201
|
Wang X, Miao J, Yan C, Ge R, Liang T, Liu E, Li Q. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway. Carbohydr Polym 2016; 151:996-1005. [PMID: 27474647 DOI: 10.1016/j.carbpol.2016.06.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Dibutyltin (DBT) which was widely used as biocide and plastic stabilizer has been described as a potent neurotoxicant. Chitosan (CS), a natural nontoxic biopolymer, possesses a variety of biological activities including antibacterial, antifungal, free radical scavenging and neuroprotective activities. The present study was undertaken to investigate the protective effects of CS against DBT-induced apoptosis in rat pheochromocytoma (PC12) cells and the underlying mechanisms in vitro. Our results demonstrated that pretreatment with CS significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release induced by DBT in a dose-dependent manner. Meanwhile, DBT-induced cell apoptosis, mitochondrial membrane potential (MMP) disruption, and generation of intracellular reactive oxygen species (ROS) were attenuated by CS. Real-time PCR assay showed that DBT markedly enhanced the mRNA levels of Bax, Bad, cytochrome-c and Apaf-1, reduced the Bcl-2 and Bcl-xL mRNA levels, while these genes expression alteration could be partially reversed by CS treatment. Furthermore, CS also inhibited the DBT-inducted activation of caspase-9, and -3 at mRNA and protein expression levels. Taken together, these results suggested that CS could protect the PC12 cells from apoptosis induced by DBT through inhibition of the mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Junqiu Miao
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Chaoqun Yan
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Rui Ge
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Taigang Liang
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China.
| | - Enli Liu
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
202
|
Ariza J, González-Reyes JA, Jódar L, Díaz-Ruiz A, de Cabo R, Villalba JM. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2. Free Radic Biol Med 2016; 95:82-95. [PMID: 27016073 PMCID: PMC4906443 DOI: 10.1016/j.freeradbiomed.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.
Collapse
Affiliation(s)
- Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Laura Jódar
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Alberto Díaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
203
|
Calapre L, Gray ES, Kurdykowski S, David A, Hart P, Descargues P, Ziman M. Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo. BMC DERMATOLOGY 2016; 16:6. [PMID: 27230291 PMCID: PMC4882820 DOI: 10.1186/s12895-016-0043-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/18/2016] [Indexed: 01/18/2023]
Abstract
Background UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. Methods In this study, we determined the effects of repeated UVB exposure 1 kJ/m2 followed by heat (39 °C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2 days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Results Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Conclusion Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12895-016-0043-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | - Prue Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, Perth, 6008, Australia
| | | | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,Department of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
204
|
San Jose-Eneriz E, Agirre X, Rodríguez-Otero P, Prosper F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 2016; 5:525-38. [PMID: 24059799 DOI: 10.2217/epi.13.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer that is characterized by rapid and uncontrolled proliferation of immature B- or T-lymphoid precursors. Although ALL has been regarded as a genetic disease for many years, the crucial importance of epigenetic alterations in leukemogenesis has become increasingly evident. Epigenetic mechanisms, which include DNA methylation and histone modifications, are critical for gene regulation during many key biological processes. Here, we review the cell signaling pathways that are regulated by DNA methylation or histone modifications in ALL. Recent studies have highlighted the fundamental role of these modifications in ALL development, and suggested that future investigation into the specific genes and pathways that are altered by epigenetic mechanisms can contribute to the development of novel drug-based therapies for ALL.
Collapse
Affiliation(s)
- Edurne San Jose-Eneriz
- Oncology Division, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
205
|
Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct 2016; 222:1-20. [PMID: 27033097 DOI: 10.1007/s00429-016-1218-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
Various stressors may disrupt the redox homeostasis of an organism by causing oxidative and nitrosative stress that may activate stressor-specific pathways and provoke specific responses. Chronic social isolation (CSIS) represents a mild chronic stress that evokes a variety of neurobehavioral changes in rats similar to those observed in people with psychiatric disorders, including depression. Most rodent studies have focused on the effect of social isolation during weaning or adolescence, while its effect in adult rats has not been extensively examined. In this review, we discuss the current knowledge regarding the involvement of oxidative/nitrosative stress pathways in the prefrontal cortex and hippocampus of adult male rats exposed to CSIS, focusing on hypothalamic-pituitary-adrenocortical (HPA) axis activity, behavior parameters, antioxidative defense systems, stress signaling mediated by nuclear factor-kappa B (NF-κB), and mitochondria-related proapoptotic signaling. Although increased concentrations of corticosterone (CORT) have been shown to induce oxidative and nitrosative stress, we suggest a mechanism underlying the glucocorticoid paradox whereby a state of oxidative/nitrosative stress may exist under basal CORT levels. This review also highlights the differential susceptibility of prefrontal cortex and hippocampus to oxidative stress following CSIS and suggests a possible cellular pathway of stress tolerance that preserves the hippocampus from molecular damage and apoptosis. The differential regulation of the transcriptional factor NF-κB, and the enzymes inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) following CSIS may be one functional difference between the response of the prefrontal cortex and hippocampus, thus identifying potentially relevant targets for antidepressant treatment.
Collapse
|
206
|
Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10. Mucosal Immunol 2016; 9:364-78. [PMID: 26220165 DOI: 10.1038/mi.2015.66] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Recent evidence has revealed an unsuspected suppressive role played by neutrophils during microbial infections. An especially intriguing aspect of this role is the ability of neutrophils to produce interleukin (IL)-10 following interaction with lipopolysaccharide (LPS)-stimulated regulatory T (Treg) cells. The present study demonstrates that generation of IL-10 in neutrophils induced by LPS-stimulated Treg cells required direct cell-cell contact. This effect was dependent on the binding of CD11b and intercellular adhesion molecule 1. Neither stimulation of neutrophils with LPS nor their culture with unstimulated Treg cells, CD3/CD28 monoclonal antibodies-stimulated Treg cells, or T conventional cells affected intracellular IL-10 expression. IL-10-positive neutrophils were also induced by exogenous IL-10, providing an example of a positive feedback loop. Both LPS-stimulated Treg cells and exogenous IL-10 exclusively promoted posttranslational modifications of histones, H3K4me3 and H3Ac Lys4, that activate IL-10 genomic locus in neutrophils, while the promoter of IL-10 gene was inactive in resting, LPS-stimulated neutrophils, following blocking of direct interaction with LPS-stimulated Treg cells or in LPS-preactivated neutrophils incubated with LPS-stimulated Treg cells. We additionally confirmed the presence of IL-10-producing neutrophils in vivo in patients with periodontal abscess induced by Gram-negative bacteria, as opposed to neutrophils isolated from the site of aseptic inflammation in patients with neuromyelitis optica.
Collapse
|
207
|
Han SJ, Jung SY, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, Lydon JP, Tsai SY, Tsai MJ, DeMayo FJ, O'Malley BW. Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell 2016; 163:960-74. [PMID: 26544941 DOI: 10.1016/j.cell.2015.10.034] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 01/20/2023]
Abstract
Alterations in estrogen-mediated cellular signaling play an essential role in the pathogenesis of endometriosis. In addition to higher estrogen receptor (ER) β levels, enhanced ERβ activity was detected in endometriotic tissues, and the inhibition of enhanced ERβ activity by an ERβ-selective antagonist suppressed mouse ectopic lesion growth. Notably, gain of ERβ function stimulated the progression of endometriosis. As a mechanism to evade endogenous immune surveillance for cell survival, ERβ interacts with cellular apoptotic machinery in the cytoplasm to inhibit TNF-α-induced apoptosis. ERβ also interacts with components of the cytoplasmic inflammasome to increase interleukin-1β and thus enhance its cellular adhesion and proliferation properties. Furthermore, this gain of ERβ function enhances epithelial-mesenchymal transition signaling, thereby increasing the invasion activity of endometriotic tissues for establishment of ectopic lesions. Collectively, we reveal how endometrial tissue generated by retrograde menstruation can escape immune surveillance and develop into sustained ectopic lesions via gain of ERβ function.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - San-Pin Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon M Hawkins
- Departments of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mi Jin Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Kanazawa University, School of Medical Science, Ishikawa 920-8640, Japan
| | - Jun Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
208
|
Wong SM, Liu FH, Lee YL, Huang HM. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells. PLoS One 2016; 11:e0148093. [PMID: 26815740 PMCID: PMC4729476 DOI: 10.1371/journal.pone.0148093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Shuit-Mun Wong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fu-Hwa Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
209
|
Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SNA. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem Biol Drug Des 2015; 87:517-36. [PMID: 26535952 DOI: 10.1111/cbdd.12682] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An important method of drug discovery is examination of diverse life forms, including medicinal plants and natural products or bioactive compounds isolated from these sources. In cancer research, lead structures of compounds from natural sources can be used to design novel chemotherapies with enhanced biological properties. Betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid or BetA) is a naturally occurring pentacyclic triterpene with a wide variety of biological activities, including potent antitumor properties. Non-malignant cells and normal tissues are not affected by BetA. Because BetA exerts its effects directly on the mitochondrion and triggers death of cancerous cells, it is an important alternative when certain chemotherapy drugs fail. Mitochondrion-targeted agents such as BetA hold great promise to circumvent drug resistance in human cancers. BetA is being developed by a large network of clinical trial groups with the support of the U.S. National Cancer Institute. This article discusses recent advances in research into anticancer activity of BetA, relevant modes of delivery, and the agent's therapeutic efficacy, mechanism of action, and future perspective as a pipeline anticancer drug. BetA is a potentially important agent in cancer therapeutics.
Collapse
Affiliation(s)
- Mohamed Ali-Seyed
- Faculty of Pharmacy, Universiti, Kebangsaan Malaysia (UKM), The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.,School of Life Sciences, B.S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Ibrahim Jantan
- Faculty of Pharmacy, Universiti, Kebangsaan Malaysia (UKM), The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | | | - Syed Nasir Abbas Bukhari
- Faculty of Pharmacy, Universiti, Kebangsaan Malaysia (UKM), The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
210
|
Guo YT, Qiu CZ, Huang ZX, Yu WS, Yang XF, Wang MZ. Correlational research of Golgi phosphorylation protein 3 expression in colorectal cancer. World J Gastroenterol 2015; 21:13473-9. [PMID: 26730158 PMCID: PMC4690176 DOI: 10.3748/wjg.v21.i48.13473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/23/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of Golgi phosphorylation protein 3 (GOLPH3) expression on cell apoptosis, angiogenesis and prognosis in colorectal cancer (CRC). METHODS The expression of GOLPH3 in CRC tissues and normal colorectal mucosae was determined by immunohistochemistry in 62 patients. In addition, immunohistochemistry was also carried out to detect the expression of vascular endothelial growth factor (VEGF), CD34 and microvessel density (MVD). Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to determine the apoptotic index (AI). The Kaplan-Meier method was used to analyze the relationship between GOLPH3 expression and survival in another 123 CRC cases. RESULTS Compared with normal colorectal mucosae, a notably higher level of GOLPH3 protein expression was identified in CRC tissues (53.2% vs 24.2%, P < 0.05). Positive GOLPH3 expression was significantly associated with tumor invasion depth, TNM stage, and lymph node metastasis (P = 0.001; P = 0.020; P = 0.020; P < 0.05, respectively), but not with tumor length, tumor site, and age (P = 0.363; P = 0.819; P = 0.599; P > 0.05, respectively). VEGF expression and MVD in GOLPH3-positive CRC was significantly higher than in GOLPH3-negative CRC (VEGF: 69.7% vs 31.0%; MVD: 21.45 ± 9.39 vs 14.24 ± 8.97; P < 0.05). GOLPH3 expression was negatively correlated with AI in CRC as shown by Spearman correlation analysis (r = -0.320, P < 0.05). The 5-year survival rate in GOLPH3-negative CRC (69.4%) was significantly higher than in GOLPH3-positive CRC (48.6%) (log-rank test, P < 0.05). CONCLUSION High expression of GOLPH3 is found in CRC tissues. GOLPH3 expression may be a novel prognostic marker for CRC patients.
Collapse
|
211
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
212
|
Abstract
In multicellular organisms, cell death is a critical and active process that maintains tissue homeostasis and eliminates potentially harmful cells. There are three major types of morphologically distinct cell death: apoptosis (type I cell death), autophagic cell death (type II), and necrosis (type III). All three can be executed through distinct, and sometimes overlapping, signaling pathways that are engaged in response to specific stimuli. Apoptosis is triggered when cell-surface death receptors such as Fas are bound by their ligands (the extrinsic pathway) or when Bcl2-family proapoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both pathways converge on the activation of the caspase protease family, which is ultimately responsible for the dismantling of the cell. Autophagy defines a catabolic process in which parts of the cytosol and specific organelles are engulfed by a double-membrane structure, known as the autophagosome, and eventually degraded. Autophagy is mostly a survival mechanism; nevertheless, there are a few examples of autophagic cell death in which components of the autophagic signaling pathway actively promote cell death. Necrotic cell death is characterized by the rapid loss of plasma membrane integrity. This form of cell death can result from active signaling pathways, the best characterized of which is dependent on the activity of the protein kinase RIP3.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
213
|
Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 2015; 89:452-65. [PMID: 26454086 DOI: 10.1016/j.freeradbiomed.2015.08.030] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Abstract
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China; Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Kui Wang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qifu Li
- Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China.
| |
Collapse
|
214
|
Li MY, Yuan HL, Ko FWS, Wu B, Long X, Du J, Wu J, Ng CSH, Wan IYP, Mok TSK, Hui DSC, Underwood MJ, Chen GG. Antineoplastic effects of 15(S)-hydroxyeicosatetraenoic acid and 13-S-hydroxyoctadecadienoic acid in non-small cell lung cancer. Cancer 2015; 121 Suppl 17:3130-45. [PMID: 26331820 DOI: 10.1002/cncr.29547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Previous studies have shown that the levels of 15-lipoxygenase 1 (15-LOX-1) and 15-LOX-2 as well as their metabolites 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) are significantly reduced in smokers with non-small cell lung carcinoma (NSCLC). Furthermore, animal model experiments have indicated that the reduction of these molecules occurs before the establishment of cigarette smoking carcinogen-induced lung tumors, and this suggests roles in lung tumorigenesis. However, the functions of these molecules remain unknown in NSCLC. METHODS NSCLC cells were treated with exogenous 13(S)-HODE and 15(S)-HETE, and then the ways in which they affected cell function were examined. 15-LOX-1 and 15-LOX-2 were also overexpressed in tumor cells to restore these 2 enzymes to generate endogenous 13(S)-HODE and 15(S)-HETE before cell function was assessed. RESULTS The application of exogenous 13(S)-HODE and 15(S)-HETE significantly enhanced the activity of peroxisome proliferator-activated receptor γ (PPARγ), inhibited cell proliferation, induced apoptosis, and activated caspases 9 and 3. The overexpression of 15-LOX-1 and 15-LOX-2 obviously promoted the endogenous levels of 13(S)-HODE and 15(S)-HETE, which were demonstrated to be more effective in the inhibition of NSCLC. CONCLUSIONS This study has demonstrated that exogenous or endogenous 13(S)-HODE and 15(S)-HETE can functionally inhibit NSCLC, likely by activating PPARγ. The restoration of 15-LOX activity to increase the production of endogenous 15(S)-HETE and 13(S)-HODE may offer a novel research direction for molecular targeting treatment of smoking-related NSCLC. This strategy can potentially avoid side effects associated with the application of synthetic PPARγ ligands.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Hui-Ling Yuan
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China.,Department of Breast Surgery, Dongguan People's Hospital, Dongguan, People's Republic of China
| | - Fanny W S Ko
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Bin Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guang Dong Medical College, Zhanjiang, People's Republic of China
| | - Xiang Long
- Shenzhen Hospital, Peking University, Shenzhen, People's Republic of China
| | - Jing Du
- Shenzhen Hospital, Peking University, Shenzhen, People's Republic of China
| | - Jun Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guang Dong Medical College, Zhanjiang, People's Republic of China
| | - Calvin S H Ng
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Innes Y P Wan
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tony S K Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Malcolm J Underwood
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - George G Chen
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
215
|
Morgan JA, Lynch J, Panetta JC, Wang Y, Frase S, Bao J, Zheng J, Opferman JT, Janke L, Green DM, Chemaitilly W, Schuetz JD. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death. Sci Rep 2015; 5:16488. [PMID: 26576726 PMCID: PMC4649703 DOI: 10.1038/srep16488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer.
Collapse
Affiliation(s)
- Jessica A Morgan
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John Lynch
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John C Panetta
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Yao Wang
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Sharon Frase
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Ju Bao
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Jie Zheng
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Joseph T Opferman
- Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Laura Janke
- Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Daniel M Green
- Epidemiology &Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Wassim Chemaitilly
- Epidemiology &Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105.,Endocrinology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John D Schuetz
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| |
Collapse
|
216
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
217
|
Wu Y, Lindblad JL, Garnett J, Kamber Kaya HE, Xu D, Zhao Y, Flores ER, Hardy J, Bergmann A. Genetic characterization of two gain-of-function alleles of the effector caspase DrICE in Drosophila. Cell Death Differ 2015; 23:723-32. [PMID: 26542461 DOI: 10.1038/cdd.2015.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Caspases are the executioners of apoptosis. Although much is known about their physiological roles and structures, detailed analyses of missense mutations of caspases are lacking. As mutations within caspases are identified in various human diseases, the study of caspase mutants will help to elucidate how caspases interact with other components of the apoptosis pathway and how they may contribute to disease. DrICE is the major effector caspase in Drosophila required for developmental and stress-induced cell death. Here, we report the isolation and characterization of six de novo drICE mutants, all of which carry point mutations affecting amino acids conserved among caspases in various species. These six mutants behave as recessive loss-of-function mutants in a homozygous condition. Surprisingly, however, two of the newly isolated drICE alleles are gain-of-function mutants in a heterozygous condition, although they are loss-of-function mutants homozygously. Interestingly, they only behave as gain-of-function mutants in the presence of an apoptotic signal. These two alleles carry missense mutations affecting conserved amino acids in close proximity to the catalytic cysteine residue. This is the first time that viable gain-of-function alleles of caspases are described in any intact organism and provides a significant exception to the expectation that mutations of conserved amino acids always abolish the pro-apoptotic activity of caspases. We discuss models about how these mutations cause the gain-of-function character of these alleles.
Collapse
Affiliation(s)
- Y Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Garnett
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Zhao
- University of Massachusetts Amherst, Amherst, MA, USA
| | - E R Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Hardy
- University of Massachusetts Amherst, Amherst, MA, USA
| | - A Bergmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
218
|
Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, Bastos MDL, Carvalho F. Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 2015; 89:1695-1725. [PMID: 25743372 DOI: 10.1007/s00204-015-1478-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines' research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle's enzymes functioning, inhibition of mitochondrial electron transport chain's complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines' neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.
Collapse
Affiliation(s)
- Daniel José Barbosa
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | - João Paulo Capela
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- FP-ENAS (Unidade de Investigação UFP em energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua 9 de Abril 349, 4249-004, Porto, Portugal
| | - Rita Feio-Azevedo
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Armanda Teixeira-Gomes
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
219
|
Looking for Pyroptosis-Modulating miRNAs as a Therapeutic Target for Improving Myocardium Survival. Mediators Inflamm 2015; 2015:254871. [PMID: 26491223 PMCID: PMC4600493 DOI: 10.1155/2015/254871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Pyroptosis is the most recently identified type of regulated cell death with inflammatory response and has characteristics distinct from those of apoptosis or necrosis. Recently, independent studies have reported that small noncoding RNAs termed microRNAs (miRNAs) are involved in the regulation of pyroptosis. Nevertheless, only a handful of empirical data regarding miRNA-dependent regulation of pyroptosis is currently available. This review is aimed to provide a current update on the role of miRNAs in pyroptosis and to offer suggestions for future studies probing miRNAs as a linker connecting pyroptosis to various cardiovascular diseases (CVDs) and their potential as a therapeutic target for preventing excessive cell death of myocardium during CVDs.
Collapse
|
220
|
Kim CD, Cha JD, Li S, Cha IH. The mechanism of acacetin-induced apoptosis on oral squamous cell carcinoma. Arch Oral Biol 2015; 60:1283-98. [DOI: 10.1016/j.archoralbio.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/10/2015] [Accepted: 05/24/2015] [Indexed: 12/25/2022]
|
221
|
Abstract
Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.
Collapse
Affiliation(s)
- Riccardo Ziraldo
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
222
|
Jia MX, Chen J. Apoptotic protease activating factor-1 and tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:3729-3735. [DOI: 10.11569/wcjd.v23.i23.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic protease activating factor-1 (Apaf-1) functions as a core apoptosis factor in the mitochondrial apoptosis pathway. Apaf-1 promoter methylation and loss of heterozygosity are the main causes of cancer, and lower expression of Apaf-1 is closely related to malignant tumors. Apaf-1 expression deletion and methylation can be used as markers for deeper tumor invasion, frequent lymph node metastasis, tumor differentiation and poor prognosis. Apaf-1 can be used as a molecular target for anticancer therapy and prognosis prediction. Further research on Apaf-1 will contribute to the development of effective anti-tumor drugs. In this paper, we will review the biochemical structure and function of Apaf-1, Apaf-1 signal transduction pathway, expression of Apaf-1 in a variety of tumors, as well as its role in tumor occurrence, drug resistance and treatment.
Collapse
|
223
|
MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes. Biochem Biophys Res Commun 2015; 465:299-304. [PMID: 26265044 DOI: 10.1016/j.bbrc.2015.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent.
Collapse
|
224
|
Chhetra Lalli R, Kaur K, Dadsena S, Chakraborti A, Srinivasan R, Ghosh S. Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells. Biochimie 2015; 115:93-107. [DOI: 10.1016/j.biochi.2015.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
225
|
Chaudhary AK, Yadav N, Bhat TA, O'Malley J, Kumar S, Chandra D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 2015; 21:38-47. [PMID: 26232549 DOI: 10.1016/j.drudis.2015.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) has an important regulatory role in programmed cell death by inhibiting the caspase cascade. Activation of XIAP-dependent signaling culminates into regulation of multiple cellular processes including apoptosis, innate immunity, epithelial-to-mesenchymal transition, cell migration, invasion, metastasis and differentiation. Although XIAP localizes to the cytosolic compartment, XIAP-mediated cellular signaling encompasses mitochondrial and post-mitochondrial levels. Recent findings demonstrate that XIAP also localizes to mitochondria and regulates mitochondria functions. XIAP acts upstream of mitochondrial cytochrome c release and modulates caspase-dependent apoptosis. The new function of XIAP has potential to enhance mitochondrial membrane permeabilization and other cellular functions controlling cytochrome c release. These findings could exploit the overexpression of XIAP in human tumors for therapeutic benefits.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
226
|
Additive Effects of Retinoic Acid (RA) and Bone Morphogenetic Protein 4 (BMP-4) Apoptosis Signaling in Retinoblastoma Cell Lines. PLoS One 2015; 10:e0131467. [PMID: 26173116 PMCID: PMC4501735 DOI: 10.1371/journal.pone.0131467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoids have been shown to serve promising therapeutic agents for human cancers, e.g. the treatment of neuroblastoma. Synthetic retinoids, specific for particular retinoic acid (RA) receptors, are tested as new therapy strategies. In the present study, application of recombinant retinoic acid (RA) lowers retinoblastoma (RB) cell viability and induces apoptosis in RB cell lines. Combined treatment of RA and bone morphogenetic protein 4 (BMP-4) increases the pro-apoptotic effect of RA in the RB cells lines WERI-Rb1, Y-79, RB355, RBL-30 and RBL-15, indicating an additive effect. We could show that in WERI-Rb1 cells RA/BMP-4 mediated cell death is at least partially caspase-dependent, whereby RA and BMP-4 additively increased (i) Apaf-1 mRNA levels, (ii) caspase-9 cleavage activity and (iii) the number of activated, cleaved caspase-3 positive cells. Compared to single application of RA and BMP-4, combined RA/BMP-4 treatment significantly augments mRNA levels of the retinoic acid receptors (RARs) RARα and RARß and the retinoic X receptor (RXR) RXRγ suggesting an interaction in the induction of these RA receptor subtypes in WERI-Rb1 cells. Agonist studies revealed that both, RARs and RXRs are involved in RA/BMP-4 mediated apoptosis in WERI-Rb1 retinoblastoma cells. Employing specific RAR subtype antagonists and a RXRß and RXRγ knockdown, we proved that RA/BMP-4 apoptosis signaling in WERI-Rb1 cells requires the RA receptor subtypes RARα, RARß, RXRß and RXRγ. Deciphering signaling mechanisms underlying apoptosis induction of RA and BMP-4 in WERI-Rb1 cells, our study provides useful starting-points for future retinoid-based therapy strategies in retinoblastoma.
Collapse
|
227
|
Chaabane W, Cieślar-Pobuda A, El-Gazzah M, Jain MV, Rzeszowska-Wolny J, Rafat M, Stetefeld J, Ghavami S, Los MJ. Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering. Neoplasia 2015; 16:679-93. [PMID: 25246270 PMCID: PMC4234882 DOI: 10.1016/j.neo.2014.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin–induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin–induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin–induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway.
Collapse
Affiliation(s)
- Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | - Artur Cieślar-Pobuda
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping Sweden; Inst. of Automatic Control, Silesian Univ. of Technology, Gliwice, Poland
| | - Mohamed El-Gazzah
- Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | - Mayur V Jain
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping Sweden
| | | | - Mehrdad Rafat
- Department of Biomedical Engineering, Linköping University, Linköping Sweden
| | - Joerg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Marek J Los
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping Sweden; Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
228
|
Accorsi A, Zibaee A, Malagoli D. The multifaceted activity of insect caspases. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:17-23. [PMID: 25783954 DOI: 10.1016/j.jinsphys.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Caspases are frequently considered synonymous with apoptotic cell death. Increasing evidence demonstrates that these proteases may exert their activities in non-apoptotic functions. The non-apoptotic roles of caspases may include developmentally regulated autophagy during insect metamorphosis, as well as neuroblast self-renewal and the immune response. Here, we summarize the established knowledge and the recent advances in the multiple roles of insect caspases to highlight their relevance for physiological processes and survival.
Collapse
Affiliation(s)
- A Accorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - D Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
229
|
Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 2015; 20:635-43. [PMID: 25766095 DOI: 10.1016/j.drudis.2015.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and how restoration of mitochondrial function could be exploited for cancer therapeutics.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
230
|
Interferon α/β Enhances the Cytotoxic Response of MEK Inhibition in Melanoma. Mol Cell 2015; 57:784-796. [PMID: 25684207 DOI: 10.1016/j.molcel.2014.12.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 11/21/2022]
Abstract
Drugs that inhibit the MAPK pathway have therapeutic benefit in melanoma, but responses vary between patients, for reasons that are still largely unknown. Here we aim at explaining this variability using pre- and post-MEK inhibition transcriptional profiles in a panel of melanoma cell lines. We found that most targets are context specific, under the influence of the pathway in only a subset of cell lines. We developed a computational method to identify context-specific targets, and found differences in the activity levels of the interferon pathway, driven by a deletion of the interferon locus. We also discovered that IFNα/β treatment strongly enhances the cytotoxic effect of MEK inhibition, but only in cell lines with low activity of interferon pathway. Taken together, our results suggest that the interferon pathway plays an important role in, and predicts, the response to MAPK inhibition in melanoma. Our analysis demonstrates the value of system-wide perturbation data in predicting drug response.
Collapse
|
231
|
Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci 2015; 16:2942-55. [PMID: 25636036 PMCID: PMC4346874 DOI: 10.3390/ijms16022942] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 12/24/2022] Open
Abstract
The process of apoptosis is essential for maintaining the physiologic balance between cell death and cell growth. This complex process is executed by two major pathways that participate in activating an executioner mechanism leading to chromatin disintegration and nuclear fragmentation. Dysregulation of these pathways often contributes to cancer development and resistance to cancer therapy. Here, we review the most recent discoveries in apoptosis regulation and possible mechanisms for resensitizing tumor cells to therapy.
Collapse
Affiliation(s)
- Jean L Koff
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Sampath Ramachandiran
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
232
|
Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 2015; 89:289-317. [PMID: 25618543 DOI: 10.1007/s00204-014-1448-7] [Citation(s) in RCA: 513] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Waseem Ahmad Siddiqui
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | | | | |
Collapse
|
233
|
Liu YC, Li L, Su Q, Liu T, Tang ZL. Trimetazidine pretreatment inhibits myocardial apoptosis and improves cardiac function in a Swine model of coronary microembolization. Cardiology 2015; 130:130-136. [PMID: 25612843 DOI: 10.1159/000369246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Trimetazidine (TMZ) is a well-known anti-ischemic agent; however, its efficacy and mechanism of cardioprotection on coronary microembolization (CME) are largely unknown. The present study was undertaken to determine whether TMZ pretreatment could attenuate myocardial apoptosis and improve cardiac function in a swine model of CME. METHODS Fifteen swine were randomly and equally divided into a sham-operated (control) group, CME group and CME plus TMZ (TMZ) group. CME was induced by injecting inert plastic microspheres (42 μm in diameter) into the left anterior descending artery. For the control group, the same dose of normal saline was substituted for the microspheres, and the TMZ group was pretreated with TMZ 30 min before microsphere injection. Cardiac function was assessed by echocardiography, myocardial apoptosis was detected by TUNEL staining, and the expression levels of cleaved caspase-9/3 were measured by Western blot 12 h after operation. RESULTS Compared to the control group, cardiac function in the CME group was significantly decreased (p < 0.05); however, TMZ pretreatment showed significantly improved cardiac function as compared to the CME group (p < 0.05). The myocardial apoptotic rate and the expression levels of cleaved caspase-9/3 increased remarkably in CME group as compared with the control group (p < 0.001). Again, TMZ pretreatment significantly reduced the apoptotic rate and also the expression levels of cleaved caspase-9/3 (p < 0.001). CONCLUSION The present study demonstrated that TMZ pretreatment could significantly inhibit CME-induced myocardial apoptosis and improve cardiac function, and that the cardioprotective effect appeared to be mediated by the blockade of the mitochondrial apoptotic pathway. These results emphasize the importance of TMZ pretreatment in the therapy of CME-induced myocardial injury.
Collapse
Affiliation(s)
- Yang-Chun Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | | | | | | | | |
Collapse
|
234
|
Kafil V, Eskandani M, Omidi Y, Nazemiyeh H, Barar J. Abietane diterpenoid of Salvia sahendica Boiss and Buhse potently inhibits MCF-7 breast carcinoma cells by suppression of the PI3K/AKT pathway. RSC Adv 2015. [DOI: 10.1039/c4ra14905j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ketoethiopinone and ortho-diacetate aethiopinone were identified from the roots of S. sahendica and evaluated for their anti-cancer activity in MCF-7 breast cell lines. The type of cell death and the mechanism by which MCF-7 proliferation was limited were investigated.
Collapse
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Student Research Committee
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Student Research Committee
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Faculty of Pharmacy
| | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Faculty of Pharmacy
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Faculty of Pharmacy
| |
Collapse
|
235
|
Eskandani M, Dadizadeh E, Hamishehkar H, Nazemiyeh H, Barar J. Geno/cytotoxicty and Apoptotic Properties of Phenolic Compounds from the Seeds of Dorema Glabrum Fisch. C.A. ACTA ACUST UNITED AC 2014; 4:191-8. [PMID: 25671175 PMCID: PMC4298710 DOI: 10.15171/bi.2014.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022]
Abstract
![]()
Introduction: Dorema glabrum (Apiaceae) is a rare and monocarpic species distributed in Transcaucasia and North West of Iran. We aimed to explore anti-cancer potency of bioactive compounds from the seeds of Dorma glabrum.
Methods: Methanol extract was subjected to phytochemical investigation using normal phase Sep-pak and reversed-phase HPLC, and cytotoxic effect of isolated compounds on CAOV-4 cell line was evaluated. Furthermore, Annexin V/PI staining and comet assay were used to study genotoxicity of compounds.
Results: Diglucosyl caffeoyl ester (1), Glucopyranosylcaffeic acid (2) and skimmin (3), were identified. MTT cytotoxicity assay showed growth inhibition of CAOV-4 cells due to treatment with compunds (1), (2) and (3) with an IC50 of 99.7, 87.3 and 70.03 μg/ml at 48 h, respectively. Annexin V-FITC/PI staining showed occurrence of early/late apoptosis in the (1)-treated cells, while (2)-and (3)-treated cells necrosis/late apoptosis was dominant event. Single/double strands DNA breakages were observed by comet assay in all treatments.
Conclusion: This work provides sufficient information about anti-cancer properties of the diglucosyl caffeoyl ester from the seeds of D. glabrum.
Collapse
Affiliation(s)
- Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Dadizadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
236
|
Ba HV, Reddy BV, Hwang I. Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In Vitro Cell Dev Biol Anim 2014; 51:447-54. [PMID: 25487673 DOI: 10.1007/s11626-014-9849-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/12/2014] [Indexed: 12/24/2022]
Abstract
Calpastatin participates in apoptotic cell death and cell signaling, but its role in skeletal myoblast development and molecular involvements in cell growth still remains unknown. The current study aimed to investigate the role of calpastatin on the expression patterns of calpains, caspases, and heat shock proteins (HSPs). In addition, the cell viability during myoblast growth under calpastatin silence condition was also investigated. Three small interference RNA sequences (siRNAs) were used to silence calpastatin gene and ligated into pSilencer plasmid vector to construct short hairpin RNA (shRNA) expression. The all three siRNAs significantly silence the calpastatin gene. Moreover, suppression of calpastatin significantly reduced the viability of myoblasts during growth phase when compared to control cells. Additionally, knockdown of calpastatin significantly increased the mRNA expression of μ-calpain, caspase-3, caspase-7, and caspase-9, as well as HSP-27, -70, and -90. The present study results suggested that the suppression of calpastatin resulted in the increased expression of μ-calpain, caspases, and HSPs which in turn regulate the apoptotic cell death. The present study throws light on the central role of calpastatin in the control of calpain activity, cell proliferation, cell survival, and apoptotic pathways.
Collapse
Affiliation(s)
- Hoa Van Ba
- Department of Animal Science and BK21 PLUS program, Chonbuk National University, Jeonju, 561-756, South Korea
| | | | | |
Collapse
|
237
|
Dall'Acqua S, Linardi MA, Bortolozzi R, Clauser M, Marzocchini S, Maggi F, Nicoletti M, Innocenti G, Basso G, Viola G. Natural daucane esters induces apoptosis in leukaemic cells through ROS production. PHYTOCHEMISTRY 2014; 108:147-156. [PMID: 25294094 DOI: 10.1016/j.phytochem.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Continuing our research on antiproliferative agents from plants, we extended our interest on further compounds isolated from Ferula communis and Ferulago campestris. One new daucane (DE-20) and one new phenol derivative (PH-3) were isolated and characterized in addition to six daucane, three coumarins and four simple phenolics. The cytotoxic activity was evaluated against a panel of six human tumor cell lines. The derivative DE-17 that resulted moderately active on all the studied cell lines was studied to evaluate its possible mechanism of action. DE-17 was able to induce apoptosis in a time and concentration-dependent manner in SEM and Jurkat cell lines. We observed that DE-17 just after 1h of treatment increased the reactive oxygen species (ROS) production and that the co-incubation of DE-17 with ROS scavengers significantly increased cell viability suggesting that ROS-mediated downstream signaling is essential for the antiproliferative effects of DE-17. At later times of incubation DE-17 induced mitochondrial depolarization, as well as caspase-3 and -9 activation suggesting that apoptosis follow the mitochondrial pathway. Concomitantly to ROS induction, a remarkable decrease of mRNA expression of several antioxidant enzymes and intracellular GSH content was detected in treated cells compared to controls further indicative of oxidative stress. Taken together our results showed for the first time that daucane esters induces apoptotic cell death through a ROS-mediated mechanism in human leukemia cells.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Dipartimento di Scienze del Farmaco, Università di Padova, Padova, Italy.
| | - Maria Antonella Linardi
- Dipartimento di Salute della Donna e del Bambino - SDB, Laboratorio di Oncoematologia, Università di Padova, Padova, Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino - SDB, Laboratorio di Oncoematologia, Università di Padova, Padova, Italy
| | - Maria Clauser
- Dipartimento di Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Sara Marzocchini
- Dipartimento di Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Filippo Maggi
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Camerino, Italy
| | - Marcello Nicoletti
- Dipartimento di Biologia Ambientale, Università "La Sapienza" Roma, Italy
| | | | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino - SDB, Laboratorio di Oncoematologia, Università di Padova, Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino - SDB, Laboratorio di Oncoematologia, Università di Padova, Padova, Italy.
| |
Collapse
|
238
|
Wu D, Hu Q, Liu X, Pan L, Xiong Q, Zhu YZ. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide 2014; 46:204-12. [PMID: 25461268 DOI: 10.1016/j.niox.2014.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100 µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10 µmol/L). Treatment with NaSH (100 µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100 µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10 µmol/L). After NaSH (100 µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10 µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qingxun Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinhua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lilong Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinghui Xiong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Department of Pharmacology, Loo Yong Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
239
|
A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep 2014; 4:7041. [PMID: 25391369 PMCID: PMC4229672 DOI: 10.1038/srep07041] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and cellular oxidant stress are considered inducers of carcinogenesis. However, the association of ROS with cancer is both complex and, at times, paradoxical. We assessed the effects of dihydromyricetin (DHM) on the induction of ROS accumulation and on the activation of the mitochondrial signaling pathway in human hepatoma HepG2 cells. The results indicated that DHM could reduce ROS accumulation in a concentration-dependent manner. Additionally, with increasing concentrations of DHM, the expression of proteins that participate in the cell apoptosis program increased in a concentration-dependent manner. Furthermore, we found that a low dose of H2O2 (10 nM) could reverse DHM-induced cell apoptosis. We observed the following critical issues: first, the cellular redox balance is vital in DHM-induced apoptosis of human hepatocellular carcinoma (HCC) cells, and second, ROS could function as a redox-active signaling messenger to determine DHM-induced cell apoptosis. In this study, we demonstrated that low levels of ROS are also critical for the function of HCC cells.
Collapse
|
240
|
Léger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics 2014; 14:93-108. [PMID: 25348831 DOI: 10.1074/mcp.m114.041210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Manipulating the apoptotic response of Candida albicans may help in the control of this opportunistic pathogen. The metacaspase Mca1p has been described as a key protease for apoptosis in C. albicans but little is known about its cleavage specificity and substrates. We therefore initiated a series of studies to describe its function. We used a strain disrupted for the MCA1 gene (mca1Δ/Δ) and compared its proteome to that of a wild-type isogenic strain, in the presence and absence of a known inducer of apoptosis, the quorum-sensing molecule farnesol. Label-free and TMT labeling quantitative proteomic analyses showed that both mca1 disruption and farnesol treatment significantly affected the proteome of the cells. The combination of both conditions led to an unexpected biological response: the strong overexpression of proteins implicated in the general stress. We studied sites cleaved by Mca1p using native peptidomic techniques, and a bottom-up approach involving GluC endoprotease: there appeared to be a "K/R" substrate specificity in P1 and a "D/E" specificity in P2. We also found 77 potential substrates of Mca1p, 13 of which validated using the most stringent filters, implicated in protein folding, protein aggregate resolubilization, glycolysis, and a number of mitochondrial functions. An immunoblot assay confirmed the cleavage of Ssb1p, a member of the HSP70 family of heat-shock proteins, in conditions where the metacaspase is activated. These various results indicate that Mca1p is involved in a limited and specific proteolysis program triggered by apoptosis. One of the main functions of Mca1p appears to be the degradation of several major heat-shock proteins, thereby contributing to weakening cellular defenses and amplifying the cell death process. Finally, Mca1p appears to contribute significantly to the control of mitochondria biogenesis and degradation. Consequently, Mca1p may be a link between the extrinsic and the intrinsic programmed cell death pathways in C. albicans.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Marwa Ounissi
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Gaëlle Lelandais
- §Mitochondria, Metals and Oxidative Stress group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
241
|
Fan J, Yang X, Bi Z. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation. Tumour Biol 2014; 36:1135-41. [DOI: 10.1007/s13277-014-2723-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022] Open
|
242
|
Förster A, Preussner LM, Seeger JM, Rabenhorst A, Kashkar H, Mrowietz U, Hartmann K. Dimethylfumarate induces apoptosis in human mast cells. Exp Dermatol 2014; 22:719-24. [PMID: 24112621 DOI: 10.1111/exd.12247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
Abstract
Mast cells modulate autoimmune diseases such as psoriasis and multiple sclerosis. Fumaric acid esters (FAEs) are widely used for the treatment of psoriasis, and dimethylfumarate (DMF) has recently been approved for multiple sclerosis. In this study, we analysed the cytotoxic effect of FAEs on human mast cells. Specifically, cell death was analysed in the human mast cell line HMC-1 and in primary cord blood-derived mast cells (CBMCs) after incubation with fumaric acid (FA), monomethylfumarate (MMF), DMF and calcium bis(monomethylfumarate) (Ca-MF). Our data show that only DMF potently induces apoptotic cell death in HMC-1 cells and CBMCs. DMF-mediated apoptosis was associated with increased expression of Bax and Bak and activation of caspase-9 and caspase-6. Interestingly, DMF also enhanced the sensitivity of CBMCs towards TRAIL- and dexamethasone-induced apoptosis. These findings demonstrate for the first time that DMF induces apoptosis of human mast cells, primarily via the mitochondrial apoptotic pathway. Our study contributes to the understanding of the beneficial effects of FAEs in autoimmune diseases and provides a rationale for exploiting FAEs for other diseases associated with mast cells.
Collapse
Affiliation(s)
- Anja Förster
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
243
|
Zhao HX, Yang XH, Li CP, Chen X. Small intestinal smooth muscle cell apoptosis in rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2014; 22:4231-4236. [DOI: 10.11569/wcjd.v22.i28.4231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether small intestinal smooth muscle cell apoptosis occurs in rats with severe acute pancreatitis (SAP) and the underlying mechanism.
METHODS: Male SD rats were randomly divided into a sham operation group (SO) and an SAP group. SAP was induced by injecting 3.8% sodium taurocholate solution into the subcapsular region of the pancreas of SD rats. Rats in the SO group were injected with 1 mL/kg normal saline. Forty-eight hours later, pancreatic pathological changes and the transit rate of the small bowel were determined. Cell apoptosis, expression of adenine nucleotide translocator (ANT) mRNA, mitochondrial membrane potential, and cytochrome C (Cyt-C) protein expression in the small intestinal smooth muscle were determined by TUNEL method, RT-PCR, flow cytometry and immunohistochemistry, respectively.
RESULTS: Compared with rats in the SO group, rats in the SAP group developed typical SAP symptoms, with a higher pancreatic pathology score (6.85 ± 1.21 vs 1.13 ± 0.91, P < 0.001). Compared with rats in the SO group, the transit rate of the small intestine was significantly lower (55.91% ± 2.93% vs 68.9% ± 5.69%, P < 0.05), the apoptosis of smooth muscle cells in the small intestine increased significantly (0.056 ± 0.184 vs 0.029 ± 0.038, P < 0.05), the expression of ANT mRNA and Cyt-C protein (0.024 ± 0.001 vs 0.057 ± 0.168, P < 0.001) in the smooth muscle of the small intestine increased significantly, and the mitochondrial membrane potential decreased significantly (5.07 ± 0.92 vs 2.40 ± 0.50, P < 0.05) in the SAP group.
CONCLUSION: The mitochondrial signal transduction pathway contributes to smooth muscle cell apoptosis in the small intestine, which may play a role in small intestinal motility dysfunction in SAP rats.
Collapse
|
244
|
Franco MC, Estévez AG. Tyrosine nitration as mediator of cell death. Cell Mol Life Sci 2014; 71:3939-50. [PMID: 24947321 PMCID: PMC11113622 DOI: 10.1007/s00018-014-1662-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 01/04/2023]
Abstract
Nitrotyrosine is used as a marker for the production of peroxynitrite and other reactive nitrogen species. For over 20 years the presence of nitrotyrosine was associated with cell death in multiple pathologies. Filling the gap between correlation and causality has proven to be a difficult task. Here, we discuss the evidence supporting tyrosine nitration as a specific posttranslational modification participating in the induction of cell death signaling pathways.
Collapse
Affiliation(s)
- María C. Franco
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Alvaro G. Estévez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
- 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
245
|
Abstract
INTRODUCTION Caspase-9 is the apoptotic initiator protease of the intrinsic or mitochondrial apoptotic pathway, which is activated at multi-protein activation platforms. Its activation is believed to involve homo-dimerization of the monomeric zymogens. It binds to the apoptosome to retain substantial catalytic activity. Variety of apoptotic stimuli can regulate caspase-9. However, the mechanism of action of various regulators of caspase-9 has not been summarized and compared yet. In this article, we elucidate the regulators of caspase-9 including microRNAs, natural compounds that are related to caspase-9 and ongoing clinical trials with caspase-9 to better understand the caspase-9 in suppressing cancer. AREAS COVERED In this study, the basic mechanism of apoptosis pathways, regulators of caspase-9 and the development of drugs to regulate caspase-9 are reviewed. Also, ongoing clinical trials for caspase-9 are discussed. EXPERT OPINION Apoptosis has crucial role in cancer, brain disease, aging and heart disease to name a few. Since caspase-9 is an initiator caspase of apoptosis, it is an important therapeutic target of various diseases related to apoptosis. Therefore, a deep understanding on the roles as well as regulators of caspase-9 is required to find more effective ways to conquer apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Bonglee Kim
- Kyunghee University, College of Korean Medicine, Cancer Preventive Material Development Research Center , 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701 , South Korea
| | | | | |
Collapse
|
246
|
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, et alGalluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2014; 22:58-73. [PMID: 25236395 PMCID: PMC4262782 DOI: 10.1038/cdd.2014.137] [Show More Authors] [Citation(s) in RCA: 727] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Collapse
Affiliation(s)
- L Galluzzi
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - J M Bravo-San Pedro
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy
| | - S A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - D Adam
- Institute of Immunology, Christian-Albrechts University, Kiel, Germany
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - L Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - D Andrews
- Department of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - M Annicchiarico-Petruzzelli
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata - Istituto Ricovero Cura Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N G Bazan
- Neuroscience Center of Excellence, School of Medicine, New Orleans, LA, USA
| | - M J Bertrand
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - K Bianchi
- 1] Barts Cancer Institute, Cancer Research UK Centre of Excellence, London, UK [2] Queen Mary University of London, John Vane Science Centre, London, UK
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K Blomgren
- Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - C Borner
- Institute of Molecular Medicine and Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - D E Bredesen
- 1] Buck Institute for Research on Aging, Novato, CA, USA [2] Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - C Brenner
- 1] INSERM, UMRS769, Châtenay Malabry, France [2] LabEx LERMIT, Châtenay Malabry, France [3] Université Paris Sud/Paris XI, Orsay, France
| | - M Campanella
- Department of Comparative Biomedical Sciences and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - E Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - F Cecconi
- 1] Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy [2] Department of Biology, University of Rome Tor Vergata; Rome, Italy [3] Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - F K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - E H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - J E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), North Carolina, NC, USA
| | - A Ciechanover
- Tumor and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - T M Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V L Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V De Laurenzi
- Department of Experimental and Clinical Sciences, Gabriele d'Annunzio University, Chieti, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - K-M Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - N Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - V M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - B D Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - W S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - G M Fimia
- 1] Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - R A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany
| | - C Garrido
- 1] INSERM, U866, Dijon, France [2] Faculty of Medicine, University of Burgundy, Dijon, France
| | - M-L Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - D R Green
- Department of Immunology, St Jude's Children's Research Hospital, Memphis, TN, USA
| | - H Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - G Hajnoczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Hardwick
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - H Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - B Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - P J Jost
- Medical Department for Hematology, Technical University of Munich, Munich, Germany
| | - T Kaufmann
- Institute of Pharmacology, Medical Faculty, University of Bern, Bern, Switzerland
| | - O Kepp
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Gustave Roussy, Paris, France [3] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - D J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - R A Knight
- 1] Medical Molecular Biology Unit, Institute of Child Health, University College London (UCL), London, UK [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia [2] School of Medicine and School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - J J Lemasters
- Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - B Levine
- 1] Center for Autophagy Research, University of Texas, Southwestern Medical Center, Dallas, TX, USA [2] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA
| | - A Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts University, Kiel, Germany
| | - S A Lipton
- 1] The Scripps Research Institute, La Jolla, CA, USA [2] Sanford-Burnham Center for Neuroscience, Aging, and Stem Cell Research, La Jolla, CA, USA [3] Salk Institute for Biological Studies, La Jolla, CA, USA [4] University of California, San Diego (UCSD), San Diego, CA, USA
| | - R A Lockshin
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - C López-Otín
- Department of Biochemistry and Molecular Biology, Faculty of Medecine, Instituto Universitario de Oncología (IUOPA), University of Oviedo, Oviedo, Spain
| | - E Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - W Malorni
- 1] Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita (ISS), Roma, Italy [2] San Raffaele Institute, Sulmona, Italy
| | - J-C Marine
- 1] Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, Leuven, Belgium [2] Laboratory for Molecular Cancer Biology, Center of Human Genetics, Leuven, Belgium
| | - S J Martin
- Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - J-C Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - J P Medema
- Laboratory for Experiments Oncology and Radiobiology (LEXOR), Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Meier
- Institute of Cancer Research, The Breakthrough Toby Robins Breast Cancer Research Centre, London, UK
| | - S Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - N Mizushima
- Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - U Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - C Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - G Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - T Panaretakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - J M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - M E Peter
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Piacentini
- 1] Department of Biology, University of Rome Tor Vergata; Rome, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - J H Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons, Dublin, Ireland
| | - H Puthalakath
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - G A Rabinovich
- Laboratory of Immunopathology, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - K S Ravichandran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - R Rizzuto
- Department Biomedical Sciences, University of Padova, Padova, Italy
| | - C M Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - T Rudel
- Department of Microbiology, University of Würzburg; Würzburg, Germany
| | - Y Shi
- Soochow Institute for Translational Medicine, Soochow University, Suzhou, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - B R Stockwell
- 1] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA [2] Departments of Biological Sciences and Chemistry, Columbia University, New York, NY, USA
| | - G Szabadkai
- 1] Department Biomedical Sciences, University of Padova, Padova, Italy [2] Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - S W Tait
- 1] Cancer Research UK Beatson Institute, Glasgow, UK [2] Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - H L Tang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - N Tavernarakis
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Y Tsujimoto
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - T Vanden Berghe
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - P Vandenabeele
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium [3] Methusalem Program, Ghent University, Ghent, Belgium
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - E F Wagner
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London (UCL), London, UK
| | - E White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - W G Wood
- 1] Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN, USA [2] Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Z Zakeri
- 1] Department of Biology, Queens College, Queens, NY, USA [2] Graduate Center, City University of New York (CUNY), Queens, NY, USA
| | - B Zhivotovsky
- 1] Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden [2] Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - G Melino
- 1] Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - G Kroemer
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France [4] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France [5] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
247
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 2014; 10:1072-83. [PMID: 25285039 PMCID: PMC4183927 DOI: 10.7150/ijbs.9719] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy and apoptosis are two important catabolic processes contributing to the maintenance of cellular and tissue homeostasis. Autophagy controls the turnover of protein aggregates and damaged organelles within cells, while apoptosis is the principal mechanism by which unwanted cells are dismantled and eliminated from organisms. Despite marked differences between these two pathways, they are highly interconnected in determining the fate of cells. Intriguingly, caspases, the primary drivers of apoptotic cell death, play a critical role in mediating the complex crosstalk between autophagy and apoptosis. Pro-apoptotic signals can converge to activate caspases to execute apoptotic cell death. In addition, activated caspases can degrade autophagy proteins (i.e., Beclin-1, Atg5, and Atg7) to shut down the autophagic response. Moreover, caspases can convert pro-autophagic proteins into pro-apoptotic proteints to trigger apoptotic cell death instead. It is clear that caspases are important in both apoptosis and autophagy, thus a detailed deciphering of the role of caspases in these two processes is still required to clarify the functional relationship between them. In this article, we provide a current overview of caspases in its interplay between autophagy and apoptosis. We emphasized that defining the role of caspases in autophagy-apoptosis crosstalk will provide a framework for more precise manipulation of these two processes during cell death.
Collapse
Affiliation(s)
- Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoru Che
- 2. Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiaoli Zheng
- 3. Clinical Research Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Pan
- 4. Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
248
|
Morales-Cruz M, Figueroa CM, González-Robles T, Delgado Y, Molina A, Méndez J, Morales M, Griebenow K. Activation of caspase-dependent apoptosis by intracellular delivery of Cytochrome c-based nanoparticles. J Nanobiotechnology 2014; 12:33. [PMID: 25179308 PMCID: PMC4237869 DOI: 10.1186/s12951-014-0033-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing for their delivery to the cytoplasm of target cells. After smart release of Cytochrome c into the cytoplasm, it induced programmed cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kai Griebenow
- Departments of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00931, PR, USA.
| |
Collapse
|
249
|
Seiter MA, Salcher S, Rupp M, Hagenbuchner J, Kiechl-Kohlendorfer U, Mortier J, Wolber G, Rollinger JM, Obexer P, Ausserlechner MJ. Discovery of Sanggenon G as a natural cell-permeable small-molecular weight inhibitor of X-linked inhibitor of apoptosis protein (XIAP). FEBS Open Bio 2014; 4:659-71. [PMID: 25161875 PMCID: PMC4141193 DOI: 10.1016/j.fob.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Discovery of a novel XIAP-inhibitory natural compound from Morus root bark (Sanggenon G). Sanggenon G binds specific to the BIR3 domain of XIAP in a low μM range. Sanggenon G interferes with XIAP-BIR3-substrate binding in living cells. Sanggenon G acts as chemosensitizer in tumor cell lines with high XIAP expression.
Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sāng bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 μM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.
Collapse
Key Words
- (FP-) assay, fluorescence polarization assay
- ARPF-FAM, ARPF-K(5-Fam)-NH2-peptide
- BIR-3, baculovirus-IAP-repeat-3
- CC, column chromatography
- Cell permeable
- Kd, dissociation constant
- Ki, binding affinity
- MAC, methanol crude extract of mulberry root bark
- Natural
- PCA, protein fragment complementation analysis
- RLU, relative luminescence units
- SG1, sanggenon G
- Sanggenon G
- Small-molecular weight
- XIAP inhibitor
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Maximilian A Seiter
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Stefan Salcher
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Martina Rupp
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | | | - Jérémie Mortier
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical & Medicinal Chemistry, Koenigin-Luise-Straße 2, 14195 Berlin, Germany
| | - Gerhard Wolber
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical & Medicinal Chemistry, Koenigin-Luise-Straße 2, 14195 Berlin, Germany
| | - Judith M Rollinger
- Institutes of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| |
Collapse
|
250
|
Delgado Y, Morales-Cruz M, Hernández-Román J, Martínez Y, Griebenow K. Chemical glycosylation of cytochrome c improves physical and chemical protein stability. BMC BIOCHEMISTRY 2014; 15:16. [PMID: 25095792 PMCID: PMC4137108 DOI: 10.1186/1471-2091-15-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/01/2014] [Indexed: 11/14/2022]
Abstract
Background Cytochrome c (Cyt c) is an apoptosis-initiating protein when released into the cytoplasm of eukaryotic cells and therefore a possible cancer drug candidate. Although proteins have been increasingly important as pharmaceutical agents, their chemical and physical instability during production, storage, and delivery remains a problem. Chemical glycosylation has been devised as a method to increase protein stability and thus enhance their long-lasting bioavailability. Results Three different molecular weight glycans (lactose and two dextrans with 1 kD and 10 kD) were chemically coupled to surface exposed Cyt c lysine (Lys) residues using succinimidyl chemistry via amide bonds. Five neo-glycoconjugates were synthesized, Lac4-Cyt-c, Lac9-Cyt-c, Dex5(10kD)-Cyt-c, Dex8(10kD)-Cyt-c, and Dex3(1kD)-Cyt-c. Subsequently, we investigated glycoconjugate structure, activity, and stability. Circular dichroism (CD) spectra demonstrated that Cyt c glycosylation did not cause significant changes to the secondary structure, while high glycosylation levels caused some minor tertiary structure perturbations. Functionality of the Cyt c glycoconjugates was determined by performing cell-free caspase 3 and caspase 9 induction assays and by measuring the peroxidase-like pseudo enzyme activity. The glycoconjugates showed ≥94% residual enzyme activity and 86 ± 3 to 95 ± 1% relative caspase 3 activation compared to non-modified Cyt c. Caspase 9 activation by the glycoconjugates was with 92 ± 7% to 96 ± 4% within the error the same as the caspase 3 activation. There were no major changes in Cyt c activity upon glycosylation. Incubation of Dex3(1 kD)-Cyt c with mercaptoethanol caused significant loss in the tertiary structure and a drop in caspase 3 and 9 activation to only 24 ± 8% and 26 ± 6%, respectively. This demonstrates that tertiary structure intactness of Cyt c was essential for apoptosis induction. Furthermore, glycosylation protected Cyt c from detrimental effects by some stresses (i.e., elevated temperature and humidity) and from proteolytic degradation. In addition, non-modified Cyt c was more susceptible to denaturation by a water-organic solvent interface than its glycoconjugates, important for the formulation in polymers. Conclusion The results demonstrate that chemical glycosylation is a potentially valuable method to increase Cyt c stability during formulation and storage and potentially during its application after administration.
Collapse
Affiliation(s)
| | | | | | | | - Kai Griebenow
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P,O, Box 70377, San Juan, Puerto Rico 00931-3346, USA.
| |
Collapse
|