201
|
Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res 2012; 349:679-90. [DOI: 10.1007/s00441-012-1469-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/21/2012] [Indexed: 12/27/2022]
|
202
|
Concepcion CP, Han YC, Mu P, Bonetti C, Yao E, D'Andrea A, Vidigal JA, Maughan WP, Ogrodowski P, Ventura A. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 2012; 8:e1002797. [PMID: 22844244 PMCID: PMC3406012 DOI: 10.1371/journal.pgen.1002797] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/15/2012] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs belonging to the miR-34 family have been proposed as critical modulators of the p53 pathway and potential tumor suppressors in human cancers. To formally test these hypotheses, we have generated mice carrying targeted deletion of all three members of this microRNA family. We show that complete inactivation of miR-34 function is compatible with normal development in mice. Surprisingly, p53 function appears to be intact in miR-34–deficient cells and tissues. Although loss of miR-34 expression leads to a slight increase in cellular proliferation in vitro, it does not impair p53-induced cell cycle arrest or apoptosis. Furthermore, in contrast to p53-deficient mice, miR-34–deficient animals do not display increased susceptibility to spontaneous, irradiation-induced, or c-Myc–initiated tumorigenesis. We also show that expression of members of the miR-34 family is particularly high in the testes, lungs, and brains of mice and that it is largely p53-independent in these tissues. These findings indicate that miR-34 plays a redundant function in the p53 pathway and suggest additional p53-independent functions for this family of miRNAs. MicroRNAs (miRNAs) are small, non-coding RNAs that broadly regulate gene expression. MicroRNA deregulation is a common feature of human cancers, and numerous miRNAs have oncogenic or tumor suppressive properties. Members of the miR-34 family (miR-34a, miR-34b, and miR-34c) have been widely speculated to be important tumor suppressors and mediators of p53 function. Despite the growing body of evidence supporting this hypothesis, previous studies on miR-34 have been done in vitro or using non-physiologic expression levels of miR-34. Here, we probe the tumor suppressive functions of the miR-34 family in vivo by generating mice carrying targeted deletion of the entire miR-34 family. Our results show that the miR-34 family is not required for tumor suppression in vivo, and they suggest p53-independent functions for this family of miRNAs. Importantly, the mice generated from this study provide a tool for the scientific community to further investigate the physiologic functions of the miR-34 family.
Collapse
Affiliation(s)
- Carla P. Concepcion
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Yoon-Chi Han
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ping Mu
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Ciro Bonetti
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Evelyn Yao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Aleco D'Andrea
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Joana A. Vidigal
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - William P. Maughan
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
203
|
Ostano P, Bione S, Belgiovine C, Chiodi I, Ghimenti C, Scovassi AI, Chiorino G, Mondello C. Cross-analysis of gene and miRNA genome-wide expression profiles in human fibroblasts at different stages of transformation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:24-36. [PMID: 22321013 DOI: 10.1089/omi.2011.0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis.
Collapse
Affiliation(s)
- Paola Ostano
- Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Lin CP, Choi YJ, Hicks GG, He L. The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle 2012; 11:2063-72. [PMID: 22580472 DOI: 10.4161/cc.20207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.
Collapse
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, CA, USA
| | | | | | | |
Collapse
|
205
|
Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem 2012; 287:21686-98. [PMID: 22570483 DOI: 10.1074/jbc.m111.328054] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) mainly function as post-transcriptional regulators and are involved in a wide range of physiological and pathophysiological processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. Mouse testes express a large number of miRNAs. However, the physiological roles of these testicular miRNAs remain largely unknown. Using microarray and quantitative real time PCR assays, we identified that miRNAs of the microRNA-449 (miR-449) cluster were preferentially expressed in the mouse testis, and their levels were drastically up-regulated upon meiotic initiation during testicular development and in adult spermatogenesis. The expression pattern of the miR-449 cluster resembled that of microRNA-34b/c (miR-34b/c) during spermatogenesis. Further analyses identified that cAMP-responsive element modulator τ and SOX5, two transcription factors essential for regulating male germ cell gene expression, acted as the upstream transactivators to stimulate the expression of the miR-449 cluster in mouse testes. Despite its abundant expression in testicular germ cells, miR-449-null male mice developed normally and exhibited normal spermatogenesis and fertility. Our data further demonstrated that miR-449 shared a cohort of target genes that belong to the E2F transcription factor-retinoblastoma protein pathway with the miR-34 family, and levels of miR-34b/c were significantly up-regulated in miR-449-null testes. Taken together, our data suggest that the miR-449 cluster and miR-34b/c function redundantly in the regulation of male germ cell development in murine testes.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Qin Y, Xia Y, Wu W, Han X, Lu C, Ji G, Chen D, Wang H, Song L, Wang S, Wang X. Genetic variants in microRNA biogenesis pathway genes are associated with semen quality in a Han-Chinese population. Reprod Biomed Online 2012; 24:454-461. [PMID: 22381205 DOI: 10.1016/j.rbmo.2012.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/18/2022]
Abstract
MicroRNA biogenesis genes have been confirmed involved in lots of diseases. This study evaluated the role of genetic variants in microRNA biogenesis genes in semen quality and idiopathic male infertility. Seven single-nucleotide polymorphisms (SNP) of DICER1 (rs13078, rs1057035 and rs12323635) and DROSHA (rs10719, rs2291109, rs17409893 and rs642321) were determined by TaqMan probes and SNPstream in 667 eligible infertile men and 419 fertile controls. Semen quality analysis was performed by computer-assisted sperm analysis. It was found that genetic variants of rs12323635 was associated with idiopathic male infertility. Additionally, in strategy analysis, the rs12323635 C allele might decrease the risk of oligozoospermia (OR 0.42, 95% CI 0.26-0.66; P=0.0002). The rs642321 TT genotype may have a higher risk of oligozoospermia (OR 2.38, 95% CI 1.34-4.25; P=0.003). These significant differences were retained after Bonferroni correction. The results showed that variants of DICER1 and DROSHA may modify the risk of abnormal semen parameters, which could result in male infertility. MicroRNA have been confirmed involved in lots of diseases. To our knowledge, few studies have elucidated the role of genetic variants in microRNA biogenesis genes in semen quality and idiopathic male infertility, although microRNA is indispensable in normal spermatogenesis. In this original study, we evaluated the potential impact of the polymorphisms in microRNA biogenesis genes on the risk of abnormal semen quality based on 667 infertile patients and 419 controls, and provided the first evidence that polymorphism in rs12323635 in DICER1 may modify the risk of abnormal semen parameters, which could result in male infertility.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, Cui S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 2012; 7:e33861. [PMID: 22479460 PMCID: PMC3316505 DOI: 10.1371/journal.pone.0033861] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) play vital regulatory roles in many cellular processes. The expression of miRNA (miR)-34c is highly enriched in adult mouse testis, but its roles and underlying mechanisms of action are not well understood. Methodology/Principal Findings In the present study, we show that miR-34c is detected in mouse pachytene spermatocytes and continues to be highly expressed in spermatids. To explore the specific functions of miR-34c, we have established an in vivo model by transfecting miR-34c inhibitors into primary spermatocytes to study the loss-of-function of miR-34c. The results show that silencing of miR-34c significantly increases the Bcl-2/Bax ratio and prevents germ cell from apoptosis induced by deprivation of testosterone. Moreover, ectopic expression of the miR-34c in GC-2 cell trigger the cell apoptosis with a decreased Bcl-2/Bax ratio and miR-34c inhibition lead to a low spontaneous apoptotic ratio and an increased Bcl-2/Bax ratio. Furthermore, ectopic expression of miR-34c reduces ATF1 protein expression without affecting ATF1 mRNA level via directly binding to ATF1's 3′UTR, indicating that ATF1 is one of miR-34c's target genes. Meanwhile, the knockdown of ATF1 significantly decreases the Bcl-2/Bax ratio and triggers GC-2 cell apoptosis. Inhibition of miR-34c does not decrease the GC-2 cell apoptosis ratio in ATF1 knockdown cells. Conclusions/Significance Our study shows for the first time that miR-34c functions, at least partially, by targeting the ATF1 gene in germ cell apoptosis, providing a novel mechanism with involvement of miRNA in the regulation of germ cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
208
|
Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 2011; 109:490-4. [PMID: 22203953 DOI: 10.1073/pnas.1110368109] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, the sperm deliver mRNA of unknown function into the oocytes during fertilization. The role of sperm microRNAs (miRNAs) in preimplantation development is unknown. miRNA profiling identified six miRNAs expressed in the sperm and the zygotes but not in the oocytes or preimplantation embryos. Sperm contained both the precursor and the mature form of one of these miRNAs, miR-34c. The absence of an increased level of miR-34c in zygotes derived from α-amanitin-treated oocytes and in parthenogenetic oocytes supported a sperm origin of zygotic miR-34c. Injection of miR-34c inhibitor into zygotes inhibited DNA synthesis and significantly suppressed first cleavage division. A 3' UTR luciferase assay and Western blotting demonstrated that miR-34c regulates B-cell leukemia/lymphoma 2 (Bcl-2) expression in the zygotes. Coinjection of anti-Bcl-2 antibody in zygotes partially reversed but injection of Bcl-2 protein mimicked the effect of miR-34c inhibition. Oocyte activation is essential for the miR-34c action in zygotes, as demonstrated by a decrease in 3'UTR luciferase reporter activity and Bcl-2 expression after injection of precursor miR-34c into parthenogenetic oocytes. Our findings provide evidence that sperm-borne miR-34c is important for the first cell division via modulation of Bcl-2 expression.
Collapse
|
209
|
Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y, Liu Y, Ji J, Zhang J, Zen K, Zhang CY, Zhang C. Altered Profile of Seminal Plasma MicroRNAs in the Molecular Diagnosis of Male Infertility. Clin Chem 2011; 57:1722-31. [PMID: 21933900 DOI: 10.1373/clinchem.2011.169714] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND
Although microRNAs (miRNAs) play essential roles in spermatogenesis, little is known about seminal plasma miRNAs in infertile men. We investigated the profile of seminal plasma miRNAs in infertile men to identify miRNAs that are altered in infertility; we then evaluated their diagnostic value.
METHODS
Seminal plasma samples were obtained from 289 infertile men and 168 age-matched fertile control individuals. The stability of the miRNAs was first assessed by time-course and freeze–thaw cycle analyses. The Solexa sequencing technology was used for an initial screen of the miRNAs in samples pooled from 45 patients with nonobstructive azoospermia, 58 patients with asthenozoospermia, and 100 fertile controls. A stem–loop quantitative reverse-transcription PCR (RT-qPCR) assay was conducted in the training and verification sets to confirm the concentrations of the altered miRNAs in 73 patients with nonobstructive azoospermia, 79 patients with asthenozoospermia, 34 patients with oligospermia, and 68 fertile controls.
RESULTS
The miRNAs in seminal plasma were stable. The Solexa sequencing analysis demonstrated 19 markedly altered miRNAs in the patient groups, compared with the control group. RT-qPCR analysis identified 7 miRNAs (miR-34c-5p, miR-122, miR-146b-5p, miR-181a, miR-374b, miR-509–5p, and miR-513a-5p) as markedly decreased in azoospermia but increased in asthenozoospermia. The area under the ROC curve for these miRNAs ranged from 0.733 to 0.921, markedly higher than for routine biochemical parameters (0.510–0.622). Moreover, the concentrations of some selected miRNAs were also increased in the semen sperm of the asthenozoospermia patients.
CONCLUSIONS
The measurement of miRNAs in seminal plasma provides a novel, noninvasive approach for diagnosing male infertility.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cuihua Yang
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bing Yao
- Reproductive Laboratory, Institute of Clinical Laboratory Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Chen Yang
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Chen Zhu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xiaojun Li
- Immunology Laboratory, Institute of Clinical Laboratory Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yong Shao
- Reproductive Laboratory, Institute of Clinical Laboratory Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yang Liu
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Jiang Ji
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Junfeng Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
210
|
Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D, Paschen A. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 2011; 72:460-71. [PMID: 22102694 DOI: 10.1158/0008-5472.can-11-1977] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant cells express ligands for the natural killer cell immunoreceptor NKG2D, which sensitizes to early recognition and elimination by cytotoxic lymphocytes and provides an innate barrier against tumor development. However, the mechanisms that control NKG2D ligand (NKG2DL) expression in tumor cells remain unknown. We recently identified the NKG2DL ULBP2 as strong prognostic marker in human malignant melanoma. Here, we provide evidence that the tumor-suppressive microRNAs (miRNA) miR-34a and miR-34c control ULBP2 expression. Reporter gene analyses revealed that both miRNAs directly targeted the 3'-untranslated region of ULBP2 mRNA and that levels of miR-34a inversely correlated with expression of ULBP2 surface molecules. Accordingly, treatment of cancer cells with miRNA inhibitors led to upregulation of ULBP2, whereas miR-34 mimics led to downregulation of ULBP2, diminishing tumor cell recognition by NK cells. Treatment with the small molecule inhibitor Nutlin-3a also decreased ULBP2 levels in a p53-dependent manner, which was due to a p53-mediated increase in cellular miR-34 levels. Taken together, our study shows that tumor-suppressive miR-34a and miR-34c act as ULBP2 repressors. These findings also implicate p53 in ULBP2 regulation, emphasizing the role of the specific NKG2DL in tumor immune surveillance.
Collapse
Affiliation(s)
- Anja Heinemann
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011; 286:44306-18. [PMID: 22086916 DOI: 10.1074/jbc.m111.282756] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a testis-specific member of the DEAD-box family, is an essential post-transcriptional regulator of spermatogenesis. Failure of expression of Transition protein 2 (TP2) and Protamine 2 (Prm2) proteins (chromatin remodelers, essential for spermatid elongation and completion of spermatogenesis) with preservation of their mRNA expression was observed in GRTH-null mice (azoospermic due to failure of spermatids to elongate). These were identified as target genes for the testis-specific miR-469, which is increased in the GRTH-null mice. Further analysis demonstrated that miR-469 repressed TP2 and Prm2 protein expression at the translation level with minor effect on mRNA degradation, through binding to the coding regions of TP2 and Prm2 mRNAs. The corresponding primary-microRNAs and the expression levels of Drosha and DGCR8 (both mRNA and protein) were increased significantly in the GRTH-null mice. miR-469 silencing of TP2 and Prm2 mRNA in pachytene spermatocytes and round spermatids is essential for their timely translation at later times of spermiogenesis, which is critical to attain mature sperm. Collectively, these studies indicate that GRTH, a multifunctional RNA helicase, acts as a negative regulator of miRNA-469 biogenesis and consequently their function during spermatogenesis.
Collapse
Affiliation(s)
- Lisheng Dai
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
McIver S, Roman S, Nixon B, McLaughlin E. miRNA and mammalian male germ cells. Hum Reprod Update 2011; 18:44-59. [DOI: 10.1093/humupd/dmr041] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
213
|
Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod 2011; 26:3401-12. [PMID: 21989093 DOI: 10.1093/humrep/der329] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.
Collapse
Affiliation(s)
- Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
214
|
Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 2011; 6:e25241. [PMID: 21998645 PMCID: PMC3187767 DOI: 10.1371/journal.pone.0025241] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/29/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice. PRINCIPAL FINDINGS We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes. CONCLUSIONS/SIGNIFICANCE Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.
Collapse
|
215
|
Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, Jiang AA, Zhu L, Lang Q, Zhou X, Wang J, Zeng W, Li N, Li K, Gao X, Li X. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci 2011; 7:1045-55. [PMID: 21927574 PMCID: PMC3174389 DOI: 10.7150/ijbs.7.1045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/09/2011] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs), a large family of short endogenous RNAs known to post-transcriptionally repress gene expression, participate in the regulation of almost every cellular process. Changes in miRNA expression are associated with many pathologies. Ovarian folliculogenesis and testicular spermatogenesis are complex and coordinated biological processes, in which tightly regulated expression and interaction of a multitude of genes could be regulated by these miRNAs. Identification and preliminary characterization of gonad-specific miRNAs would be a prerequisite for a thorough understanding of the role that miRNA-mediated posttranscriptional gene regulation plays in mammalian reproduction. Method: Here, we present the identification of a repertoire of porcine miRNAs in adult ovary and testis using deep sequencing technology. A bioinformatics pipeline was developed to distinguish authentic mature miRNA sequences from other classes of small RNAs represented in the sequencing data. Results: Using this approach, we detected 582 precursor hairpins (pre-miRNAs) encoding for 732 mature miRNAs, of which 673 are unique. Statistically, 224 unique miRNAs (out of 673, 33.28%) were identified which had significant differential expression (DE) between ovary and testis libraries (P < 0.001). Most of DE miRNAs located on the X chromosome (X-linked miRNAs) (24 out of 34, 70.59%) significantly up-regulated in ovary versus testis (P < 0.001). Predictably, X-linked miRNAs are expressed in a testis-preferential or testis-specific pattern. To explore the potential for co-expression among genomic location clusters of X-linked miRNAs, we surveyed the relationship between the distance separating miRNA loci and the coordinate expression patterns of 32 high confidence X-linked miRNAs in seven normal pig tissues using the real-time quantitative PCR (q-PCR) approach. Our results show that proximal pairs of miRNAs are generally co-expressed implying that miRNAs within 50 kb of genomic bases are typically derived from a common transcript. Conclusions: The present study characterizes the miRNA transcriptome of adult porcine gonads, with an emphasis on the co-expression patterns of X-linked miRNAs. Our report should facilitate studies of the organ-specific reproductive roles of miRNAs.
Collapse
Affiliation(s)
- Mingzhou Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Cyclin T2: A novel miR-15a target gene involved in early spermatogenesis. FEBS Lett 2011; 585:2493-500. [DOI: 10.1016/j.febslet.2011.06.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/18/2011] [Accepted: 06/27/2011] [Indexed: 01/07/2023]
|
217
|
Tong MH, Mitchell D, Evanoff R, Griswold MD. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 2011; 85:189-97. [PMID: 21430230 PMCID: PMC3123386 DOI: 10.1095/biolreprod.110.089458] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/18/2010] [Accepted: 02/14/2011] [Indexed: 02/02/2023] Open
Abstract
Spermatogonial differentiation is orchestrated by the precise control of gene expression involving retinoic acid signaling. MicroRNAs have emerged as important regulators of spermatogenesis, and here we show that the Mirlet7 family miRNAs are expressed in mouse spermatogonia and spermatocytes. Retinoic acid significantly leads to the induction of Mirlet7 miRNAs through suppression of Lin28. We further confirmed both in vitro and in vivo that expressions of Mycn, Ccnd1, and Col1a2, which are targets of Mirlet7, were downregulated during spermatogonial differentiation. These results suggest that Mirlet7 family miRNAs play a role in retinoic acid-induced spermatogonial differentiation.
Collapse
Affiliation(s)
- Ming-Han Tong
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Ryan Evanoff
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Michael D. Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| |
Collapse
|
218
|
Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 2011; 138:1653-61. [PMID: 21486922 DOI: 10.1242/dev.056234] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small non-coding RNAs, including microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), play essential roles in mammalian development. The function and timing of expression of these three classes of small RNAs differ greatly. piRNAs are expressed and play a crucial role during male gametogenesis, whereas endo-siRNAs are essential for oocyte meiosis. By contrast, miRNAs are ubiquitously expressed in somatic tissues and function throughout post-implantation development. Surprisingly, however, miRNAs are non-essential during pre-implantation embryonic development and their function is suppressed during oocyte meiosis. Here, we review the roles of small non-coding RNAs during the early stages of mammalian development, from gamete maturation through to gastrulation.
Collapse
Affiliation(s)
- Nayoung Suh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
219
|
Abstract
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.
Collapse
|
220
|
Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R, Warscheid B, Hermeking H. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011; 10:M111.010462. [PMID: 21566225 DOI: 10.1074/mcp.m111.010462] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene encoding the miR-34a microRNA is a transcriptional target of the p53 tumor suppressor protein and subject to epigenetic inactivation in colorectal cancer and numerous other tumor types. Here, we combined pulsed SILAC (pSILAC) and microarray analyses to identify miR-34a-induced changes in protein and mRNA expression. pSILAC allowed to quantify the de novo protein synthesis of 1206 proteins after activation of a conditional miR-34a allele in a colorectal cancer cell line. ∼19% of the detected proteins were differentially regulated, with 113 proteins being down- and 115 up-regulated. The proteins with a miR-34a seed-matching-sequence in the 3'-untranslated region (UTR) of the corresponding mRNA showed a clear bias toward translational repression. Proteins involved in DNA replication, e.g. the MCM proteins, and cell proliferation, were over-represented among indirectly down-regulated proteins lacking a miR-34a seed-match. The decrease in de novo protein synthesis of direct miR-34a targets correlated with reduced levels of the corresponding mRNA in most cases, indicating an interdependence of both types of regulation. In addition, 43 mRNAs encoding proteins not detected by pSILAC were down-regulated after miR-34a expression and contained miR-34a seed-matches. The direct regulation of selected miR-34a target-mRNAs was confirmed using reporter assays. Via down-regulation of the proteins encoded by these mRNAs miR-34a presumably inhibits glycolysis (LDHA), WNT-signaling (LEF1), invasion/migration (AXL) and lipid metabolism (ACSL1, ACSL4). Furthermore, miR-34a may activate p53 by inhibiting its acetylation (MTA2, HDAC1) and degradation (YY1). In summary, miR-34a presumably participates in multiple tumor suppressive pathways by directly and indirectly suppressing the expression of numerous, critical proteins.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Wang J, Emadali A, Le Bescont A, Callanan M, Rousseaux S, Khochbin S. Induced malignant genome reprogramming in somatic cells by testis-specific factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:221-5. [PMID: 21530697 DOI: 10.1016/j.bbagrm.2011.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 01/22/2023]
Abstract
Germline cell differentiation is controlled by a specific set of genes whose expression is tightly locked into the repressed state in somatic cells. Large-scale epigenome alterations, now evidenced in nearly all cancers, lead to aberrant activation of these normally silenced genes, as attested by the many reports describing the expression of testis-specific factors, known as cancer-testis genes, in various cancer cells. Here, based on the literature, we argue that off-context activity of some of the testis-specific epigenome regulators can reprogram the somatic cell epigenome toward a malignant state by favoring self-renewal and sustaining cell proliferation under stressful conditions, thereby constituting a major oncogenic mechanism.
Collapse
Affiliation(s)
- Jin Wang
- INSERM, U823, Université Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Grenoble, F-38706, France
| | | | | | | | | | | |
Collapse
|
222
|
Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 2010; 5:e11744. [PMID: 20805883 PMCID: PMC2923610 DOI: 10.1371/journal.pone.0011744] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/29/2010] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood. Methodology We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR. Conclusions Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.
Collapse
Affiliation(s)
- Lifan Luo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lianzhi Ye
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gang Liu
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guochao Shao
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rong Zheng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Zuo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Minggang Lei
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changyan Deng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuanzhu Xiong
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|