201
|
Upadia J, Li Y, Walano N, Deputy S, Gajewski K, Andersson HC. Genotype-phenotype correlation in IARS2-related diseases: A case report and review of literature. Clin Case Rep 2022; 10:e05401. [PMID: 35228874 PMCID: PMC8867157 DOI: 10.1002/ccr3.5401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Isoleucyl-tRNA synthetase 2 (IARS2) encodes mitochondrial isoleucine-tRNA synthetase. Pathogenic variants in the IARS2 gene are associated with mitochondrial disease. We report a female with IARS2 compound heterozygous variants, p.Val499Glyfs*14 and p.Arg784Trp who presented with infantile spasms, Leigh disease and Wolff-Parkinson White (WPW) pattern. This report expands the phenotypic spectrum of IARS2-related disease.
Collapse
Affiliation(s)
- Jariya Upadia
- Hayward Genetics CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yuwen Li
- Hayward Genetics CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Nicolette Walano
- Hayward Genetics CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Stephen Deputy
- Division of Pediatric NeurologyDepartment of PediatricsLouisiana State University Health Sciences Center/Children's HospitalNew OrleansLouisianaUSA
| | - Kelly Gajewski
- Division of Pediatric CardiologyDepartment of PediatricsLouisiana State University Health Sciences Center/Children's HospitalNew OrleansLouisianaUSA
| | - Hans C. Andersson
- Hayward Genetics CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
202
|
Han NC, Kavoor A, Ibba M. Characterizing the amino acid activation center of the naturally editing-deficient aminoacyl-tRNA synthetase PheRS in Mycoplasma mobile. FEBS Lett 2022; 596:947-957. [PMID: 35038769 DOI: 10.1002/1873-3468.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/09/2022]
Abstract
To ensure correct amino acids are incorporated during protein synthesis, aminoacyl-tRNA synthetases (aaRSs) employ proofreading mechanisms collectively referred to as editing. Although editing is important for viability, editing-deficient aaRSs have been identified in host-dependent organisms. In Mycoplasma mobile, editing-deficient PheRS and LeuRS have been identified. We characterized the amino acid activation site of MmPheRS and identified a previously unknown hyperaccurate mutation, L287F. Additionally, we report that m-Tyr, an oxidation byproduct of Phe which is toxic to editing-deficient cells, is poorly discriminated by MmPheRS activation and is not subjected to editing. Furthermore, expressing MmPheRS and the hyperaccurate variants renders Escherichia coli susceptible to m-Tyr stress, indicating that active site discrimination is insufficient in tolerating excess m-Tyr.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Arundhati Kavoor
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.,Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA.,Schmid College of Science and Technology, Chapman university, Orange, CA, 92866, USA
| |
Collapse
|
203
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
204
|
Mukai T, Amikura K, Fu X, Söll D, Crnković A. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems. Front Genet 2022; 12:794509. [PMID: 35047015 PMCID: PMC8762117 DOI: 10.3389/fgene.2021.794509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique O-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid O-phosphoserine (Sep) onto tRNACys. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNACys to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m1G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual O-phosphoseryl-tRNASec kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
205
|
Kim MH, Kang BS. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Subcell Biochem 2022; 99:199-233. [PMID: 36151377 DOI: 10.1007/978-3-031-00793-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Beom Sik Kang
- School of Life Sciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
206
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Phenylalanyl tRNA synthetase (PheRS) substrate mimics: design, synthesis, molecular dynamics and antimicrobial evaluation. RSC Adv 2022; 12:2511-2524. [PMID: 35425259 PMCID: PMC8979089 DOI: 10.1039/d1ra06439h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Nineteen novel compounds were designed to mimic Phe-AMP, as a new hope to find novel antibacterial agents and combat the antibiotic resistance. E. faecalis PheS homology model was constructed to study the mimics–enzyme interactions in more detail.
Collapse
Affiliation(s)
- Nada A. Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mohammed M. Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Sobhy M. Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
207
|
Wang D, Guo D, Tang Y, Qi M, Fang J, Zhang Y, Chai Y, Cao Y, Lv D. A multi-omics study of the anti-cancer effect of a ferulic acid derivative FA-30. Mol Omics 2022; 18:805-813. [DOI: 10.1039/d2mo00025c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The active ingredients of Traditional Chinese Medicine are an important source of bioactive molecules and play an important role in the research and development of innovative drugs.
Collapse
Affiliation(s)
- Dongyao Wang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Dandan Guo
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of nutrition, Second Military Medical University, Shanghai, China
| | - Minyu Qi
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiahao Fang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ying Zhang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yifeng Chai
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Cao
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Diya Lv
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
208
|
Antika TR, Chrestella DJ, Ivanesthi IR, Rida G, Chen KY, Liu FG, Lee YC, Chen YW, Tseng YK, Wang CC. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2190-2200. [PMID: 35100402 PMCID: PMC8887476 DOI: 10.1093/nar/gkac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Unlike many other aminoacyl-tRNA synthetases, alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout biology. While Caenorhabditis elegans cytoplasmic AlaRS (CeAlaRSc) retains the prototype structure, its mitochondrial counterpart (CeAlaRSm) contains only a residual C-terminal domain (C-Ala). We demonstrated herein that the C-Ala domain from CeAlaRSc robustly binds both tRNA and DNA. It bound different tRNAs but preferred tRNAAla. Deletion of this domain from CeAlaRSc sharply reduced its aminoacylation activity, while fusion of this domain to CeAlaRSm selectively and distinctly enhanced its aminoacylation activity toward the elbow-containing (or L-shaped) tRNAAla. Phylogenetic analysis showed that CeAlaRSm once possessed the C-Ala domain but later lost most of it during evolution, perhaps in response to the deletion of the T-arm (part of the elbow) from its cognate tRNA. This study underscores the evolutionary gain of C-Ala for docking AlaRS to the L-shaped tRNAAla.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Dea Jolie Chrestella
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Indira Rizqita Ivanesthi
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Gita Riswana Nawung Rida
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Kuan-Yu Chen
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Fu-Guo Liu
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Beitou District, Taipei 11217, Taiwan
| | - Yu-Wei Chen
- Department of Neurology, Landseed International Hospital, Pingzhen District, Taoyuan 32449, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Chien-Chia Wang
- To whom correspondence should be addressed. Tel: +886 3 426 0840; Fax: +886 3 422 8482;
| |
Collapse
|
209
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
210
|
Hyperosmolarity adversely impacts recombinant protein synthesis by Yarrowia lipolytica-molecular background revealed by quantitative proteomics. Appl Microbiol Biotechnol 2021; 106:349-367. [PMID: 34913994 PMCID: PMC8720085 DOI: 10.1007/s00253-021-11731-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
Abstract
Abstract In this research, we were interested in answering a question whether subjecting a Yarrowia lipolytica strain overproducing a recombinant secretory protein (rs-Prot) to pre-optimized stress factors may enhance synthesis of the rs-Prot. Increased osmolarity (3 Osm kg−1) was the primary stress factor implemented alone or in combination with decreased temperature (20 °C), known to promote synthesis of rs-Prots. The treatments were executed in batch bioreactor cultures, and the cellular response was studied in terms of culture progression, gene expression and global proteomics, to get insight into molecular bases underlying an awaken reaction. Primarily, we observed that hyperosmolarity executed by high sorbitol concentration does not enhance synthesis of the rs-Prot but increases its transcription. Expectedly, hyperosmolarity induced synthesis of polyols at the expense of citric acid synthesis and growth, which was severely limited. A number of stress-related proteins were upregulated, including heat-shock proteins (HSPs) and aldo–keto reductases, as observed at transcriptomics and proteomics levels. Concerted downregulation of central carbon metabolism, including glycolysis, tricarboxylic acid cycle and fatty acid synthesis, highlighted redirection of carbon fluxes. Elevated abundance of HSPs and osmolytes did not outbalance the severe limitation of protein synthesis, marked by orchestrated downregulation of translation (elongation factors, several aa-tRNA synthetases), amino acid biosynthesis and ribosome biogenesis in response to the hyperosmolarity. Altogether we settled that increased osmolarity is not beneficial for rs-Prots synthesis in Y. lipolytica, even though some elements of the response could assist this process. Insight into global changes in the yeast proteome under the treatments is provided. Key points • Temp enhances, but Osm decreases rs-Prots synthesis by Y. lipolytica. • Enhanced abundance of HSPs and osmolytes is overweighted by limited translation. • Global proteome under Osm, Temp and Osm Temp treatments was studied. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11731-y.
Collapse
|
211
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
212
|
Garin S, Levi O, Forrest ME, Antonellis A, Arava YS. Comprehensive characterization of mRNAs associated with yeast cytosolic aminoacyl-tRNA synthetases. RNA Biol 2021; 18:2605-2616. [PMID: 34039240 PMCID: PMC8632134 DOI: 10.1080/15476286.2021.1935116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown. Herein, we performed a comprehensive transcriptome analysis to define the mRNAs that are associated with almost all aaRSs present in S. cerevisiae cytosol. Nineteen (out of twenty) isogenic strains of GFP-tagged cytosolic aaRSs were subjected to immunoprecipitation with anti-GFP beads along with an untagged control. mRNAs associated with each aaRS were then identified by RNA-seq. The extent of mRNA association varied significantly between aaRSs, from MetRS in which none appeared to be statistically significant, to PheRS that binds hundreds of different mRNAs. Interestingly, many target mRNAs are bound by multiple aaRSs, suggesting co-regulation by this family of enzymes. Gene Ontology analyses for aaRSs with a considerable number of target mRNAs discovered an enrichment for pathways of amino acid metabolism and of ribosome biosynthesis. Furthermore, sequence and structure motif analysis revealed for some aaRSs an enrichment for motifs that resemble the anticodon stem loop of cognate tRNAs. These data suggest that aaRSs coordinate mRNA expression in response to amino acid availability and may utilize RNA elements that mimic their canonical tRNA binding partners.
Collapse
Affiliation(s)
- Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Megan E. Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoav S. Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
213
|
Kok G, van Karnebeek CDM, Fuchs SA. Response to Shen et al. Genet Med 2021; 24:506-507. [PMID: 34906483 DOI: 10.1016/j.gim.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gautam Kok
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatrics & Metabolic Diseases, Radboud Centre for Mitochondrial Medicine, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
214
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Design, computational studies, synthesis and in vitro antimicrobial evaluation of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues. BMC Chem 2021; 15:58. [PMID: 34711258 PMCID: PMC8555319 DOI: 10.1186/s13065-021-00785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023] Open
Abstract
Background Two series of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues were designed and synthesised as novel antimicrobial drugs through inhibition of phenylalanyl-tRNA synthetase (PheRS), which is a promising antimicrobial target. Compounds were designed to mimic the structural features of phenylalanyl adenylate (Phe-AMP) the PheRS natural substrate. Methods A 3D conformational alignment for the designed compounds and the PheRS natural substrate revealed a high level of conformational similarity, and a molecular docking study indicated the ability of the designed compounds to occupy both Phe-AMP binding pockets. A molecular dynamics (MD) simulation comparative study was performed to understand the binding interactions with PheRS from different bacterial microorganisms. The synthetic pathway of the designed compounds proceeded in five steps starting from benzimidazole. The fourteen synthesised compounds 5a-d, 6a-c, 8a-d and 9a-c were purified, fully characterised and obtained in high yield. Results In vitro antimicrobial evaluation against five bacterial strains showed a moderate activity of compound 8b with MIC value of 32 μg/mL against S. aureus, while all the synthesised compounds showed weak activity against both E. faecalis and P. aeruginosa (MIC 128 μg/mL). Conclusion Compound 8b provides a lead compound for further structural development to obtain high affinity PheRS inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00785-8.
Collapse
Affiliation(s)
- Nada A Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt.
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mohammed M Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Sobhy M Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
215
|
Zhang C, Zhang C, Wang Y, Du M, Zhang G, Lee Y. Dietary Energy Level Impacts the Performance of Donkeys by Manipulating the Gut Microbiome and Metabolome. Front Vet Sci 2021; 8:694357. [PMID: 34692802 PMCID: PMC8531409 DOI: 10.3389/fvets.2021.694357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
Considerable evidence suggests that dietary energy levels and gut microbiota are pivotal for animal health and productivity. However, little information exists about the correlations among dietary energy level, performance, and the gut microbiota and metabolome of donkeys. The objective of this study was to investigate the mechanisms by which dietary energy content dictates the growth performance by modulating the intestinal microbiome and metabolome of donkeys. Thirty-six nine-month-old male Dezhou donkeys with similar body weights were randomly assigned to two groups fed low- or high-energy diets (LE or HE). The results showed that donkeys fed HE had increased (p < 0.05) the average daily gain (ADG) and feed efficiency (G/F) compared with those that received LE diet. The gut microbiota in both groups was dominated by the phyla Firmicutes and Bacteroidetes regardless of the dietary energy level. However, feeding HE to donkeys significantly decreased (p < 0.05) the ratio of Firmicutes to Bacteroidetes (F/B). Compared to the LE group, feeding HE specifically increased the abundances of unidentified_Prevotellaceae (p = 0.02) while decreasing the richness of unidentified_Ruminococcaceae (p = 0.05). Compared to the LE group, feeding the HE diet significantly (p < 0.05) upregulated certain metabolic pathways involving the aspartate metabolism and the urea cycle. In addition, the increased bacteria and metabolites in the HE-fed group exhibited a positive correlation with improved growth performance of donkeys. Taken together, feeding the HE diet increased the richness of Prevotellaceae and upregulated growth-related metabolic pathways, which may have contributed to the ameliorated growth performance of donkeys. Thus, it is a recommendable dietary strategy to feed HE diets to fattening donkeys for superior product performance and feed efficiency.
Collapse
Affiliation(s)
- Chongyu Zhang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Chen Zhang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yunpeng Wang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Meiyu Du
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guiguo Zhang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yunkyoung Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Department of Food Science and Nutrition, Jeju National University, Jeju city, South Korea
| |
Collapse
|
216
|
Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021; 9:695630. [PMID: 34660574 PMCID: PMC8514731 DOI: 10.3389/fcell.2021.695630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMO conjugation of a substrate protein can modify its activity, localization, interaction or function. A large number of SUMO targets in cells have been identified by Proteomics, but biological roles for SUMO conjugation for most targets remains elusive. The multi-aminoacyl tRNA synthetase complex (MARS) is a sensor and regulator of immune signaling. The proteins of this 1.2 MDa complex are targets of SUMO conjugation, in response to infection. Arginyl tRNA Synthetase (RRS), a member of the sub-complex II of MARS, is one such SUMO conjugation target. The sites for SUMO conjugation are Lys 147 and 383. Replacement of these residues by Arg (RRS K147R,K383R ), creates a SUMO conjugation resistant variant (RRS SCR ). Transgenic Drosophila lines for RRS WT and RRS SCR were generated by expressing these variants in a RRS loss of function (lof) animal, using the UAS-Gal4 system. The RRS-lof line was itself generated using CRISPR/Cas9 genome editing. Expression of both RRS WT and RRS SCR rescue the RRS-lof lethality. Adult animals expressing RRS WT and RRS SCR are compared and contrasted for their response to bacterial infection by gram positive M. luteus and gram negative Ecc15. We find that RRS SCR , when compared to RRS WT , shows modulation of the transcriptional response, as measured by quantitative 3' mRNA sequencing. Our study uncovers a possible non-canonical role for SUMOylation of RRS, a member of the MARS complex, in host-defense.
Collapse
Affiliation(s)
- Prajna Nayak
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Aarti Kejriwal
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | |
Collapse
|
217
|
Wimmer JLE, Kleinermanns K, Martin WF. Pyrophosphate and Irreversibility in Evolution, or why PP i Is Not an Energy Currency and why Nature Chose Triphosphates. Front Microbiol 2021; 12:759359. [PMID: 34759911 PMCID: PMC8575175 DOI: 10.3389/fmicb.2021.759359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
The possible evolutionary significance of pyrophosphate (PPi) has been discussed since the early 1960s. Lipmann suggested that PPi could have been an ancient currency or a possible environmental source of metabolic energy at origins, while Kornberg proposed that PPi vectorializes metabolism because ubiquitous pyrophosphatases render PPi forming reactions kinetically irreversible. To test those ideas, we investigated the reactions that consume phosphoanhydride bonds among the 402 reactions of the universal biosynthetic core that generates amino acids, nucleotides, and cofactors from H2, CO2, and NH3. We find that 36% of the core's phosphoanhydride hydrolyzing reactions generate PPi, while no reactions use PPi as an energy currency. The polymerization reactions that generate ~80% of cell mass - protein, RNA, and DNA synthesis - all generate PPi, while none use PPi as an energy source. In typical prokaryotic cells, aminoacyl tRNA synthetases (AARS) underlie ~80% of PPi production. We show that the irreversibility of the AARS reaction is a kinetic, not a thermodynamic effect. The data indicate that PPi is not an ancient energy currency and probably never was. Instead, PPi hydrolysis is an ancient mechanism that imparts irreversibility, as Kornberg suggested, functioning like a ratchet's pawl to vectorialize the life process toward growth. The two anhydride bonds in nucleoside triphosphates offer ATP-cleaving enzymes an option to impart either thermodynamic control (Pi formation) or kinetic control (PPi formation) upon reactions. This dual capacity explains why nature chose the triphosphate moiety of ATP as biochemistry's universal energy currency.
Collapse
Affiliation(s)
- Jessica L. E. Wimmer
- Institute for Molecular Evolution, Department of Biology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Karl Kleinermanns
- Institute for Physical Chemistry, Department of Chemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - William F. Martin
- Institute for Molecular Evolution, Department of Biology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
218
|
Jin D, Wek SA, Kudlapur NT, Cantara WA, Bakhtina M, Wek RC, Musier-Forsyth K. Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response. J Biol Chem 2021; 297:101203. [PMID: 34537243 PMCID: PMC8511952 DOI: 10.1016/j.jbc.2021.101203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Sheree A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Nathan T Kudlapur
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA.
| |
Collapse
|
219
|
Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211088. [PMID: 34659781 PMCID: PMC8511748 DOI: 10.1098/rsos.211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The human brain carries out complex tasks and higher functions and is crucial for organismal survival, as it senses both intrinsic and extrinsic environments. Proper brain development relies on the orchestrated development of different precursor cells, which will give rise to the plethora of mature brain cell-types. Within this process, neuronal cells develop closely to and in coordination with vascular cells (endothelial cells (ECs), pericytes) in a bilateral communication process that relies on neuronal activity, attractive or repulsive guidance cues for both cell types and on tight-regulation of gene expression. Translational control is a master regulator of the gene-expression pathway and in particular for neuronal and ECs, it can be localized in developmentally relevant (axon growth cone, endothelial tip cell) and mature compartments (synapses, axons). Herein, we will review mechanisms of translational control relevant to brain development in neurons and ECs in health and disease.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Elpida Statoulla
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Maria Markou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Sofia Bellou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Eleni Bagli
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Theodore Fotsis
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Carol Murphy
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Christos G. Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
220
|
Mei Y, Chen H, Yang B, Zhao J, Zhang H, Chen W. Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11311-11321. [PMID: 34523917 DOI: 10.1021/acs.jafc.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abundant conjugated linoleic acid (CLA) producers exist among Bifidobacterium species. This CLA production is related to the mitigation of LA toxicity. However, there is still a lack of information on the metabolic response underlying this detoxification strategy. In this study, six bifidobacteria strains belonging to three different species were used to characterize growth and CLA accumulation in the presence of LA. A combination of non-targeted metabolomics techniques and biochemical indicators were used to explore metabolic profile changes in response to LA and the expression of important factors driving CLA production in Bifidobacterium species. The results suggested that free LA had growth inhibitory effects on bifidobacteria, resulting in a global metabolic stress response that caused metabolic reprogramming on all tested strains and promoted malondialdehyde production, inducing a redox imbalance. In particular, a strong decrease in reduced glutathione level was observed in Bifidobacterium breve CCFM683 [log2(FC) = -3.29]. Furthermore, LA-induced oxidative stress is an important factor driving high CLA production in certain strains.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
221
|
Yan L, Sundaram S, Rust BM, Picklo MJ, Bukowski MR. Mammary Tumorigenesis and Metabolome in Male Adipose Specific Monocyte Chemotactic Protein-1 Deficient MMTV-PyMT Mice Fed a High-Fat Diet. Front Oncol 2021; 11:667843. [PMID: 34568008 PMCID: PMC8458874 DOI: 10.3389/fonc.2021.667843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Male breast cancer, while uncommon, is a highly malignant disease. Monocyte chemotactic protein-1 (MCP-1) is an adipokine; its concentration in adipose tissue is elevated in obesity. This study tested the hypothesis that adipose-derived MCP-1 contributes to male breast cancer. In a 2x2 design, male MMTV-PyMT mice with or without adipose-specific Mcp-1 knockout [designated as Mcp-1-/- or wild-type (WT)] were fed the AIN93G standard diet or a high-fat diet (HFD) for 25 weeks. Mcp-1-/- mice had lower adipose Mcp-1 expression than WT mice. Adipose Mcp-1 deficiency reduced plasma concentrations of MCP-1 in mice fed the HFD compared to their WT counterparts. Mcp-1-/- mice had a longer tumor latency (25.2 weeks vs. 18.0 weeks) and lower tumor incidence (19% vs. 56%), tumor progression (2317% vs. 4792%), and tumor weight (0.23 g vs. 0.64 g) than WT mice. Plasma metabolomics analysis identified 56 metabolites that differed among the four dietary groups, including 22 differed between Mcp-1-/- and WT mice. Pathway and network analyses along with discriminant analysis showed that pathways of amino acid and carbohydrate metabolisms are the most disturbed in MMTV-PyMT mice. In conclusion, adipose-derived MCP-1 contributes to mammary tumorigenesis in male MMTV-PyMT. The potential involvement of adipose-derived MCP-1 in metabolomics warrants further investigation on its role in causal relationships between cancer metabolism and mammary tumorigenesis in this male MMTV-PyMT model.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Matthew J Picklo
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Michael R Bukowski
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| |
Collapse
|
222
|
Ravel JM, Dreumont N, Mosca P, Smith DEC, Mendes MI, Wiedemann A, Coelho D, Schmitt E, Rivière JB, Tran Mau-Them F, Thevenon J, Kuentz P, Polivka M, Fuchs SA, Kok G, Thauvin-Robinet C, Guéant JL, Salomons GS, Faivre L, Feillet F. A bi-allelic loss-of-function SARS1 variant in children with neurodevelopmental delay, deafness, cardiomyopathy, and decompensation during fever. Hum Mutat 2021; 42:1576-1583. [PMID: 34570399 DOI: 10.1002/humu.24285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Pauline Mosca
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - David Coelho
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Jean-Baptiste Rivière
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Paul Kuentz
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Marc Polivka
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Regenerative Medicine Utrecht, Utrecht, The Netherlands.,On behalf of "United for Metabolic Diseases,", Amsterdam, the Netherlands
| | - Gautam Kok
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Louis Guéant
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laurence Faivre
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - François Feillet
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| |
Collapse
|
223
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
224
|
Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose. Arch Toxicol 2021; 95:3223-3234. [PMID: 34414480 PMCID: PMC8448701 DOI: 10.1007/s00204-021-03135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 10/28/2022]
Abstract
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.
Collapse
|
225
|
Ju Y, Han L, Chen B, Luo Z, Gu Q, Xu J, Yang XL, Schimmel P, Zhou H. X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. Nucleic Acids Res 2021; 49:10106-10119. [PMID: 34390350 PMCID: PMC8464048 DOI: 10.1093/nar/gkab707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding β-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and β-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain β-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.
Collapse
Affiliation(s)
- Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
226
|
Michalska K, Jedrzejczak R, Wower J, Chang C, Baragaña B, Gilbert IH, Forte B, Joachimiak A. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Res 2021; 49:5351-5368. [PMID: 33885823 PMCID: PMC8136816 DOI: 10.1093/nar/gkab272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3′ end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
227
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
228
|
Molecular targets for antifungals in amino acid and protein biosynthetic pathways. Amino Acids 2021; 53:961-991. [PMID: 34081205 PMCID: PMC8241756 DOI: 10.1007/s00726-021-03007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
Fungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increasing importance is attached to the health and economic problems caused by fungal pathogens. There is a growing need for improvement of the availability of antifungal drugs, decreasing their prices and reducing side effects. Searching for novel approaches in this respect, amino acid and protein biosynthesis pathways appear to be competitive. The route that leads from amino acid biosynthesis to protein folding and its activation is rich in enzymes that are descriptive of fungi. Blocking the action of those enzymes often leads to avirulence or growth inhibition. In this review, we want to trace the principal processes of fungi vitality. We present the data of genes encoding enzymes involved in amino acid and protein biosynthesis, potential molecular targets in antifungal chemotherapy, and describe the impact of inhibitors on fungal organisms.
Collapse
|
229
|
Román-Camacho JJ, Mauricio JC, Santos-Dueñas IM, García-Martínez T, García-García I. Functional metaproteomic analysis of alcohol vinegar microbiota during an acetification process: A quantitative proteomic approach. Food Microbiol 2021; 98:103799. [PMID: 33875225 DOI: 10.1016/j.fm.2021.103799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Vinegar is elaborated using a semi-continuous submerged culture of a complex microbiota of acetic acid bacteria. The genus Komagataeibacter provides much of the proteins of the metaproteome, being K. europaeus the main species working in this environment. In this work, the protein profile of the vinegar microbiota, obtained by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples from different cycle times of an acetification process using an alcohol medium, has been used to describe the functional metaproteome throughout the process. The analysis was focused on Komagataeibacter species which supplied about 90% of the metaproteome and particularly K. europaeus which accounts for more than 70%. According to these results, the natural behaviour of a microbial community in vinegar has been predicted at a quantitative proteomic level. The results revealed that most of the identified proteins involved in the metabolism of amino acids, biosynthesis of proteins, and energy production related-metabolic pathways increased their expression throughout the cycle loading phase and afterwards experimented a decrease coming into play other proteins acting against acetic acid stress. These findings may facilitate a better understanding of the microbiota's role and contributing to obtain a quality product.
Collapse
Affiliation(s)
- Juan J Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Juan C Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Inés M Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
230
|
Travin DY, Severinov K, Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem Biol 2021; 2:468-485. [PMID: 34382000 PMCID: PMC8323819 DOI: 10.1039/d0cb00208a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
- Waksman Institute for Microbiology, Rutgers, Piscataway New Jersey USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
231
|
Cabello-Garcia J, Bae W, Stan GBV, Ouldridge TE. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions. ACS NANO 2021; 15:3272-3283. [PMID: 33470806 DOI: 10.1021/acsnano.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of templates is a well-established method for the production of sequence-controlled assemblies, particularly long polymers. Templating is canonically envisioned as akin to a self-assembly process, wherein sequence-specific recognition interactions between a template and a pool of monomers favor the assembly of a particular polymer sequence at equilibrium. However, during the biogenesis of sequence-controlled polymers, template recognition interactions are transient; RNA and proteins detach spontaneously from their templates to perform their biological functions and allow template reuse. Breaking template recognition interactions puts the product sequence distribution far from equilibrium, since specific product formation can no longer rely on an equilibrium dominated by selective copy-template bonds. The rewards of engineering artificial polymer systems capable of spontaneously exhibiting nonequilibrium templating are large, but fields like DNA nanotechnology lack the requisite tools; the specificity and drive of conventional DNA reactions rely on product stability at equilibrium, sequestering any recognition interaction in products. The proposed alternative is handhold-mediated strand displacement (HMSD), a DNA-based reaction mechanism suited to producing out-of-equilibrium products. HMSD decouples the drive and specificity of the reaction by introducing a transient recognition interaction, the handhold. We measure the kinetics of 98 different HMSD systems to prove that handholds can accelerate displacement by 4 orders of magnitude without being sequestered in the final product. We then use HMSD to template the selective assembly of any one product DNA duplex from an ensemble of equally stable alternatives, generating a far-from-equilibrium output. HMSD thus brings DNA nanotechnology closer to the complexity of out-of-equilibrium biological systems.
Collapse
Affiliation(s)
- Javier Cabello-Garcia
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Wooli Bae
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Guy-Bart V Stan
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| |
Collapse
|
232
|
Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, Yim YS, Tong L, Kaufman RJ, Griffith EC, Choi GB, Greenberg ME, Huh JR. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci 2021; 24:204-213. [PMID: 33361822 PMCID: PMC7854524 DOI: 10.1038/s41593-020-00762-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin Finander
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyunju Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Casey K Gilman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yeong Shin Yim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lilin Tong
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randal J Kaufman
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Greenberg
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
233
|
Baidin V, Owens TW, Lazarus MB, Kahne D. Simple Secondary Amines Inhibit Growth of Gram-Negative Bacteria through Highly Selective Binding to Phenylalanyl-tRNA Synthetase. J Am Chem Soc 2021; 143:623-627. [PMID: 33411531 DOI: 10.1021/jacs.0c11113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotics to treat drug-resistant Gram-negative infections are urgently needed but challenging to discover. Using a cell-based screen, we identified a simple secondary amine that inhibited the growth of wild-type Escherichia coli and Acinetobacter baumannii but not the growth of the Gram-positive organism Bacillus subtilis. Resistance mutations in E. coli and A. baumannii mapped exclusively to the aminoacyl-tRNA synthetase PheRS. We confirmed biochemically that the compound inhibited PheRS from these organisms and showed that it did not inhibit PheRS from B. subtilis or humans. To understand the basis for the compound's high selectivity for only some PheRS enzymes, we solved crystal structures of E. coli and A. baumannii PheRS complexed with the inhibitor. The structures showed that the compound's benzyl group mimics the benzyl of phenylalanine. The other amine substituent, a 2-(cyclohexen-1-yl)ethyl group, induces a hydrophobic pocket in which it binds. Through bioinformatic analysis and mutagenesis, we show that the ability to induce a complementary hydrophobic pocket that can accommodate the second substituent explains the high selectivity of this remarkably simple molecular scaffold for Gram-negative PheRS. Because this secondary amine scaffold is active against wild-type Gram-negative pathogens but is not cytotoxic to mammalian cells, we suggest that it may be possible to develop it for use in combination antibiotic therapy to treat Gram-negative infections.
Collapse
Affiliation(s)
- Vadim Baidin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael B Lazarus
- Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
234
|
Mercaldi GF, Andrade MDO, Zanella JDL, Cordeiro AT, Benedetti CE. Molecular basis for diaryldiamine selectivity and competition with tRNA in a type 2 methionyl-tRNA synthetase from a Gram-negative bacterium. J Biol Chem 2021; 296:100658. [PMID: 33857480 PMCID: PMC8165550 DOI: 10.1016/j.jbc.2021.100658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria are responsible for a variety of human, animal, and plant diseases. The spread of multidrug-resistant Gram-negative bacteria poses a challenge to disease control and highlights the need for novel antimicrobials. Owing to their critical role in protein synthesis, aminoacyl-tRNA synthetases, including the methionyl-tRNA synthetases MetRS1 and MetRS2, are attractive drug targets. MetRS1 has long been exploited as a drug target in Gram-positive bacteria and protozoan parasites. However, MetRS1 inhibitors have limited action upon Gram-negative pathogens or on Gram-positive bacteria that produce MetRS2 enzymes. The underlying mechanism by which MetRS2 enzymes are insensitive to MetRS1 inhibitors is presently unknown. Herein, we report the first structures of MetRS2 from a multidrug-resistant Gram-negative bacterium in its ligand-free state and bound to its substrate or MetRS1 inhibitors. The structures reveal the binding mode of two diaryldiamine MetRS1 inhibitors that occupy the amino acid-binding site and a surrounding auxiliary pocket implicated in tRNA acceptor arm binding. The structural features associated with amino acid polymorphisms found in the methionine and auxiliary pockets reveal the molecular basis for diaryldiamine binding and selectivity between MetRS1 and MetRS2 enzymes. Moreover, we show that mutations in key polymorphic residues in the methionine and auxiliary pockets not only altered inhibitor binding affinity but also significantly reduced enzyme function. Our findings thus reinforce the tRNA acceptor arm binding site as a druggable pocket in class I aminoacyl-tRNA synthetases and provide a structural basis for optimization of MetRS2 inhibitors for the development of new antimicrobials against Gram-negative pathogens.
Collapse
Affiliation(s)
- Gustavo Fernando Mercaldi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Maxuel de Oliveira Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Jackeline de Lima Zanella
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Artur Torres Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| |
Collapse
|
235
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
236
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
237
|
Zhao T, Goedhart C, Pfeffer G, Greenway SC, Lines M, Khan A, Innes AM, Shutt TE. Skeletal Phenotypes Due to Abnormalities in Mitochondrial Protein Homeostasis and Import. Int J Mol Sci 2020; 21:8327. [PMID: 33171986 PMCID: PMC7664180 DOI: 10.3390/ijms21218327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Tian Zhao
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Caitlin Goedhart
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Steven C Greenway
- Departments of Pediatrics, Cardiac Sciences and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Matthew Lines
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Aneal Khan
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T3B 6A8, Canada;
| | - A Micheil Innes
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
238
|
Huang MS, Hsu YL, Yeh IJ, Liu KT, Yen MC. The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase. Int J Mol Sci 2020; 21:ijms21186703. [PMID: 32933162 PMCID: PMC7555719 DOI: 10.3390/ijms21186703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
RNA-based therapeutics are considered as novel treatments for human diseases. Our previous study demonstrated that treatment with short-hairpin RNA against Ido1 (IDO shRNA) suppresses tumor growth, detects Th1-bias immune responses, and elevates expression of tryptophan transfer RNA (tRNATrp) in total splenocytes. In addition, depletion of Ly6g+ neutrophils attenuates the effect of IDO shRNA. The aim of this study was to investigate the regulatory network and the expression profile of tRNAs and other non-coding RNAs in IDO shRNA-treated spleens. The total splenocytes and magnetic bead-enriched splenic neutrophils were collected from the lung tumor bearing mice, which were treated with IDO shRNA or scramble IDO shRNA, and the collected cells were subsequently subjected to RNA sequencing. The gene ontology analysis revealed the different enrichment pathways in total splenocytes and splenic neutrophils. Furthermore, the expression of tRNA genes was identified and validated. Six isoacceptors of tRNA, with different expression patterns between total splenocytes and splenic neutrophils, were observed. In summary, our findings not only revealed novel biological processes in IDO shRNA-treated total splenocytes and splenic neutrophils, but the identified tRNAs and other non-coding RNAs may contribute to developing a novel biomarker gene set for evaluating the clinical efficiency of RNA-based cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Ontology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/administration & dosage
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Lung Neoplasms/genetics
- Mice
- Mice, Inbred C57BL
- Neutrophils/drug effects
- Neutrophils/physiology
- RNA, Messenger/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Transfer/genetics
- Spleen/drug effects
- Spleen/physiology
Collapse
Affiliation(s)
- Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 840, Taiwan;
- School of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2015)
| |
Collapse
|
239
|
A Novel Methoxybenzyl 5-Nitroacridone Derivative Effectively Triggers G1 Cell Cycle Arrest in Chronic Myelogenous Leukemia K562 Cells by Inhibiting CDK4/6-Mediated Phosphorylation of Rb. Int J Mol Sci 2020; 21:ijms21145077. [PMID: 32708403 PMCID: PMC7403985 DOI: 10.3390/ijms21145077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant tumor caused by the abnormal proliferation of hematopoietic stem cells. Among a new series of acridone derivatives previously synthesized, it was found that the methoxybenzyl 5-nitroacridone derivative 8q has nanomolar cytotoxicity in vitro against human chronic myelogenous leukemia K562 cells. In order to further explore the possible anti-leukemia mechanism of action of 8q on K562 cells, a metabolomics and molecular biology study was introduced. It was thus found that most of the metabolic pathways of the G1 phase of K562 cells were affected after 8q treatment. In addition, a concentration-dependent accumulation of cells in the G1 phase was observed by cell cycle analysis. Western blot analysis showed that 8q significantly down-regulated the phosphorylation level of retinoblastoma-associated protein (Rb) in a concentration-dependent manner, upon 48 h treatment. In addition, 8q induced K562 cells apoptosis, through both mitochondria-mediated and exogenous apoptotic pathways. Taken together, these results indicate that 8q effectively triggers G1 cell cycle arrest and induces cell apoptosis in K562 cells, by inhibiting the CDK4/6-mediated phosphorylation of Rb. Furthermore, the possible binding interactions between 8q and CDK4/6 protein were clarified by homology modeling and molecular docking. In order to verify the inhibitory activity of 8q against other chronic myeloid leukemia cells, KCL-22 cells and K562 adriamycin-resistant cells (K562/ADR) were selected for the MTT assay. It is worth noting that 8q showed significant anti-proliferative activity against these cell lines after 48 h/72 h treatment. Therefore, this study provides new mechanistic information and guidance for the development of new acridones for application in the treatment of CML.
Collapse
|
240
|
Zhang J. Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1600. [PMID: 32633085 PMCID: PMC7583486 DOI: 10.1002/wrna.1600] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
The T-box riboswitches are widespread bacterial noncoding RNAs that directly bind specific tRNAs, sense aminoacylation on bound tRNAs, and switch conformations to control amino-acid metabolism and to maintain nutritional homeostasis. The core mechanisms of tRNA recognition, amino acid sensing, and conformational switching by the T-boxes have been recently elucidated, providing a wealth of new insights into multivalent and multimodal RNA-RNA interactions. This review dissects the structures and tRNA-recognition mechanisms by the Stem I, Stem II, and Discriminator domains, which collectively compose the T-box riboswitches. It further compares and contrasts the two classes of T-boxes that regulate transcription and translation, respectively, and integrates recent findings to derive general themes, trends, and insights into complex RNA-RNA interactions. Specifically, the T-box paradigm reveals that noncoding RNAs can interact with each other through multiple coordinated contacts, concatenation of stacked helices, and mutually induced fit. Numerous tertiary contacts, especially those emanating from strings of single-stranded purines, act in concert to reinforce long-range base-pairing and stacking interactions. These coordinated, mixed-mode contacts allow the T-box RNA to sterically sense aminoacylation on the tRNA using a bipartite steric sieve, and to couple this readout to a conformational switch mediated by tRNA-T-box stacking. Together, the insights gleaned from the T-box riboswitches inform investigations into other complex RNA structures and assemblies, development of T-box-targeted antimicrobials, and may inspire design and engineering of novel RNA sensors, regulators, and interfaces. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Riboswitches.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|