201
|
Luo J, Walters ET, Carlton SM, Hu H. Targeting Pain-evoking Transient Receptor Potential Channels for the Treatment of Pain. Curr Neuropharmacol 2014; 11:652-63. [PMID: 24396340 PMCID: PMC3849790 DOI: 10.2174/1570159x113119990040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pain affects billions of lives globally and is a major public health problem in the United States. However, pain management is still a challenging task due to a lack of understanding of the fundamental mechanisms of pain. In the past decades transient receptor potential (TRP) channels have been identified as molecular sensors of tissue damage and inflammation. Activation/sensitization of TRP channels in peripheral nociceptors produces neurogenic inflammation and contributes to both somatic and visceral pain. Pharmacological and genetic studies have affirmed the role of TRP channels in multiple forms of inflammatory and neuropathic pain. Thus pain-evoking TRP channels emerge as promising therapeutic targets for a wide variety of pain and inflammatory conditions.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| | - Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069
| | - Hongzhen Hu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
202
|
Chen YC, Lin YH, Wang SH, Lin SP, Shung KK, Wu CC. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound. ULTRASONICS 2014; 54:177-186. [PMID: 23871514 PMCID: PMC4047674 DOI: 10.1016/j.ultras.2013.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Bone fracture induces moderate inflammatory responses that are regulated by cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LO) for initiating tissue repair and bone formation. Only a handful of non-invasive techniques focus on monitoring acute inflammation of injured bone currently exists. In the current study, we monitored in vivo inflammation levels during the initial 2 weeks of the inflammatory stage after mouse bone fracture utilizing 50 MHz ultrasound. The acquired ultrasonic images were correlated well with histological examinations. After the bone fracture in the tibia, dynamic changes in the soft tissue at the medial-posterior compartment near the fracture site were monitored by ultrasound on the days of 0, 2, 4, 7, and 14. The corresponding echogenicity increased on the 2nd, 4th, and 7th day, and subsequently declined to basal levels after the 14th day. An increase of cell death was identified by the positive staining of deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and was consistent with ultrasound measurements. The increases of both COX-2 and Leukotriene B4 receptor 1 (BLT1, 5-LO-relative receptor), which are regulators for tissue inflammation, in the immunohistochemistry staining revealed their involvement in bone fracture injury. Monitoring the inflammatory response to various non-steroidal anti-inflammatory drugs (NSAIDs) treatments was investigated by treating injured mice with a daily oral intake of aspirin (Asp), indomethacin (IND), and a selective COX-2 inhibitor (SC-236). The Asp treatment significantly reduced fracture-increased echogenicity (hyperechogenicity, p<0.05) in ultrasound images as well as inhibited cell death, and expression of COX-2 and BLT1. In contrast, treatment with IND or SC-236 did not reduce the hyperechogenicity, as confirmed by cell death (TUNEL) and expression levels of COX-2 or BLT1. Taken together, the current study reports the feasibility of a non-invasive ultrasound method capable of monitoring post-fracture tissue inflammation that positively correlates with histological findings. Results of this study also suggest that this approach may be further applied to elucidate the underlying mechanisms of inflammatory processes and to develop therapeutic strategies for facilitating fracture healing.
Collapse
Affiliation(s)
- Yen-Chu Chen
- Department of Cell Biology & Anatomy, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsun Lin
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Shyh-Hau Wang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device and Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Shih-Ping Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chia-Ching Wu
- Department of Cell Biology & Anatomy, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device and Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
203
|
Abstract
The pseudounipolar sensory neurons of the dorsal root ganglia (DRG) give rise to peripheral branches that convert thermal, mechanical, and chemical stimuli into electrical signals that are transmitted via central branches to the spinal cord. These neurons express unique combinations of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) channels that contribute to the resting membrane potential, action potential threshold, and regulate neuronal firing frequency. The small-diameter neurons (<25 μm) isolated from the DRG represent the cell bodies of C-fiber nociceptors that express both TTX-S and TTX-R Na(+) currents. The large-diameter neurons (>35 μm) are typically low-threshold A-fibers that predominately express TTX-S Na(+) currents. Peripheral nerve damage, inflammation, and metabolic diseases alter the expression and function of these Na(+) channels leading to increases in neuronal excitability and pain. The Na(+) channels expressed in these neurons are the target of intracellular signaling cascades that regulate the trafficking, cell surface expression, and gating properties of these channels. Post-translational regulation of Na(+) channels by protein kinases (PKA, PKC, MAPK) alter the expression and function of the channels. Injury-induced changes in these signaling pathways have been linked to sensory neuron hyperexcitability and pain. This review examines the signaling pathways and regulatory mechanisms that modulate the voltage-gated Na(+) channels of sensory neurons.
Collapse
Affiliation(s)
- Mohamed Chahine
- Centre de recherche, Institut en santé mentale de Québec, Local F-6539, 2601, chemin de la Canardière, QC City, QC, Canada, G1J 2G3,
| | | |
Collapse
|
204
|
Abstract
PURPOSE OF REVIEW This review presents recent findings on the role of prostaglandins in migraine pathophysiology. RECENT FINDINGS Experimental studies have shown that prostaglandins are distributed in the trigeminal-vascular system and its receptors are localized in the trigeminal ganglion and the trigeminal nucleus caudalis. Prostaglandins were found in smooth muscles of cranial arteries, and functional studies in vivo showed that prostaglandins induced dilatation of cranial vessels. Human studies showed that intravenous infusion of vasodilating prostaglandins such as prostaglandin E₂ (PGE₂), prostaglandin I₂ (PGI₂) and prostaglandin D₂ (PGD₂) induced headache and dilatation of intra-cranial and extra-cranial arteries in healthy volunteers. In contrast, infusion of non-dilating prostaglandin F₂α (PGF₂α) caused no headache or any vascular responses in cranial arteries. PGE₂ and PGI₂ triggered migraine-like attacks in migraine patients without aura, accompanied by dilatation of the intra-cerebral and extra-cerebral arteries. A novel EP4 receptor antagonist could not prevent PGE₂-induced headache in healthy volunteers. SUMMARY Recent in-vitro/in-vivo data demonstrated presence and action of prostaglandins within the trigeminal pain pathways. Migraine induction after intravenous administration of PGE₂ and PGI₂ suggests a specific blockade of their receptors, EP and IP respectively, as a new potential drug target for the acute treatment of migraine.
Collapse
|
205
|
Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res 2013; 53:93-107. [PMID: 24287369 DOI: 10.1016/j.plipres.2013.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/22/2022]
Abstract
TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
206
|
Vos LM, Kuijer R, Huddleston Slater JJR, Bulstra SK, Stegenga B. Inflammation is more distinct in temporomandibular joint osteoarthritis compared to the knee joint. J Oral Maxillofac Surg 2013; 72:35-40. [PMID: 24210930 DOI: 10.1016/j.joms.2013.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/10/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Most of the current understanding of articular cartilage maintenance and degradation is derived from large load-bearing synovial joints, in particular the knee joint. The aim of this study was to identify valuable degradation markers for cartilage degradation in the temporomandibular joint (TMJ) by comparing the relative concentrations of carboxyterminal telopeptides of collagen types I and II (CTX-I and CTX-II), cartilage oligomeric matrix protein (COMP), and prostaglandin E2 (PGE2) in synovial fluid (SF) of TMJ and knee joints with cartilage degradation. MATERIALS AND METHODS In this cross-sectional comparative study, participants were recruited from the University Medical Center Groningen, The Netherlands. Patients with TMJ osteoarthritis were compared with patients with knee osteoarthritis. The outcome variables were the relative SF concentrations of CTX-I, CTX-II, COMP, and PGE2. An independent samples Mann-Whitney U test was used to compare the relative concentrations. RESULTS Thirty consecutive patients (9 male, 21 female; mean age, 40.1 yr; standard deviation, 15.3 yr) with TMJ osteoarthritis and 31 consecutive patients (20 male, 11 female; mean age, 37.4 yr; standard deviation, 13.7 yr) who were scheduled for arthroscopy of the knee joint participated in this study. Significant differences were found between relative concentrations of COMP (P = .000) and PGE2 (P = .005), and no significant differences were found between relative concentrations of CTX-I (P = .720) and CTX-II (P = .242). CONCLUSIONS Relative SF concentrations of COMP and PGE2 showed significant differences between the TMJ and the knee joint, suggesting that there are differences in pathophysiology and that the inflammatory component may be more distinct in the TMJ.
Collapse
Affiliation(s)
- Lukas M Vos
- Research Assistant, Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Roel Kuijer
- Senior Researcher, Department of Biomaterials, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James J R Huddleston Slater
- Senior Researcher, Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoerd K Bulstra
- Professor, Department of Orthopedics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Boudewijn Stegenga
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
207
|
Stapleton F, Marfurt C, Golebiowski B, Rosenblatt M, Bereiter D, Begley C, Dartt D, Gallar J, Belmonte C, Hamrah P, Willcox M. The TFOS International Workshop on Contact Lens Discomfort: report of the subcommittee on neurobiology. Invest Ophthalmol Vis Sci 2013; 54:TFOS71-97. [PMID: 24058137 PMCID: PMC5963174 DOI: 10.1167/iovs.13-13226] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens-related discomfort. While there is limited evidence for the mechanisms involved in contact lens-related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea.
Collapse
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Carl Marfurt
- Indiana University School of Medicine–Northwest, Gary, Indiana
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Rosenblatt
- Weill Cornell Medical College, Cornell University, Ithaca, New York
| | - David Bereiter
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Carolyn Begley
- Indiana University School of Optometry, Bloomington, Indiana
| | - Darlene Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Juana Gallar
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez–Consejo Superior de Investigaciones Cientificas, Alicante, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez–Consejo Superior de Investigaciones Cientificas, Alicante, Spain
| | - Pedram Hamrah
- Massachusetts Eye and Ear Infirmary, Stoneham, Massachusetts
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
208
|
Tamaddonfard E, Farshid AA, Eghdami K, Samadi F, Erfanparast A. Comparison of the effects of crocin, safranal and diclofenac on local inflammation and inflammatory pain responses induced by carrageenan in rats. Pharmacol Rep 2013; 65:1272-80. [DOI: 10.1016/s1734-1140(13)71485-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 05/13/2013] [Indexed: 11/25/2022]
|
209
|
Ramsden CE, Faurot KR, Zamora D, Suchindran CM, MacIntosh BA, Gaylord S, Ringel A, Hibbeln JR, Feldstein AE, Mori TA, Barden A, Lynch C, Coble R, Mas E, Palsson O, Barrow DA, Mann DJ. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain 2013; 154:2441-2451. [PMID: 23886520 DOI: 10.1016/j.pain.2013.07.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022]
Abstract
Omega-3 and n-6 fatty acids are biosynthetic precursors to lipid mediators with antinociceptive and pronociceptive properties. We conducted a randomized, single-blinded, parallel-group clinical trial to assess clinical and biochemical effects of targeted alteration in dietary n-3 and n-6 fatty acids for treatment of chronic headaches. After a 4-week preintervention phase, ambulatory patients with chronic daily headache undergoing usual care were randomized to 1 of 2 intensive, food-based 12-week dietary interventions: a high n-3 plus low n-6 (H3-L6) intervention, or a low n-6 (L6) intervention. Clinical outcomes included the Headache Impact Test (HIT-6, primary clinical outcome), Headache Days per month, and Headache Hours per day. Biochemical outcomes included the erythrocyte n-6 in highly unsaturated fatty acids (HUFA) score (primary biochemical outcome) and bioactive n-3 and n-6 derivatives. Fifty-six of 67 patients completed the intervention. Both groups achieved targeted intakes of n-3 and n-6 fatty acids. In intention-to-treat analysis, the H3-L6 intervention produced significantly greater improvement in the HIT-6 score (-7.5 vs -2.1; P<0.001) and the number of Headache Days per month (-8.8 vs -4.0; P=0.02), compared to the L6 group. The H3-L6 intervention also produced significantly greater reductions in Headache Hours per day (-4.6 vs -1.2; P=0.01) and the n-6 in HUFA score (-21.0 vs -4.0%; P<0.001), and greater increases in antinociceptive n-3 pathway markers 18-hydroxy-eicosapentaenoic acid (+118.4 vs +61.1%; P<0.001) and 17-hydroxy-docosahexaenoic acid (+170.2 vs +27.2; P<0.001). A dietary intervention increasing n-3 and reducing n-6 fatty acids reduced headache pain, altered antinociceptive lipid mediators, and improved quality-of-life in this population.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, NC, USA Department of Biostatistics, School of Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA Nutrition Research and Metabolism Core, North Carolina Translational Clinical Sciences Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of California, San Diego, San Diego, CA, USA School of Medicine and Pharmacology, Royal Perth Hospital, The University of Western Australia, Perth, Australia Division of Gastroenterology and Hepatology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Sekiguchi F, Aoki Y, Nakagawa M, Kanaoka D, Nishimoto Y, Tsubota-Matsunami M, Yamanaka R, Yoshida S, Kawabata A. AKAP-dependent sensitization of Ca(v) 3.2 channels via the EP(4) receptor/cAMP pathway mediates PGE(2) -induced mechanical hyperalgesia. Br J Pharmacol 2013; 168:734-45. [PMID: 22924591 DOI: 10.1111/j.1476-5381.2012.02174.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The Ca(v) 3.2 isoform of T-type Ca(2+) channels (T channels) is sensitized by hydrogen sulfide, a pro-nociceptive gasotransmitter, and also by PKA that mediates PGE(2) -induced hyperalgesia. Here we examined and analysed Ca(v) 3.2 sensitization via the PGE(2) /cAMP pathway in NG108-15 cells that express Ca(v) 3.2 and produce cAMP in response to PGE(2) , and its impact on mechanical nociceptive processing in rats. EXPERIMENTAL APPROACH In NG108-15 cells and rat dorsal root ganglion (DRG) neurons, T-channel-dependent currents (T currents) were measured with the whole-cell patch-clamp technique. The molecular interaction of Ca(v) 3.2 with A-kinase anchoring protein 150 (AKAP150) and its phosphorylation were analysed by immunoprecipitation/immunoblotting in NG108-15 cells. Mechanical nociceptive threshold was determined by the paw pressure test in rats. KEY RESULTS In NG108-15 cells and/or rat DRG neurons, dibutyryl cAMP (db-cAMP) or PGE(2) increased T currents, an effect blocked by AKAP St-Ht31 inhibitor peptide (AKAPI) or KT5720, a PKA inhibitor. The effect of PGE(2) was abolished by RQ-00015986-00, an EP(4) receptor antagonist. AKAP150 was co-immunoprecipitated with Ca(v) 3.2, regardless of stimulation with db-cAMP, and Ca(v) 3.2 was phosphorylated by db-cAMP or PGE(2) . In rats, intraplantar (i.pl.) administration of db-cAMP or PGE(2) caused mechanical hyperalgesia, an effect suppressed by AKAPI, two distinct T-channel blockers, NNC 55-0396 and ethosuximide, or ZnCl(2) , known to inhibit Ca(v) 3.2 among T channels. Oral administration of RQ-00015986-00 suppressed the PGE(2) -induced mechanical hyperalgesia. CONCLUSION AND IMPLICATIONS Our findings suggest that PGE(2) causes AKAP-dependent phosphorylation and sensitization of Ca(v) 3.2 through the EP(4) receptor/cAMP/PKA pathway, leading to mechanical hyperalgesia in rats.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Pharmacology & Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Lu Y, Jiang Q, Yu L, Lu ZY, Meng SP, Su D, Burnstock G, Ma B. 17β-estradiol rapidly attenuates P2X3 receptor-mediated peripheral pain signal transduction via ERα and GPR30. Endocrinology 2013; 154:2421-33. [PMID: 23610132 DOI: 10.1210/en.2012-2119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen has been reported to affect pain perception, although the underlying mechanisms remain unclear. In this investigation, pain behavior testing, patch clamp recording, and immunohistochemistry were used on rats and transgenic mice to determine which estrogen receptors (ERs) and the related signaling pathway are involved in the rapid modulation of estrogen on P2X3 receptor-mediated events. The results showed that 17β-estradiol (E2) rapidly inhibited pain induced by α,β-methylene ATP (α,β-me-ATP), a P2X1 and P2X3 receptor agonist in ovariectomized rats and normal rats in diestrus. The ERα agonist 4,49,499-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) and G protein-coupled receptor 30 (GPR30) agonist G-1 mimicked the estrogen effect, whereas the ERβ agonist diarylpropionitrile (DPN) had no effect. In cultured rat dorsal root ganglion (DRG) neurons, PPT and G-1 but not DPN significantly attenuated α,β-me-ATP-mediated currents, with the dose-response curve of these currents shifted to the right. The inhibitory effect of E2 on P2X3 currents was blocked by G-15, a selective antagonist to the GPR30 estrogen receptor. E2 lacked this effect in DRG neurons from ERα-knockout mice but partly remained in those from ERβ-knockout mice. The P2X3 and GPR30 receptors were coexpressed in the rat DRG neurons. Furthermore, the ERK1/2 inhibitor U0126 reversed the inhibitory effect of E2 on α,β-me-ATP-induced pain and of PPT or G-1 on P2X3 receptor-mediated currents. The cAMP-protein kinase A (PKA) agonist forskolin, but not the PKC agonist phorbol-12-myristate-13-acetate (PMA), mimicked the estrogen-inhibitory effect on P2X3 receptor currents, which was blocked by another ERK1/2 inhibitor, PD98059. These results suggest that estrogen regulates P2X3-mediated peripheral pain by acting on ERα and GPR30 receptors expressed in primary afferent neurons, which probably involves the intracellular cAMP-PKA-ERK1/2 pathway.
Collapse
Affiliation(s)
- Yi Lu
- Department of Physiology, School of Pharmacy, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat 2013; 104-105:58-66. [DOI: 10.1016/j.prostaglandins.2012.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/16/2023]
|
213
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
214
|
Carvalho V, Fernandes L, Conde T, Zamith H, Silva R, Surrage A, Frutuoso V, Castro-Faria-Neto H, Amendoeira F. Antinociceptive activity of Stephanolepis hispidus skin aqueous extract depends partly on opioid system activation. Mar Drugs 2013; 11:1221-34. [PMID: 23574984 PMCID: PMC3705400 DOI: 10.3390/md11041221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/16/2022] Open
Abstract
Stephanolepis hispidus is one of the most common filefish species in Brazil. Its skin is traditionally used as a complementary treatment for inflammatory disorders. However, there are very few studies on chemical and pharmacological properties using the skin of this fish. This study was undertaken in order to investigate the effect of aqueous crude extract of S. hispidus skin (SAE) in different nociception models. Here, we report that intraperitoneal administration of SAE inhibited the abdominal constrictions induced by acetic acid in mice. In addition to the effect seen in the abdominal constriction model, SAE was also able to inhibit the hyperalgesia induced by carrageenan and prostaglandin E2 (PGE2) in mice. This potent antinociceptive effect was observed in the hot plate model too, but not in tail-flick test. Naloxone, an opioid receptor antagonist, was able to block the antinociceptive effect of SAE in the abdominal constriction and hot plate models. In addition, SAE did not present cytotoxic or genotoxic effect in human peripheral blood cells. Our results suggest that aqueous crude extract from S. hispidus skin has antinociceptive activity in close relationship with the partial activation of opioid receptors in the nervous system. Moreover, aqueous crude extract from S. hispidus skin does not present toxicity and is therefore endowed with the potential for pharmacological control of pain.
Collapse
Affiliation(s)
- Vinicius Carvalho
- Laboratory of Inflammation, IOC, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2562-1334; Fax: +55-21-2562-1357
| | - Lohengrin Fernandes
- Division of Marine Ecosystems, Department of Oceanography, IEAPM, Arraial do Cabo-RJ, 28930-000, Brazil; E-Mail:
| | - Taline Conde
- Laboratory of Pharmacology, INCQS, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (T.C.); (H.Z.); (R.S.); (F.A.)
| | - Helena Zamith
- Laboratory of Pharmacology, INCQS, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (T.C.); (H.Z.); (R.S.); (F.A.)
| | - Ronald Silva
- Laboratory of Pharmacology, INCQS, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (T.C.); (H.Z.); (R.S.); (F.A.)
| | - Andrea Surrage
- Laboratory of Immunopharmacology, IOC, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (A.S.); (V.F.); (H.C.-F.-N.)
| | - Valber Frutuoso
- Laboratory of Immunopharmacology, IOC, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (A.S.); (V.F.); (H.C.-F.-N.)
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, IOC, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (A.S.); (V.F.); (H.C.-F.-N.)
| | - Fabio Amendoeira
- Laboratory of Pharmacology, INCQS, Fiocruz, Rio de Janeiro-RJ, 21045-900, Brazil; E-Mails: (T.C.); (H.Z.); (R.S.); (F.A.)
| |
Collapse
|
215
|
Bastos LFS, Godin AM, Zhang Y, Jarussophon S, Ferreira BCS, Machado RR, Maier SF, Konishi Y, de Freitas RP, Fiebich BL, Watkins LR, Coelho MM, Moraes MFD. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4. Neurosci Lett 2013; 543:157-62. [PMID: 23523650 DOI: 10.1016/j.neulet.2013.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 11/19/2022]
Abstract
Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.
Collapse
Affiliation(s)
- Leandro F S Bastos
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Bloco A4, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kanda H, Kobayashi K, Yamanaka H, Noguchi K. COX-1-dependent prostaglandin D2 in microglia contributes to neuropathic pain via DP2 receptor in spinal neurons. Glia 2013; 61:943-56. [PMID: 23505121 DOI: 10.1002/glia.22487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/28/2013] [Indexed: 11/06/2022]
Abstract
Cyclooxygenase (COX) enzyme synthesizes prostaglandins (PGs) from arachidonic acid and exists as two major isozymes, COX-1 and COX-2. The crucial role of prostaglandins in the pathogenesis of inflammatory pain in peripheral tissue and the spinal cord has been established; however its expression dynamics after peripheral nerve injury and its role in neuropathic pain are not clear. In this study, we examined the detailed expression patterns of genes for COX, PGD2 and thromboxane A2 synthases and their receptors in the spinal cord. Furthermore, we explored the altered gene expression of these molecules using the spared nerve injury (SNI) model. We also examined whether these molecules have a role in the development or maintenance of neuropathic pain. We found a number of interesting results in this study, the first was that COX-1 was constitutively expressed in the spinal cord and up-regulated in microglia located in laminae I-II after nerve injury. Second, COX-2 mRNA expression was induced in blood vessels after nerve injury. Third, TXA2 synthase and hematopoietic PGD synthase mRNAs were dramatically increased in the microglia after nerve injury. Finally, we found that intrathecal injection of a COX-1 inhibitor and DP2 receptor antagonist significantly attenuated the mechanical allodynia. Our findings indicate that PGD2 produced by microglia is COX-1 dependent, and that neurons in the spinal cord can receive PGD2 from microglia following peripheral nerve injury. We believe that PGD2 signaling via DP2 signaling pathway from microglia to neurons is one of the triggering factors for mechanical allodynia in this neuropathic pain model.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | |
Collapse
|
217
|
Zhao L, Zhou S, Zou L, Zhao X. The expression and functionality of stromal caveolin 1 in human adenomyosis. Hum Reprod 2013; 28:1324-38. [PMID: 23442759 DOI: 10.1093/humrep/det042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What is the expression pattern and functionality of caveolin 1 (CAV1) in the endometrium of patients with adenomyosis? SUMMARY ANSWER The stromal CAV1 expression is down-regulated that leads to the release of a variety of molecules that either enhance the metastatic capacity of endometrial cells or contribute to adenomyosis-associated dysmenorrhea. WHAT IS KNOWN ALREADY Adenomyosis is characterized by invasion of endometrium into the uterine myometrium. CAV1 has been linked to tumor progression and clinical outcome in a variety of human malignancies; however, its role in adenomyosis development and adenomyosis-associated dysmenorrhea is still poorly recognized. STUDY DESIGN, SIZE, DURATION We retrospectively analyzed the expression levels of CAV1 and RANTES protein using immunohistochemistry in 65 patients who were pathologically diagnosed with adenomyosis and 12 control women without related pathology, who were subjected to surgery between 2009 and 2010. Endometrial tissues from six additional normal females without related pathology were collected from 2011 to 2012; these tissues were subjected to subsequent primary cell culture experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS The expression of CAV1 and RANTES was examined by immunohistochemistry in ectopic endometrium and paired eutopic endometrium of 65 adenomyosis patients and 12 control patients. Primary endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) were isolated from 6 additional control females without related pathology. The expression of CAV1 in ESCs was either (i) inhibited by siRNA transfection and methyl-β-cyclodextrin (MβCD) treatment or (ii) increased by pcDNA3.1/CAV1 transfection. The impact of each treatment on the proliferation, migration and invasion of both ESCs and EECs was evaluated by methylthiazolydiphenyl-tetrazolium assay, colony formation assay, Transwell migration and invasion assay. Furthermore, ESC treatment with MβCD and siCAV1 was assessed for the effect on the expression of a panel of inflammatory cytokines. The levels of two pain mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), were assessed in CAV-1-depleted and control ESCs, whereas immunoblotting was performed to characterize signaling pathways downstream to loss of stromal CAV1 in endometrium. The correlation between dysmenorrhea severity and stromal CAV1 and RANTES expression was further examined using 'Pearson's' correlation analysis. MAIN RESULTS Stromal CAV1 expression in ectopic endometrium of adenomyosis patients was significantly lower than that of paired eutopic endometrium or normal controls as analyzed by immunohistochemistry (P < 0.001). Although no significant difference was observed in the proliferation of CAV1-depleted ESCs when compared with control group, EECs cultured with conditioned media from CAV1-depleted ESCs demonstrated a significantly elevated proliferation rate when compared with those treated with control ESC-conditioned media. Moreover, both CAV1-depleted ESCs and EECs cultured with conditioned media from CAV1-depleted ESCs showed enhanced migration and invasion capacity when compared with control group (P < 0.05). In contrast, incubation with conditioned media of ESCs with enforced CAV1 expression led to decreased proliferation capacity of EECs. Furthermore, the expression of RANTES in ESCs treated with MβCD and siCAV1 was significantly increased. Stromal RANTES expression in the ectopic endometrium of adenomyosis patients was significantly higher than that of paired eutopic endometrium or normal controls as analyzed by immunohistochemistry (P = 0.0026). Stromal CAV1 expression in eutopic endometrium was significantly lower in women with more severe dysmenorrhea (P < 0.05) and was negatively correlated with dysmenorrhea severity in adenomyosis patients (r(2) = 0.1549; P = 0.012, 'Pearson's' χ(2) test), whereas stromal RANTES expression in eutopic endometrium was significantly higher in women with more severe dysmenorrhea (P < 0.05) and was positively correlated with dysmenorrhea severity in adenomyosis patients (r(2) = 0.1646; P = 0.0094, 'Pearson's' χ(2) test). Silencing of CAV1 in ESCs led to increased release of NO and PGE2 when compared with control and was associated with enhanced activity of ERK-FAK signaling pathway. LIMITATIONS, REASONS FOR CAUTION This study assessed the functional role of stromal CAV1 and RANTES in a small number of human adenomyosis samples by immunohistochemistry and in primary human ESCs by functional studies. In future investigations, a larger sample size should be adopted and the functional role of stromal CAV1 should be further characterized in animal models. WIDER IMPLICATIONS OF THE FINDINGS Loss of stromal CAV1 expression may play a critical role in the pathogenesis of adenomyosis and is correlated with adenomyosis-related dysmenorrhea. STUDY FUNDING National Basic Research Program of China and Ph.D. Programs Foundation of Ministry of Education of China. COMPETING INTEREST None.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | | | | | | |
Collapse
|
218
|
Fraccaro E, Coetzee JF, Odore R, Edwards-Callaway LN, Kukanich B, Badino P, Bertolotti L, Glynn H, Dockweiler J, Allen K, Bergamasco L. A study to compare circulating flunixin, meloxicam and gabapentin concentrations with prostaglandin E₂ levels in calves undergoing dehorning. Res Vet Sci 2013; 95:204-11. [PMID: 23434065 DOI: 10.1016/j.rvsc.2013.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 12/11/2012] [Accepted: 01/20/2013] [Indexed: 01/17/2023]
Abstract
The purpose of this study was to investigate the pharmacokinetics of intravenous flunixin (2.2 mg/kg b.w.), oral meloxicam (1mg/kg b.w.), oral gabapentin (15 mg/kg b.w.) alone or co-administrated with meloxicam as well as the effects of these compounds on prostaglandin E2 (PGE2) synthesis in calves subjected to surgical dehorning. Plasma samples collected up to 24h after drug administration were analyzed by liquid chromatography/mass spectrometry, whereas blood PGE2 levels were measured by immunoenzymatic assay. In plasma, the terminal half-live of flunixin, meloxicam and gabapentin were 6.0 h (range, 3.4-11.0 h), 16.7h (range, 13.7-21.3h) and 15.3h (range, 11-32.9h), respectively. The co-administration of single doses of gabapentin and meloxicam did not seem to affect the pharmacokinetic profile of the two drugs except for gabapentin that reached significantly (P<0.05) higher maximum serum concentration (Cmax) when co-administered with meloxicam, than when administered alone. At 5, 360 and 720 min after dehorning, a significant (P<0.01) decrease in PGE2 concentration was observed in flunixin-treated animals compared with control calves. Moreover, circulating log PGE2 concentrations were inversely proportional to log flunixin concentrations (R(2)=0.75; P<0.0001). None of the other drugs significantly affected blood PGE2 levels. Further assessment of oral meloxicam and gabapentin in established pain models is required to formulate science based analgesic recommendations to enhance animal well-being after dehorning.
Collapse
Affiliation(s)
- E Fraccaro
- Department of Animal Pathology, Division of Veterinary Pharmacology and Toxicology, University of Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
St-Jacques B, Ma W. Prostaglandin E2/EP4 signalling facilitates EP4 receptor externalization in primary sensory neurons in vitro and in vivo. Pain 2013; 154:313-323. [DOI: 10.1016/j.pain.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/28/2012] [Accepted: 11/14/2012] [Indexed: 12/21/2022]
|
220
|
The role of potassium channel activation in celecoxib-induced analgesic action. PLoS One 2013; 8:e54797. [PMID: 23358696 PMCID: PMC3554616 DOI: 10.1371/journal.pone.0054797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/14/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Celecoxib (CXB) is a widely prescribed COX-2 inhibitor used clinically to treat pain and inflammation. Recently, COX-2 independent mechanisms have been described to be the targets of CXB. For instance, ion channels such as the voltage-gated sodium channel, L-type calcium channel, Kv2.1, Kv1.5, Kv4.3 and HERG potassium channel were all reported to be inhibited by CXB. Our recent study revealed that CXB is a potent activator of Kv7/M channels. M currents expressed in dorsal root ganglia play an important role in nociception. Our study was aimed at establishing the role of COX-2 independent M current activation in the analgesic action of CXB. METHODS AND RESULTS We compared the effects of CXB and its two structural analogues, unmethylated CXB (UMC) and 2,5-dimethyl-CXB (DMC), on Kv7/M currents and pain behavior in animal models. UMC is a more potent inhibitor of COX-2 than CXB while DMC has no COX-2 inhibiting activity. We found that CXB, UMC and DMC concentration-dependently activated Kv7.2/7.3 channels expressed in HEK293 cells and the M-type current in dorsal root ganglia neurons, negatively shifted I-V curve of Kv7.2/7.3 channels, with a potency and efficiency inverse to their COX-2 inhibitory potential. Furthermore, CXB, UMC and DMC greatly reduced inflammatory pain behavior induced by bradykinin, mechanical pain behavior induced by stimulation with von Frey filaments and thermal pain behavior in the Hargreaves test. CXB and DMC also significantly attenuated hyperalgesia in chronic constriction injury neuropathic pain. CONCLUSION CXB, DMC and UMC are openers of Kv7/M K(+) channels with effects independent of COX-2 inhibition. The analgesic effects of CXBs on pain behaviors, especially those of DMC, suggest that activation of Kv7/M K(+) channels may play an important role in the analgesic action of CXB. This study strengthens the notion that Kv7/M K(+) channels are a potential target for pain treatment.
Collapse
|
221
|
KOMATSU H, ENJOUJI S, ITO A, OHAMA T, SATO K. Prostaglandin E 2 Inhibits Proteinase-Activated Receptor 2-Signal Transduction through Regulation of Receptor Internalization. J Vet Med Sci 2013; 75:255-61. [DOI: 10.1292/jvms.12-0365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hiroyuki KOMATSU
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Shuhei ENJOUJI
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Akihiro ITO
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Takashi OHAMA
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Koichi SATO
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| |
Collapse
|
222
|
Abstract
Pain is an important survival mechanism for an organism. It can turn into severe mental and physical disorder however, if the molecular and/or cellular pathways involved in pain signaling are altered. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimulus) and hyperalgesia (an exaggerated response to a normally noxious stimulus). Past few years of pain research has been mainly focused on precise understanding of the molecular and cellular nociceptive signatures altered during chronic pain, so that more effective pain relievers can be developed. The importance of protein kinases in normal cellular homeostasis and disease pathogenesis has evolved rapidly in the past few decades. The recent advancement defining the role of multiple protein kinases in regulating neuronal plasticity and pain sensitization has gained enough attention of pharmaceutical industry to develop specific and selective kinase inhibitors as analgesics. Cyclin-dependent kinase 5 (Cdk5) is one such emerging kinase in pain biology. We will discuss here the recent advancement and therapeutic potential of Cdk5 in pain signaling.
Collapse
Affiliation(s)
- Tej Kumar Pareek
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lisa Zipp
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - John J Letterio
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
223
|
Abdel-Magid AF. Prostaglandin e2 synthase-1 inhibitors as potential treatment for osteoarthritis: patent highlight. ACS Med Chem Lett 2012; 3:703-4. [PMID: 24900537 DOI: 10.1021/ml300201e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
224
|
Inclusion complex formation of β-cyclodextrin and Naproxen: a study on exothermic complex formation by differential scanning calorimetry. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0241-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
225
|
Zhao J, Fang F, Yu L, Wang G, Yang L. Anti-nociceptive and anti-inflammatory effects of Croton crassifolius ethanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:367-373. [PMID: 22617377 DOI: 10.1016/j.jep.2012.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/18/2012] [Accepted: 04/28/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Croton crassifolius has been used to treat snake bites, stomach ache, sternalgia, joint pain, as well as pharyngitis, jaundice, and rheumatoid arthritis in traditional Chinese medicine. However, there is no scientific evidence which supports the use in the literature. AIM OF THE STUDY To investigate the anti-nociceptive and anti-inflammatory effects of ethanol extract of C. crassifolius. MATERIALS AND METHODS Anti-nociceptive actions of C. crassifolius were assessed in mice using the hot-plate test, acetic acid-induced writhing test, and formalin test. Anti-inflammatory effects of C. crassifolius were determined in three animal models: acetic acid-induced capillary permeability accentuation in mice, carrageenan-induced edema of the hind paw in rats, and cotton pellet-induced granuloma formation in rats. RESULTS Ethanol extract of C. crassifolius showed no significant anti-nociceptive activity in the hot-plate test. However, extract at dosages of 45, 90 and 180 mg/kg significantly reduced acetic acid-induced writhing by 28.89% (P<0.05), 38.37% (P<0.05), and 56.53% (P<0.001), respectively. The extract also caused marked dose-related inhibition of formalin-induced pain in the second phase (P<0.05 for 45 mg/kg, P<0.001 for 90 and 180 mg/kg extract). C. crassifolius extract at dosages of 45, 90 and 180 mg/kg significantly reduced acetic acid-induced capillary permeability accentuation in mice by 26.18% (P<0.05), 65.70% (P<0.001), and 79.19% (P<0.001), and suppressed carrageenan-induced paw edema by 21.28% (P<0.05), 30.69% (P<0.01), and 49.17% (P<0.001) at 6 h after carrageenan injection, respectively. 180 mg/kg of the extract also showed significant activity against carrageenan-induced paw edema at 4 h. At 90 and 180 mg/kg, the extract inhibited cotton pellet-induced granuloma formation in rats. CONCLUSIONS These results collectively demonstrate that the ethanol extract of C. crassifolius possesses peripheral anti-nociceptive and anti-inflammatory effects, providing evidence to rationalize the traditional use of C. crassifolius for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Jie Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | |
Collapse
|
226
|
Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z. Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg 2012; 30:460-5. [PMID: 22775467 DOI: 10.1089/pho.2012.3245] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on reducing post-adjustment orthodontic pain via evaluation of gingival crevicular fluid (GCF) composition changes at the level of prostaglandin-E(2) (PGE(2)) and visual analogue scale (VAS). BACKGROUND DATA LLLT has been found to be effective in pain relief. PGE(2) has the greatest impact on the process of pain signals and can be detected in GCF in order to investigate the response of dental and periodontal tissues in a biochemical manner. MATERIALS AND METHODS Nineteen patients (11 females and 8 males; mean age 13.9 years) were included in this study. Maxillary first molars were banded and then a randomly selected first molar at one side was irradiated (λ820 nm; continuous wave; output power: 50 mW; focal spot: 0.0314 cm(2); exposure duration: 5 sec; power density: 1.59 W/cm(2); energy dose: 0.25 J; energy density: 7.96 J/cm(2) for each shot), while the molar at the other side was served as placebo control. The GCF was collected from the gingival crevice of each molar to evaluate PGE(2) levels, before band placement, 1 and 24 h after laser irradiation. Pain intensity was analyzed at 5 min, 1 h, and 24 h after band placement by using VAS. RESULTS Although no difference was found in pain perception at 5 min and 1 h, significant reduction was observed with laser treatment 24 h after application (p<0.05). The mean PGE(2) levels were significantly elevated in control group, whereas a gradual decrease occurred in laser group. The difference in PGE(2) levels at both 1 and 24 h were statistically significant between two groups (p<0.05). CONCLUSIONS The significant reductions in both pain intensity and PGE(2) levels revealed that LLLT was efficient in reducing orthodontic post-adjustment pain.
Collapse
Affiliation(s)
- Ali Altug Bicakci
- Department of Orthodontics, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | |
Collapse
|
227
|
Antonova M, Wienecke T, Olesen J, Ashina M. Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 2012; 32:822-33. [PMID: 22718556 DOI: 10.1177/0333102412451360] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prostaglandin E(2) (PGE(2)) has been suggested to play an important role in the pathogenesis of migraine. In the present experiment we investigated if an intravenous infusion of PGE(2) would induce migraine-like attacks in patients with migraine. METHODS Twelve patients with migraine without aura were randomly allocated to receive 0.4 µg/kg/min PGE(2) (Prostin(®)E2, dinoprostone) or placebo over 25 minutes in a two-way, crossover study. Headache intensity was recorded on a verbal rating scale, middle cerebral artery blood flow velocity (V(MCA)) was measured by transcranial Doppler (TCD) and diameter of the superficial temporal artery (STA) was obtained by c-series scan (Dermascan C). RESULTS In total, nine migraine patients (75%) experienced migraine-like attacks after PGE(2) compared to none after placebo (p = 0.004). Seven out of 9 (58%) patients reported the migraine-like attacks during the immediate phase (0-90 min) (p = 0.016). Only two patients experienced the delayed migraine-like attacks several hours after the PGE(2) infusion stop (p = 0.500). The V(MCA) decreased during the PGE(2) infusion (p = 0.005) but there was no significant dilatation of the STA (p = 0.850). CONCLUSION The migraine-like attacks during, and immediately after, the PGE(2) infusion contrast with those found in previous provocation studies, in which the other pharmacological compounds triggered the delayed migraine-like attacks several hours after the infusion. We suggest that PGE(2) may be one of the important final products involved in the generation of migraine attacks.
Collapse
Affiliation(s)
- Maria Antonova
- Danish Headache Center and Department of Neurology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
228
|
Marshall TM, Herman DS, Largent-Milnes TM, Badghisi H, Zuber K, Holt SC, Lai J, Porreca F, Vanderah TW. Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E₂ in the spinal cord. Pain 2011; 153:86-94. [PMID: 22030324 DOI: 10.1016/j.pain.2011.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022]
Abstract
Cholecystokinin (CCK) has been suggested to be both pro-nociceptive and "anti-opioid" by actions on pain-modulatory cells within the rostral ventromedial medulla (RVM). One consequence of activation of RVM CCK₂ receptors may be enhanced spinal nociceptive transmission; but how this might occur, especially in states of pathological pain, is unknown. Here, in vivo microdialysis was used to demonstrate that levels of RVM CCK increased by approximately 2-fold after ligation of L₅/L₆ spinal nerves (SNL). Microinjection of CCK into the RVM of naïve rats elicited hypersensitivity to tactile stimulation of the hindpaw. In addition, RVM CCK elicited a time-related increase in (prostaglandin-E₂) PGE₂ measured in cerebrospinal fluid from the lumbar spinal cord. The peak increase in spinal PGE₂ was approximately 5-fold and was observed at approximately 80 minutes post-RVM CCK, a time coincident with maximal RVM CCK-induced mechanical hypersensitivity. Spinal administration of naproxen, a nonselective COX-inhibitor, significantly attenuated RVM CCK-induced hindpaw tactile hypersensitivity. RVM-CCK also resulted in a 2-fold increase in spinal 5-hydroxyindoleacetic acid (5-HIAA), a 5-hydoxytryptophan (5-HT) metabolite, as compared with controls, and mechanical hypersensitivity that was attenuated by spinal application of ondansetron, a 5-HT₃ antagonist. The present studies suggest that chronic nerve injury can result in activation of descending facilitatory mechanisms that may promote hyperalgesia via ultimate release of PGE₂ and 5-HT in the spinal cord.
Collapse
Affiliation(s)
- Timothy M Marshall
- Department of Pharmacology, University of Arizona Health Sciences Center, College of Medicine, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|