti-JAM-C antibody decreased the severity of AIA. Neutrophil infiltration into inflamed joints was selectively reduced as compared to T-lymphocyte and macrophage infiltration (0.8 ± 0.3 arbitrary units in anti-JAM-C-treated versus 2.3 ± 0.6 in isotype-matched control antibody-treated mice; p < 0.05). Circulating levels of the acute-phase protein serum amyloid A as well as antigen-specific and concanavalin A-induced spleen T-cell responses were significantly decreased in anti-JAM-C antibody-treated mice. In the serum transfer-induced arthritis model, treatment with the anti-JAM-C antibody delayed the onset of arthritis. JAM-C is highly expressed by synovial fibroblasts in RA. Treatment of mice with an anti-JAM-C antibody significantly reduced the severity of AIA and delayed the onset of serum transfer-induced arthritis, suggesting a role for JAM-C in the pathogenesis of arthritis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Blocking/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Macrophages
- Male
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- RNA, Messenger/metabolism
- Serum Amyloid A Protein/analysis
- Spleen/drug effects
- Spleen/pathology
- Synovial Membrane/chemistry
- Synovial Membrane/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine, University Hospital, 26 avenue Beau-Séjour, 1211 Geneva 14, Switzerland and Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Nathalie Busso
- Division of Rheumatology, Department of Medicine, University Hospital, Nestlé 05-5029, 1011 Lausanne, Switzerland
| | - Michel Aurrand-Lions
- Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Internal Medicine, University Hospital, 26 avenue Beau-Séjour, 1211 Geneva 14, Switzerland and Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Véronique Chobaz-Péclat
- Division of Rheumatology, Department of Medicine, University Hospital, Nestlé 05-5029, 1011 Lausanne, Switzerland
| | - Claudia Zimmerli
- Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Philippe Hammel
- Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine, University Hospital, 26 avenue Beau-Séjour, 1211 Geneva 14, Switzerland and Department of Pathology and Immunology, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|