201
|
Anreiter I, Mir Q, Simpson JT, Janga SC, Soller M. New Twists in Detecting mRNA Modification Dynamics. Trends Biotechnol 2021; 39:72-89. [PMID: 32620324 PMCID: PMC7326690 DOI: 10.1016/j.tibtech.2020.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
Modified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology.
Collapse
Affiliation(s)
- Ina Anreiter
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Sarath C Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, 5021 Health Information and Translational Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
202
|
Pan XY, Huang C, Li J. The emerging roles of m 6A modification in liver carcinogenesis. Int J Biol Sci 2021; 17:271-284. [PMID: 33390849 PMCID: PMC7757034 DOI: 10.7150/ijbs.50003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The 'epitranscriptome', a collective term for chemical modifications that influence the structure, metabolism, and functions of RNA, has recently emerged as vitally important for the regulation of gene expression. N6-methyladenosine (m6A), the most prevalent mammalian mRNA internal modification, has been demonstrated to have a pivotal role in almost all vital bioprocesses, such as stem cell self-renewal and differentiation, heat shock or DNA damage response, tissue development, and maternal-to-zygotic transition. Hepatocellular carcinoma (HCC) is prevalent worldwide with high morbidity and mortality because of late diagnosis at an advanced stage and lack of effective treatment strategies. Epigenetic modifications including DNA methylation and histone modification have been demonstrated to be crucial for liver carcinogenesis. However, the role and underlying molecular mechanism of m6A in liver carcinogenesis are mostly unknown. In this review, we summarize recent advances in the m6A region and how these new findings remodel our understanding of m6A regulation of gene expression. We also describe the influence of m6A modification on liver carcinoma and lipid metabolism to instigate further investigations of the role of m6A in liver biological diseases and its potential application in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xue-Yin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
203
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T, Yuan X. Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells Dev 2020; 30:17-28. [PMID: 33231507 DOI: 10.1089/scd.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thus far, there are more than known 150 modifications to RNA, in which common internal modifications of mRNA include N6-methyladenosine (m6A), N1-methyladenosine, and 5-methylcytosine. Among them, m6A RNA modification is one of the highest abundance modifications in eukaryotes, regulating mechanisms controlling gene expression at the post-transcription level. As an invertible and dynamic epigenetic marker, m6A base modification influences almost all vital biological processes, cellular components, and molecular functions. Once the m6A modification process is abnormal, a series of diseases-including cancer, neurological diseases, and growth disorders-will be caused. Besides, several base modification activities also have been created by noncoding RNAs (ncRNAs), for instance, microRNAs, and circular RNAs, long ncRNAs, which were dynamically regulated during bone and cartilage pathophysiology processes. Therefore, it has now been clear that dynamic modification on coding RNAs and ncRNAs represents a completely new way to modulate genetic information. In this review, we highlight up-to-date progress and applications of m6A RNA modification in bone and cartilage pathophysiology, and we discuss the pathological roles and underlying molecular mechanism of m6A modifications in osteoarthritis and osteoporosis and osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Junbo Chen
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Yihong Tian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingzhi Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Tianzhen Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
204
|
Abstract
Background Many transcripts have been generated due to the development of sequencing technologies, and lncRNA is an important type of transcript. Predicting lncRNAs from transcripts is a challenging and important task. Traditional experimental lncRNA prediction methods are time-consuming and labor-intensive. Efficient computational methods for lncRNA prediction are in demand. Results In this paper, we propose two lncRNA prediction methods based on feature ensemble learning strategies named LncPred-IEL and LncPred-ANEL. Specifically, we encode sequences into six different types of features including transcript-specified features and general sequence-derived features. Then we consider two feature ensemble strategies to utilize and integrate the information in different feature types, the iterative ensemble learning (IEL) and the attention network ensemble learning (ANEL). IEL employs a supervised iterative way to ensemble base predictors built on six different types of features. ANEL introduces an attention mechanism-based deep learning model to ensemble features by adaptively learning the weight of individual feature types. Experiments demonstrate that both LncPred-IEL and LncPred-ANEL can effectively separate lncRNAs and other transcripts in feature space. Moreover, comparison experiments demonstrate that LncPred-IEL and LncPred-ANEL outperform several state-of-the-art methods when evaluated by 5-fold cross-validation. Both methods have good performances in cross-species lncRNA prediction. Conclusions LncPred-IEL and LncPred-ANEL are promising lncRNA prediction tools that can effectively utilize and integrate the information in different types of features.
Collapse
Affiliation(s)
- Yanzhen Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohan Zhao
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
205
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m 6A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab 2020; 40:2331-2349. [PMID: 32967524 PMCID: PMC7820693 DOI: 10.1177/0271678x20960033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Cellular RNAs are pervasively tagged with diverse chemical moieties, collectively called epitranscriptomic modifications. The methylation of adenosine at N6 position generates N6-methyladenosine (m6A), which is the most abundant and reversible epitranscriptomic modification in mammals. The m6A signaling is mediated by a dedicated set of proteins comprised of writers, erasers, and readers. Contrary to the activation-repression binary view of gene regulation, emerging evidence suggests that the m6A methylation controls multiple aspects of mRNA metabolism, such as splicing, export, stability, translation, and degradation, culminating in the fine-tuning of gene expression. Brain shows the highest abundance of m6A methylation in the body, which is developmentally altered. Within the brain, m6A methylation is biased toward neuronal transcripts and sensitive to neuronal activity. In a healthy brain, m6A maintains several developmental and physiological processes such as neurogenesis, axonal growth, synaptic plasticity, circadian rhythm, cognitive function, and stress response. The m6A imbalance contributes to the pathogenesis of acute and chronic CNS insults, brain cancer, and neuropsychiatric disorders. This review discussed the molecular mechanisms of m6A regulation and its implication in the developmental, physiological, and pathological processes of the brain.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
206
|
Zheng HX, Zhang XS, Sui N. Advances in the profiling of N 6-methyladenosine (m 6A) modifications. Biotechnol Adv 2020; 45:107656. [PMID: 33181242 DOI: 10.1016/j.biotechadv.2020.107656] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Over 160 RNA modifications have been identified, including N7-methylguanine (m7G), N6-methyladenosine (m6A), and 5-methylcytosine (m5C). These modifications play key roles in regulating the fate of RNA. In eukaryotes, m6A is the most abundant mRNA modification, accounting for over 80% of all RNA methylation modifications. Highly dynamic m6A modification may exert important effects on organismal reproduction and development. Significant advances in understanding the mechanism of m6A modification have been made using immunoprecipitation, chemical labeling, and site-directed mutagenesis, combined with next-generation sequencing. Single-molecule real-time and nanopore direct RNA sequencing (DRS) approaches provide additional ways to study RNA modifications at the cellular level. In this review, we explore the technical history of identifying m6A RNA modifications, emphasizing technological advances in detecting m6A modification. In particular, we discuss the challenge of generating accurate dynamic single-base resolution m6A maps and also strategies for improving detection specificity. Finally, we outline a roadmap for future research in this area, focusing on the application of RNA epigenetic modification, represented by m6A modification.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
207
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
208
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
209
|
Meng J, Zhao Z, Xi Z, Xia Q. Liver-specific Mettl3 ablation delays liver regeneration in mice. Genes Dis 2020; 9:697-704. [PMID: 35782970 PMCID: PMC9243324 DOI: 10.1016/j.gendis.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
This study investigated the role of N6-methyladenosine RNA methylation in liver regeneration following partial hepatectomy in mice. We created a liver-specific knockout mouse model by the deletion of Mettl3, a key component of the N6-methyladenosine methyltransferase complex, using the albumin-Cre system. Mettl3 liver-specific knockout mice and their wild-type littermates were subjected to 2/3 partial hepatectomy. Transcriptomic changes in liver tissue at 48 h after partial hepatectomy were detected by RNA-seq. Immunohistochemistry and immunofluorescence were used to determine protein expression levels of Ki67, hepatocyte nuclear factor 4 alpha, and cytokeratin 19. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling was also performed. Liver weight/body weight ratios after partial hepatectomy were significantly lower in Mettl3 liver-specific knockout mice than in wild-type mice at 48 h after 2/3 partial hepatectomy (3.1% ± 0.11% vs. 2.7% ± 0.03%). Compared with wild-type littermates, Mettl3 liver-specific knockout mice showed reduced bromodeoxyuridine staining and reduced Ki-67 expression at 48 h after 2/3 partial hepatectomy. RNA-seq analysis showed that Mettl3 liver-specific knockout delayed the cell cycle progression in murine liver by downregulating the expression levels of genes encoding cyclins D1, A2, B1, and B2. Loss of Mettl3-mediated N6-methyladenosine function led to attenuated liver regeneration by altering the mRNA decay of suppressor of cytokine signaling 6, thereby inhibiting the phosphorylation of signal transducer and activator of transcription 3 during early liver regeneration. These results demonstrated the importance of N6-methyladenosine mRNA modification in liver regeneration and suggest that Mettl3 targeting might facilitate liver regeneration.
Collapse
|
210
|
Liu XM, Wang S, Gan X, Qian SB, Zhou J. Fluorescein-based monitoring of RNA N6-methyladenosine at single-nucleotide resolution. J Mol Cell Biol 2020; 13:325-328. [PMID: 33064831 PMCID: PMC8339360 DOI: 10.1093/jmcb/mjaa057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xianqing Gan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
211
|
Han X, Wang L, Han Q. Advances in the role of m 6A RNA modification in cancer metabolic reprogramming. Cell Biosci 2020; 10:117. [PMID: 33062255 PMCID: PMC7552565 DOI: 10.1186/s13578-020-00479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most common internal modification of eukaryotic mRNA and is widely involved in many cellular processes, such as RNA transcription, splicing, nuclear transport, degradation, and translation. m6A has been shown to plays important roles in the initiation and progression of various cancers. The altered metabolic programming of cancer cells promotes their cell-autonomous proliferation and survival, leading to an indispensable hallmark of cancers. Accumulating evidence has demonstrated that this epigenetic modification exerts extensive effects on the cancer metabolic network by either directly regulating the expression of metabolic genes or modulating metabolism-associated signaling pathways. In this review, we summarized the regulatory mechanisms and biological functions of m6A and its role in cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Xiu Han
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| | - Lin Wang
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| | - Qingzhen Han
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| |
Collapse
|
212
|
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med 2020; 46:1958-1972. [PMID: 33125109 PMCID: PMC7595665 DOI: 10.3892/ijmm.2020.4746] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. Multiple types of RNA, including mRNAs, rRNAs, tRNAs, long non-coding RNAs and microRNAs, are involved in m6A methylation. The biological function of m6A modification is dynamically and reversibly mediated by methyltransferases (writers), demethylases (erasers) and m6A binding proteins (readers). The methyltransferase complex is responsible for the catalyzation of m6A modification and is typically made up of methyltransferase-like (METTL)3, METTL14 and Wilms tumor 1-associated protein. Erasers remove methylation by fat mass and obesity-associated protein and ALKB homolog 5. Readers play a role through the recognition of m6A-modified targeted RNA. The YT521-B homology domain family, heterogeneous nuclear ribonucleoprotein and insulin-like growth factor 2 mRNA-binding protein serve as m6A readers. The m6A methylation on transcripts plays a pivotal role in the regulation of downstream molecular events and biological functions, such as RNA splicing, transport, stability and translatability at the post-transcriptional level. The dysregulation of m6A modification is associated with cancer, drug resistance, virus replication and the pluripotency of embryonic stem cells. Recently, a number of studies have identified aberrant m6A methylation in cardiovascular diseases (CVDs), including cardiac hypertrophy, heart failure, arterial aneurysm, vascular calcification and pulmonary hypertension. The aim of the present review article was to summarize the recent research progress on the role of m6A modification in CVD and give a brief perspective on its prospective applications in CVD.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Linqing Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiantong Hou
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
213
|
Abstract
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
214
|
Cayir A. Environmental exposures and RNA N6-Methyladenosine modified long Non-Coding RNAs. Crit Rev Toxicol 2020; 50:641-649. [PMID: 32924714 DOI: 10.1080/10408444.2020.1812511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in the field of RNA modifications and long non-coding RNAs (lncRNAs) have provided substantial evidence on important biological functions. LncRNAs are defined as longer than 200 nucleotides which are not translated into proteins. The term "epitranscriptome" refers to all modifications in RNA types. Adenine-6 methylation (m6A) is the most common, dynamic and prominent modifications in coding and non-coding RNAs and has critical and previously unappreciated functional roles. Accumulation evidence indicated the association between RNA m6A modification and cancer and nonmalignant diseases. Recent studies reported that several lncRNAs including MALAT1, MEG3, XIST, GAS5, and KCNK15-AS1 are subject to m6A modification. It can be suggested that lncRNAs modified by m6A modification have substantive roles in diseases. Currently limited data are available regarding how environmental exposure affects m6A-modified lncRNAs. Furthermore, we do not know the interaction of environmental exposure and m6A-modified lncRNAs in development of adverse human health outcomes. Thus, in this systematic review, we aimed to present the data of the studies that reported a significant association between environmental exposure and expression/DNA methylation of m6A-modified long non-coding RNAs.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
215
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C, Li Z. Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N 6-Methyladenosine Modification in Musculoskeletal Disorders. Front Cell Dev Biol 2020; 8:870. [PMID: 32984346 PMCID: PMC7493464 DOI: 10.3389/fcell.2020.00870] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications have emerged as key regulators of transcript expression in diverse physiological and pathological processes. As one of the most prevalent types of RNA modifications, N6-methyladenosine (m6A) has become the highlight in modulation of various diseases through interfering RNA splicing, translation, nuclear export, and decay. In many cases, the detailed functions of m6A in cellular processes and diseases remain unclear. Notably, recent studies have determined the relationship between m6A modification and musculoskeletal disorders containing osteosarcoma, osteoarthritis, rheumatoid arthritis, osteoporosis, etc. Herein, this review comprehensively summarizes the recent advances of m6A modification in pathogenesis and progression of musculoskeletal diseases. Specifically, the underlying molecular mechanisms, detection technologies, regulatory functions, clinical implications, and future perspectives of m6A in musculoskeletal disorders are discussed, with the aim to provide a novel insight into their association.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lile He
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
216
|
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C, Chen H. Insight into m 6A methylation from occurrence to functions. Open Biol 2020; 10:200091. [PMID: 32898471 PMCID: PMC7536083 DOI: 10.1098/rsob.200091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
RNA m6A methylation is a post-transcriptional modification that occurs at the nitrogen-6 position of adenine. This dynamically reversible modification is installed, removed and recognized by methyltransferases, demethylases and readers, respectively. This modification has been found in most eukaryotic mRNA, tRNA, rRNA and other non-coding RNA. Recent studies have revealed important regulatory functions of the m6A including effects on gene expression regulation, organism development and cancer development. In this review, we summarize the discovery and features of m6A, and briefly introduce the mammalian m6A writers, erasers and readers. Finally, we discuss progress in identifying additional functions of m6A and the outstanding questions about the regulatory effect of this widespread modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
217
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
218
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
219
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
220
|
Wang L, Wu Z, Zou C, Liang S, Zou Y, Liu Y, You F. Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder ( Paralichthys olivaceus). Front Cell Dev Biol 2020; 8:751. [PMID: 32850855 PMCID: PMC7419692 DOI: 10.3389/fcell.2020.00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) are two of the most abundant RNA modifications. Here, we examined the characteristics of the RNA editing and transcriptome-wide m6A modification profile in the gonads of the olive flounder, Paralichthys olivaceus, an important maricultured fish in Asia. The gonadal differentiation and development of the flounder are controlled by genetic as well as environmental factors, and the epigenetic mechanism may play an important role. In total, 742 RNA editing events were identified, 459 of which caused A to I conversion. Most A-to-I sites were located in 3′UTRs, while 61 were detected in coding regions (CDs). The number of editing sites in the testis was higher than that in the ovary. Transcriptome-wide analyses showed that more than one-half of the transcribed genes presented an m6A modification in the flounder gonads, and approximately 60% of the differentially expressed genes (DEGs) between the testis and ovary appeared to be negatively correlated with m6A methylation enrichment. Further analyses revealed that the mRNA expression of some sex-related genes (e.g., dmrt1 and amh) in the gonads may be regulated by changes in mRNA m6A enrichment. Functional enrichment analysis indicated that the RNA editing and m6A modifications were enriched in several canonical pathways (e.g., Wnt and MAPK signaling pathways) in fish gonads and in some pathways whose roles have not been investigated in relation to fish sex differentiation and gonadal development (e.g., PPAR and RNA degradation pathways). There were 125 genes that were modified by both A-to-I editing and m6A, but the two types of modifications mostly occurred at different sites. Our results suggested that the presence of sex-specific RNA modifications may be involved in the regulation of gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
221
|
Heterogeneity in mRNA Translation. Trends Cell Biol 2020; 30:606-618. [DOI: 10.1016/j.tcb.2020.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
|
222
|
Reichel M, Köster T, Staiger D. Marking RNA: m6A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 2020; 11:899-910. [PMID: 31336387 PMCID: PMC6884701 DOI: 10.1093/jmcb/mjz085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) emerges as an important modification in eukaryotic mRNAs. m6A has first been reported in 1974, and its functional significance in mammalian gene regulation and importance for proper development have been well established. An arsenal of writer, eraser, and reader proteins accomplish deposition, removal, and interpretation of the m6A mark, resulting in dynamic function. This led to the concept of an epitranscriptome, the compendium of RNA species with chemical modification of the nucleobases in the cell, in analogy to the epigenome. While m6A has long been known to also exist in plant mRNAs, proteins involved in m6A metabolism have only recently been detected by mutant analysis, homology search, and mRNA interactome capture in the reference plant Arabidopsis thaliana. Dysregulation of the m6A modification causes severe developmental abnormalities of leaves and roots and altered timing of reproductive development. Furthermore, m6A modification affects viral infection. Here, we discuss recent progress in identifying m6A sites transcriptome-wide, in identifying the molecular players involved in writing, removing, and reading the mark, and in assigning functions to this RNA modification in A. thaliana. We highlight similarities and differences to m6A modification in mammals and provide an outlook on important questions that remain to be addressed.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
223
|
Sendinc E, Valle-Garcia D, Jiao A, Shi Y. Analysis of m6A RNA methylation in Caenorhabditis elegans. Cell Discov 2020; 6:47. [PMID: 32695436 PMCID: PMC7359367 DOI: 10.1038/s41421-020-00186-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - David Valle-Garcia
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
- Present Address: Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 Mexico
| | - Alan Jiao
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
224
|
Zhao J, Li B, Ma J, Jin W, Ma X. Photoactivatable RNA N 6 -Methyladenosine Editing with CRISPR-Cas13. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907301. [PMID: 32583968 DOI: 10.1002/smll.201907301] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
RNA has important and diverse biological roles, but the molecular methods to manipulate it spatiotemporally are limited. Here, an engineered photoactivatable RNA N6 -methyladenosine (m6 A) editing system with CRISPR-Cas13 is designed to direct specific m6 A editing. Light-inducible heterodimerizing proteins CIBN and CRY2PHR are fused to catalytically inactive PguCas13 (dCas13) and m6 A effectors, respectively. This system, referred to as PAMEC, enables the spatiotemporal control of m6 A editing in response to blue light. Further optimization of this system to create a highly efficient version, known as PAMECR , allows the manipulation of multiple genes robustly and simultaneously. When coupled with an upconversion nanoparticle film, the optogenetic operation window is extended from the visible range to tissue-penetrable near-infrared wavelengths, which offers an appealing avenue to remotely control RNA editing. These results show that PAMEC is a promising optogenetic platform for flexible and efficient targeting of RNA, with broad applicability for epitranscriptome engineering, imaging, and future therapeutic development.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin, 300211, China
| | - Bing Li
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin, 300211, China
| | - Jianxiong Ma
- Orthopedic Research Institute, Tianjin University Tianjin Hospital, Tianjin, 300050, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin, 300211, China
| |
Collapse
|
225
|
Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1586. [PMID: 31960607 PMCID: PMC8243748 DOI: 10.1002/wrna.1586] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 01/16/2023]
Abstract
Cells use chemical modifications to alter the sterics, charge, and conformations of large biomolecules, modulating their biogenesis, function, and stability. Until recently post-transcriptional RNA modifications were thought to be largely limited to nonprotein coding RNA species. However, this dogma has rapidly transformed with the discovery of a host of modifications in protein coding messenger RNAs (mRNAs). Recent advancements in genome-wide sequencing technologies have enabled the identification of mRNA modifications as a potential new frontier in gene regulation-leading to the development of the epitranscriptome field. As a result, there has been a flurry of multiple groundbreaking discoveries, including new modifications, nucleoside modifying enzymes ("writers" and "erasers"), and RNA binding proteins that recognize chemical modifications ("readers"). These discoveries opened the door to understanding how post-transcriptional mRNA modifications can modulate the mRNA lifecycle, and established a link between the epitranscriptome and human health and disease. Despite a rapidly growing recognition of their importance, fundamental questions regarding the identity, prevalence, and functional consequences of mRNA modifications remain to be answered. Here, we highlight quantitative studies that characterize mRNA modification abundance, frequency, and interactions with cellular machinery. As the field progresses, we see a need for the further integration of quantitative and reductionist approaches to complement transcriptome wide studies in order to establish a molecular-level framework for understanding the consequences of mRNA chemical modifications on biological processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
226
|
Programmable m 6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol 2020; 38:1431-1440. [PMID: 32601430 PMCID: PMC7718427 DOI: 10.1038/s41587-020-0572-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
N6-Methyladenosine (m6A) is the most widespread internal messenger RNA modification in humans. Despite recent progress in understanding the biological roles of m6A, the inability to install m6A site specifically in individual transcripts has hampered efforts to elucidate causal relationships between the presence of a specific m6A and phenotypic outcomes. In the present study, we demonstrate that nucleus-localized dCas13 fusions with a truncated METTL3 methyltransferase domain and cytoplasm-localized fusions with a modified METTL3:METTL14 methyltransferase complex can direct site-specific m6A incorporation in distinct cellular compartments, with the former fusion protein having particularly low off-target activity. Independent cellular assays across multiple sites confirm that this targeted RNA methylation (TRM) system mediates efficient m6A installation in endogenous RNA transcripts with high specificity. Finally, we show that TRM can induce m6A-mediated changes to transcript abundance and alternative splicing. These findings establish TRM as a tool for targeted epitranscriptome engineering that can reveal the effect of individual m6A modifications and dissect their functional roles.
Collapse
|
227
|
LNC942 promoting METTL14-mediated m 6A methylation in breast cancer cell proliferation and progression. Oncogene 2020; 39:5358-5372. [PMID: 32576970 DOI: 10.1038/s41388-020-1338-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Increasing evidence supports that long noncoding RNAs (lncRNAs) act as master regulators involved in tumorigenesis and development at the N6-methyladenine (m6A) epigenetic modification level. However, the underlying regulatory mechanism in breast cancer (BRCA) remains elusive. Here, we unveil that LINC00942 (LNC942) exerts its functions as an oncogene in promoting METTL14-mediated m6A methylation and regulating the expression and stability of its target genes CXCR4 and CYP1B1 in BRCA initiation and progression. Specifically, LNC942 and METTL14 were significantly upregulated accompanied with the upregulation of m6A levels in BRCA cells and our included BRCA cohorts (n = 150). Functionally, LNC942 elicits potent oncogenic effects on promoting cell proliferation and colony formation and inhibiting cell apoptosis, subsequently elevating METTL14-mediated m6A methylation levels and its associated mRNA stability and protein expression of CXCR4 and CYP1B1 in BRCA cells. Mechanistically, LNC942 directly recruits METTL14 protein by harboring the specific recognize sequence (+176-+265), thereby stabilized the expression of downstream targets of LNC942 including CXCR4 and CYP1B1 through posttranscriptional m6A methylation modification in vitro and in vivo. Therefore, our results uncover a novel LNC942-METTL14-CXCR4/CYP1B1 signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for BRCA prevention and treatment.
Collapse
|
228
|
Yang S, Wu F, Peng S, Wang F, Chen Y, Yuan Y, Weng X, Zhou X. A m 6 A Sensing Method by Its Impact on the Stability of RNA Double Helix. Chem Biodivers 2020; 17:e2000050. [PMID: 32372485 DOI: 10.1002/cbdv.202000050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
Abstract
N6 -Methyladenosine (m6 A) is one of the most important RNA modifications in epigenetics. The development of detection method for m6 A is limited by its abundance and structure. Although it has been previously reported that its presence has an impact on the complementary pairing of RNA, few assays have been developed using this finding. We used this discovery and designed a detection method based on Cas13a system, which has different fluorescence signals for target RNAs containing m6 A modification and target RNAs without m6 A modification. We verified the fact that the presence of m6 A could cause the instability of dsRNA using the Cas13a system and provided a new direction and strategy for the development of m6 A detection methods in the future.
Collapse
Affiliation(s)
- Shixi Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Yushu Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
229
|
Abstract
Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Isaia Barbieri
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
230
|
Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers (Basel) 2020; 12:cancers12051245. [PMID: 32429086 PMCID: PMC7281179 DOI: 10.3390/cancers12051245] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term "lncRNA or long non-coding RNA" was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.
Collapse
|
231
|
Zhang X, Wang F, Wang Z, Yang X, Yu H, Si S, Lu J, Zhou Z, Lu Q, Wang Z, Yang H. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m 6A-dependent manner. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:646. [PMID: 32566583 PMCID: PMC7290639 DOI: 10.21037/atm-20-3079] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The modification and regulation of N6-methyladenosine (m6A) at mRNA level can affect the development and progression in various tumors. ALKBH5, as an m6A demethylase, plays different roles in tumors by regulating the m6A modification of mRNA. However, its role in renal cell carcinoma (RCC) remains unclear. Methods First, levels of ALKBH5 in RCC tissues and cell lines were verified by qRT-PCR and western blot. We analyzed the relationship between ALKBH5 and the clinicopathological characteristics of RCC patients and the influence of ALKBH5 on the prognosis of patients. Then we generated ALBKH5-overexpression, ALBKH5-knockdown stable RCC cell lines and their control cell lines. Through cell proliferation assay, colony formation assay, cell invasion and tumor migration assay, cell cycle assay and xenograft studies, we studied the ALKBH5 roles in RCC cell lines. AURKB was predicted to be its potential target based on TCGA database analysis and verified by western blot. The role of AURKB in RCC was verified by TCGA database and Kaplan-Meier analysis with TMA immunohistochemical analysis. Finally, the specific molecular mechanism of ALKBH5 targeting AURKB was explored by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), m6A dot-blot assay, m6A RNA Immunoprecipitation (MeRIP) assay, and mRNA stability assay. Results We found that ALKBH5 was highly expressed in both RCC tumor tissues and cell lines. Clinicopathological analysis showed that high ALKBH5 expression was associated with larger tumor volume (P=0.017) and higher TNM staging (P=0.006), and worse prognosis (log rank: P=0.0199). The cellular functional assays showed that stably overexpression ALKBH5 could promote the cell proliferation, colony formation, cell migration and cell invasion of renal cell carcinoma cells in vitro and promote tumor growth in vivo. In contrast, ALKBH5 knocked down inhibited cell proliferation, colony formation, migration and invasion of renal cell carcinoma cells in vitro. Based on TCGA database analysis, AURKB was predicted highly expressed in RCC and a potential target of ALKBH5. Both database prediction and TMA immunohistochemical analysis supported that AURKB could affect the prognosis of RCC patients (P values of 5.5e-08 and 0.0004, respectively) and was regulated by ALKBH5 expression level. Subsequent mechanism experiments showed that ALKBH5 regulated the expression of AURKB by regulating the stability of AURKB mRNA in the m6A-dependent manner, and finally promoted cell proliferation. Furthermore, we found that hypoxia-induced HIF could up-regulate both expressions of AURKB and ALKBH5. Conclusions Our findings suggest that ALKBH5 may play a carcinogenic role in renal cell carcinoma by stabilizing AURKB mRNA in a m6A-dependent manner. These data suggest that ALKBH5 may play a key role in RCC and targeting the ALKBH5 signaling pathway may be a promising strategy for the treatment of RCC.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuhui Si
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiancheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
232
|
Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine. Nat Chem Biol 2020; 16:896-903. [PMID: 32341502 DOI: 10.1038/s41589-020-0525-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
The inert chemical property of RNA modification N6-methyladenosine (m6A) makes it very challenging to detect. Most m6A sequencing methods rely on m6A-antibody immunoprecipitation and cannot distinguish m6A and N6,2'-O-dimethyladenosine modification at the cap +1 position (cap m6Am). Although the two antibody-free methods (m6A-REF-seq/MAZTER-seq and DART-seq) have been developed recently, they are dependent on m6A sequence or cellular transfection. Here, we present an antibody-free, FTO-assisted chemical labeling method termed m6A-SEAL for specific m6A detection. We applied m6A-SEAL to profile m6A landscapes in humans and plants, which displayed the known m6A distribution features in transcriptome. By doing a comparison with all available m6A sequencing methods and specific m6A sites validation by SELECT, we demonstrated that m6A-SEAL has good sensitivity, specificity and reliability for transcriptome-wide detection of m6A. Given its tagging ability and FTO's oxidation property, m6A-SEAL enables many applications such as enrichment, imaging and sequencing to drive future functional studies of m6A and other modifications.
Collapse
|
233
|
A metabolic labeling method detects m 6A transcriptome-wide at single base resolution. Nat Chem Biol 2020; 16:887-895. [PMID: 32341503 DOI: 10.1038/s41589-020-0526-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022]
Abstract
Transcriptome-wide mapping of N6-methyladenosine (m6A) at base resolution remains an issue, impeding our understanding of m6A roles at the nucleotide level. Here, we report a metabolic labeling method to detect mRNA m6A transcriptome-wide at base resolution, called 'm6A-label-seq'. Human and mouse cells could be fed with a methionine analog, Se-allyl-L-selenohomocysteine, which substitutes the methyl group on the enzyme cofactor SAM with the allyl. Cellular RNAs could therefore be metabolically modified with N6-allyladenosine (a6A) at supposed m6A-generating adenosine sites. We pinpointed the mRNA a6A locations based on iodination-induced misincorporation at the opposite site in complementary DNA during reverse transcription. We identified a few thousand mRNA m6A sites in human HeLa, HEK293T and mouse H2.35 cells, carried out a parallel comparison of m6A-label-seq with available m6A sequencing methods, and validated selected sites by an orthogonal method. This method offers advantages in detecting clustered m6A sites and holds promise to locate nuclear nascent RNA m6A modifications.
Collapse
|
234
|
Yoneda R, Ueda N, Uranishi K, Hirasaki M, Kurokawa R. Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m 6A modification. J Biol Chem 2020; 295:5626-5639. [PMID: 32165496 PMCID: PMC7186179 DOI: 10.1074/jbc.ra119.011556] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D-TLS interaction is essential for pncRNA-D-stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS-pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression.
Collapse
Affiliation(s)
- Ryoma Yoneda
- Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Naomi Ueda
- Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Kousuke Uranishi
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Riki Kurokawa
- Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan.
| |
Collapse
|
235
|
McIntyre ABR, Gokhale NS, Cerchietti L, Jaffrey SR, Horner SM, Mason CE. Limits in the detection of m 6A changes using MeRIP/m 6A-seq. Sci Rep 2020; 10:6590. [PMID: 32313079 PMCID: PMC7170965 DOI: 10.1038/s41598-020-63355-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many cellular mRNAs contain the modified base m6A, and recent studies have suggested that various stimuli can lead to changes in m6A. The most common method to map m6A and to predict changes in m6A between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-seq), through which methylated regions are detected as peaks in transcript coverage from immunoprecipitated RNA relative to input RNA. Here, we generated replicate controls and reanalyzed published MeRIP-seq data to estimate reproducibility across experiments. We found that m6A peak overlap in mRNAs varies from ~30 to 60% between studies, even in the same cell type. We then assessed statistical methods to detect changes in m6A peaks as distinct from changes in gene expression. However, from these published data sets, we detected few changes under most conditions and were unable to detect consistent changes across studies of similar stimuli. Overall, our work identifies limits to MeRIP-seq reproducibility in the detection both of peaks and of peak changes and proposes improved approaches for analysis of peak changes.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- Tri-Institutional Program in Computational Biology and Medicine, New York City, NY, 10065, USA.
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
236
|
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 2020; 16:1929-1940. [PMID: 32398960 PMCID: PMC7211178 DOI: 10.7150/ijbs.45231] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is identified as the most prevalent and abundant internal RNA modification, especially within eukaryotic mRNAs, which has attracted much attention in recent years since its importance for regulating gene expression and deciding cell fate. m6A modification is installed by RNA methyltransferases METTL3, METTL14 and WTAP (Writers), removed by the demethylases FTO and ALKBH5 (Erasers) and recognized by m6A binding proteins, such as YT521-B homology YTH domain-containing proteins (Readers). Accumulating evidence shows that m6A RNA methylation participates in almost all aspects of RNA processing, implying an association with important bioprocesses. In this review, we mainly summarize and discuss the functional relevance and importance of m6A modification in cellular processes.
Collapse
Affiliation(s)
- Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
237
|
The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21:501-512. [DOI: 10.1038/s41590-020-0650-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
|
238
|
Pandey RR, Pillai RS. Counting the Cuts: MAZTER-Seq Quantifies m 6A Levels Using a Methylation-Sensitive Ribonuclease. Cell 2020; 178:515-517. [PMID: 31348883 DOI: 10.1016/j.cell.2019.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Garcia-Campos et al. describe MAZTER-seq, which deploys a sequence-specific, methylation-sensitive bacterial single-stranded ribonuclease MazF to provide nucleotide-resolution quantification of m6A methylation sites. The study reveals many new sites and supports the idea of a predictable "m6A code," where methylation levels are dictated primarily by local sequence at the site of methylation.
Collapse
Affiliation(s)
- Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
239
|
Bujnowska M, Zhang J, Dai Q, Heideman EM, Fei J. Deoxyribozyme-based method for absolute quantification of N 6-methyladenosine fractions at specific sites of RNA. J Biol Chem 2020; 295:6992-7000. [PMID: 32269077 DOI: 10.1074/jbc.ra120.013359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Indexed: 11/06/2022] Open
Abstract
N 6-Methyladenosine (m6A) is the most prevalent modified base in eukaryotic mRNA and long noncoding RNA. Although candidate sites for the m6A modification are identified at the transcriptomic level, methods for site-specific quantification of absolute m6A modification levels are still limited. Herein, we present a facile method implementing a deoxyribozyme, VMC10, which preferentially cleaves the unmodified RNA. We leveraged reverse transcription and real-time quantitative PCR along with key control experiments to quantify the methylation fraction of specific m6A sites. We validated the accuracy of this method with synthetic RNA in which methylation fractions ranged from 0 to 100% and applied our method to several endogenous sites that were previously identified in sequencing-based studies. This method provides a time- and cost-effective approach for absolute quantification of the m6A fraction at specific loci, with the potential for multiplexed quantifications, expanding the current toolkit for studying RNA modifications.
Collapse
Affiliation(s)
- Magda Bujnowska
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jiacheng Zhang
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637
| | - Qing Dai
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Emily M Heideman
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 .,Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
240
|
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194419. [PMID: 31487549 PMCID: PMC7185634 DOI: 10.1016/j.bbagrm.2019.194419] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
| |
Collapse
|
241
|
The rRNA m 6A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev 2020; 34:715-729. [PMID: 32217665 PMCID: PMC7197354 DOI: 10.1101/gad.333369.119] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
Collapse
|
242
|
He RZ, Jiang J, Luo DX. The functions of N6-methyladenosine modification in lncRNAs. Genes Dis 2020; 7:598-605. [PMID: 33335959 PMCID: PMC7729116 DOI: 10.1016/j.gendis.2020.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence indicates that mRNAs are often subject to posttranscriptional modifications. Among them, N6-methyladenosine (m6A), which has been shown to play key roles in RNA splicing, stability, nuclear export, and translation, is the most abundant modification of RNA. Extensive studies of m6A modification of mRNAs have been carried out, while little is known about m6A modification of long non-coding RNAs (lncRNAs). Recently, several studies reported m6A modification of lncRNAs. In this review, we focus on these m6A-modified lncRNAs and discuss possible functions of m6A modification.
Collapse
Affiliation(s)
- Rong-Zhang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China
| | - Jing Jiang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China.,Center for Clinical Pathology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, People's Republic of China
| | - Di-Xian Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China.,Center for Clinical Pathology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, People's Republic of China
| |
Collapse
|
243
|
Huang H, Weng H, Chen J. m 6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell 2020; 37:270-288. [PMID: 32183948 PMCID: PMC7141420 DOI: 10.1016/j.ccell.2020.02.004] [Citation(s) in RCA: 848] [Impact Index Per Article: 169.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
N6-Methyladenosine (m6A) RNA modification has emerged in recent years as a new layer of regulatory mechanism controlling gene expression in eukaryotes. As a reversible epigenetic modification found not only in messenger RNAs but also in non-coding RNAs, m6A affects the fate of the modified RNA molecules and plays important roles in almost all vital bioprocesses, including cancer development. Here we review the up-to-date knowledge of the pathological roles and underlying molecular mechanism of m6A modifications (in both coding and non-coding RNAs) in cancer pathogenesis and drug response/resistance, and discuss the therapeutic potential of targeting m6A regulators for cancer therapy.
Collapse
Affiliation(s)
- Huilin Huang
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hengyou Weng
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Jianjun Chen
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| |
Collapse
|
244
|
Wang J, Ding W, Xu Y, Tao E, Mo M, Xu W, Cai X, Chen X, Yuan J, Wu X. Long non-coding RNA RHPN1-AS1 promotes tumorigenesis and metastasis of ovarian cancer by acting as a ceRNA against miR-596 and upregulating LETM1. Aging (Albany NY) 2020; 12:4558-4572. [PMID: 32163372 PMCID: PMC7093190 DOI: 10.18632/aging.102911] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Background: In recent decades, long non-coding RNAs (lncRNAs) have been reported as crucial functional regulators involved in ovarian cancer. In the present study, we explored how lncRNA RHPN1-AS1 influences the progression of epithelial ovarian cancer (EOC) through tumor cell-dependent mechanisms. Results: The expression of RHPN1-AS1 in EOC tissues was higher than that in para-cancerous control tissues. High expression of RHPN1-AS1 was closely associated with poor prognosis in EOC patients. N6-methyladenosine (m6A) improved the stability of RHPN1-AS1 methylation transcript by reducing RNA degradation, which resulted in upregulation of RHPN1-AS1 in EOC. In vitro and in vivo functional experiments showed that RHPN1-AS1 promoted EOC cell proliferation and metastasis. RHPN1-AS1 acted as a ceRNA to sponge miR-596, consequently increasing LETM1 expression and activating the FAK/PI3K/Akt signaling pathway. Conclusion: RHPN1-AS1-miR-596-LETM1 axis plays a crucial role in EOC progression. Our findings may provide promising drug targets for EOC treatment. Methods: We determined the aberrantly expressed lncRNAs in EOC via microarray analysis and validated RHPN1-AS1 expression by qRT-PCR. The RHPN1-AS1-miR-596-LETM1 axis was examined by dual-luciferase reporter assay and RIP assay. The mechanism of RHPN1-AS1 was investigated through gain- and loss-of-function studies both in vivo and in vitro.
Collapse
Affiliation(s)
- Junrong Wang
- Department of Laboratory Medicine, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Weimin Ding
- Department of Obstetrics and Gynecology, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China.,Department of Obstetrics and Gynecology, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Yingke Xu
- Department of Laboratory Medicine, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Enfu Tao
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Miaojun Mo
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Wei Xu
- Department of Obstetrics and Gynecology, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Xu Cai
- Department of Obstetrics and Gynecology, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Xiaomin Chen
- Department of Laboratory Medicine, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Junhui Yuan
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Xiuying Wu
- Department of Obstetrics and Gynecology, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
245
|
Li X, Liang QX, Lin JR, Peng J, Yang JH, Yi C, Yu Y, Zhang QC, Zhou KR. Epitranscriptomic technologies and analyses. SCIENCE CHINA-LIFE SCIENCES 2020; 63:501-515. [DOI: 10.1007/s11427-019-1658-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/12/2020] [Indexed: 01/28/2023]
|
246
|
Uddin MB, Wang Z, Yang C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics 2020; 10:3164-3189. [PMID: 32194861 PMCID: PMC7053189 DOI: 10.7150/thno.41687] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
247
|
Wang J, Wang L. Deep analysis of RNA N 6-adenosine methylation (m 6A) patterns in human cells. NAR Genom Bioinform 2020; 2:lqaa007. [PMID: 33575554 PMCID: PMC7671394 DOI: 10.1093/nargab/lqaa007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
N6-adenosine methylation (m6A) is the most abundant internal RNA modification in eukaryotes, and affects RNA metabolism and non-coding RNA function. Previous studies suggest that m6A modifications in mammals occur on the consensus sequence DRACH (D = A/G/U, R = A/G, H = A/C/U). However, only about 10% of such adenosines can be m6A-methylated, and the underlying sequence determinants are still unclear. Notably, the regulation of m6A modifications can be cell-type-specific. In this study, we have developed a deep learning model, called TDm6A, to predict RNA m6A modifications in human cells. For cell types with limited availability of m6A data, transfer learning may be used to enhance TDm6A model performance. We show that TDm6A can learn common and cell-type-specific motifs, some of which are associated with RNA-binding proteins previously reported to be m6A readers or anti-readers. In addition, we have used TDm6A to predict m6A sites on human long non-coding RNAs (lncRNAs) for selection of candidates with high levels of m6A modifications. The results provide new insights into m6A modifications on human protein-coding and non-coding transcripts.
Collapse
Affiliation(s)
- Jun Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
248
|
RNA N 6-Methyladenosine Modifications and the Immune Response. J Immunol Res 2020; 2020:6327614. [PMID: 32411802 PMCID: PMC7204177 DOI: 10.1155/2020/6327614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/13/2019] [Accepted: 12/24/2019] [Indexed: 01/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most important modification of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in higher eukaryotes. Modulation of m6A modifications relies on methyltransferases and demethylases. The discovery of binding proteins confirms that the m6A modification has a wide range of biological effects and significance at the molecular, cellular, and physiological levels. In recent years, techniques for investigating m6A modifications of RNA have developed rapidly. This article reviews the biological significance of RNA m6A modifications in the innate immune response, adaptive immune response, and viral infection.
Collapse
|
249
|
Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJW, Barton GJ, Simpson GG. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m 6A modification. eLife 2020; 9:e49658. [PMID: 31931956 PMCID: PMC6959997 DOI: 10.7554/elife.49658] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3' untranslated regions is associated with decreased relative transcript abundance and defective RNA 3' end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Gene Expression Profiling
- Methylation
- Nanopores
- Poly A/genetics
- Poly A/metabolism
- RNA Caps
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- Sequence Analysis, RNA
Collapse
Affiliation(s)
| | - Katarzyna Knop
- School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Anna V Sherwood
- School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | | | | | - Peter D Gould
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | | | | | - Gordon G Simpson
- School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
- James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
250
|
Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020509. [PMID: 31941147 PMCID: PMC7014325 DOI: 10.3390/ijms21020509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA epigenetics is perhaps the most recent field of interest for translational epigeneticists. RNA modifications create such an extensive network of epigenetically driven combinations whose role in physiology and pathophysiology is still far from being elucidated. Not surprisingly, some of the players determining changes in RNA structure are in common with those involved in DNA and chromatin structure regulation, while other molecules seem very specific to RNA. It is envisaged, then, that new small molecules, acting selectively on RNA epigenetic changes, will be reported soon, opening new therapeutic interventions based on the correction of the RNA epigenetic landscape. In this review, we shall summarize some aspects of RNA epigenetics limited to those in which the potential clinical translatability to cardiovascular disease is emerging.
Collapse
|