201
|
Zhang L, Deng YB, Deng QY. Hepatitis B virus preS2 gene-specific locked nucleic acid antisense oligonucleotides significantly inhibit hepatitis B virus replication and expression in HepG2 2.2.15 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:3720-3724. [DOI: 10.11569/wcjd.v17.i36.3720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) preS2 gene-specific locked nucleic acid (LNA) antisense oligonucleotides on HBV replication and expression in HepG2 2.2.15 cells.
METHODS: Three LNA antisense oligonucleotides of different lengths that are complementary to the translation initiation region of the HBV preS2 gene were designed, synthesized and introduced into HepG2 2.2.15 cells by cationic liposome-mediated transfection. Hepatitis B surface antigen (HbsAg) and HBV DNA levels in cell supernatant were tested by time-resolved immunofluorescence assay (TRFIA) and fluorescent quantitative-polymerase chain reaction (FQ-PCR). The inhibitory effects of different antisense oligonucleotides on HBV DNA replication and expression were compared. The cell toxicity of LNA antisense oligonucleotides was evaluated by methyl thiazolyl tetrazolium (MTT) assay.
RESULTS: On day 1 after transfection with LNA antisense oligonucleotides, the expression of HBsAg and the replication of HBV DNA were inhibited. On day 7, the reduced rates of HBsAg and HBV DNA levels were 45.79%, 52.92% and 67.21% as well as 35.15%, 40.69% and 52.16% in the non-modified antisense oligonucleotide group, all-phosphorothioate-modified antisense oligonucleotide group and LNA antisense oligonucleotide group, respectively. LNA antisense oligonucleotides showed the strongest inhibitory effects on viral activity and had no impact on cell metabolism. Compared with the control group, the reduced rates of HBsAg and HBV DNA levels achieved in each of the above groups were significantly higher (all P < 0.01). Moreover, the reduced rates of HBsAg and HBV DNA levels in the LNA antisense oligonucleotide group were significantly higher than those in other antisense oligonucleotide groups (all P < 0.05).
CONCLUSION: LNA antisense oligonucleotides targeting the preS2 gene can effectively inhibit the replication and expression of HBV in vitro. The preS2 gene can be used as an effective target for gene therapy of HBV infection.
Collapse
|
202
|
Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2009; 70:36-45. [PMID: 20028859 DOI: 10.1158/0008-5472.can-09-3153] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prognostic markers that can predict the relapse of localized non-small cell lung cancer (NSCLC) have yet to be defined. We surveyed expression profiles of microRNA (miRNA) in stage I NSCLC to identify patterns that might predict recurrence after surgical resection of this common deadly cancer. Small RNAs extracted from formalin-fixed and paraffin-embedded tissues were hybridized to locked nucleic acid probes against 752 human miRNAs (representing 82% of the miRNAs in the miRBase 13.0 database) to obtain expression profiles for 37 cases with recurrence and 40 cases without recurrence (with clinical follow-up for at least 32 months). Differential expression between the two case groups was detected for 49% of the miRNAs (Wilcoxon rank sum test; P<0.01). The performance of expression profiles at differentiating the two case groups was assessed by leave-one-out and Monte Carlo cross-validations. In leave-one-out cross-validation using support vector machines- or top-scoring gene pair classifier methods, which looked for six- or two-miRNA-based classifiers, the identified miRNA expression pattern predicted recurrence with an accuracy of 70% and 83%, and hazard ratio of 3.6 [95% confidence interval (95% CI), 1.8-7.1] and 9.0 (95% CI, 4.4-18.2), respectively. Mean accuracy in Monte Carlo cross-validation using 1,000 random 60-17 splits was 69% (95% CI, 68-70) and 72% (95% CI, 71-72), respectively. The specific miRNAs mir-200b*, mir-30c-1*, mir-510, mir-630, mir-657, and mir-146b-3p and mir-124*, mir-585, and mir-708, respectively, represented most commonly among the 1,000 classifiers identified in Monte Carlo cross-validation by the two methods. MiRNAs mir-488, mir-503, and mir-647 were identified as potential reference miRNAs for future studies, based on the stability of their expression patterns across the 77 cases and the two case-groups. Our findings reinforce efforts to profile miRNA expression patterns for better prognostication of stage I NSCLC.
Collapse
Affiliation(s)
- Santosh K Patnaik
- Division of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
203
|
Ibberson D, Benes V, Muckenthaler MU, Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol 2009; 9:102. [PMID: 20025722 PMCID: PMC2805631 DOI: 10.1186/1472-6750-9-102] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 12/21/2009] [Indexed: 11/15/2022] Open
Abstract
Background MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression and their expression is frequently altered in human diseases, including cancer. To correlate clinically relevant parameters with microRNA expression, total RNA is frequently prepared from samples that were archived for various time periods in frozen tissue banks but, unfortunately, RNA integrity is not always preserved in these frozen tissues. Here, we investigate whether experimentally induced RNA degradation affects microRNA expression profiles. Results Tissue samples were maintained on ice for defined time periods prior to total RNA extraction, which resulted in different degrees of RNA degradation. MicroRNA expression was then analyzed by microarray analysis (miCHIP) or microRNA-specific real-time quantitative PCR (miQPCR). Our results demonstrate that the loss of RNA integrity leads to in unpredictability of microRNA expression profiles for both, array-based and miQPCR assays. Conclusion MicroRNA expression cannot be reliably profiled in degraded total RNA. For the profiling of microRNAs we recommend use of RNA samples with a RNA integrity number equal to or above seven.
Collapse
Affiliation(s)
- David Ibberson
- Genomics Core Facility, EMBL, Meyerhofstrasse 1 D-69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
204
|
Deng YB, Wang YF. Antiviral effects of locked nucleic acid antisense oligonucleotides targeting HBV S gene mRNA in HepG2 2.2.15 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:3497-3501. [DOI: 10.11569/wcjd.v17.i34.3497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of locked nucleic acid (LNA) antisense oligonucleotides targeting hepatitis B virus (HBV) S gene in HepG2 2.2.15 cells, and screen effective LNA antisense oligonucleotides.
METHODS: Four LNA antisense oligonucleotides of different lengths that are complementary to the translation initiation region of HBV S gene were designed, synthesized, and introduced into HepG2 2.2.15 cells by cationic liposome-mediated transfection. Hepatitis B surface antigen (HBsAg) and HBV DNA levels in cell supernatant were tested by enzyme-linked immunosorbent assay (ELISA) and fluorescent quantitative-polymerase chain reaction (FQ-PCR) 24, 48 and 72 h after transfection. The cell toxicity of LNA antisense oligonucleotides was detected by methyl thiazolyl tetrazolium (MTT) assay.
RESULTS: All four LNA antisense oligonucleotides (10, 15, 20 and 25 base, respectively) could inhibit the expression of HBsAg and the replication of HBV DNA. Seventy-two hours after transfection, the reduced rates of HBsAg and HBV DNA levels were 46.58%, 54.38%, 72.43% and 69.92% as well as 27.09%, 28.77%, 34.71% and 32.68%, respectively. No obvious cell toxicity of LNA antisense oligonucleotides was noted.
CONCLUSION: LNA antisense oligonucleotides targeting HBV S gene show strong inhibitory effects on HBV replication in vitro. The optimal length of LNA antisense oligonucleotides ranges from 15 to 25 base. LNA antisense oligonucleotides targeting HBV S gene have a therapeutic potential in patients infected with HBV.
Collapse
|
205
|
NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009; 5:e1000681. [PMID: 19997496 PMCID: PMC2778997 DOI: 10.1371/journal.ppat.1000681] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022] Open
Abstract
Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes). Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-κB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-κB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-κB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general. MicroRNAs (miRNAs) are newly identified small non-coding RNAs that regulate gene expression at the posttranscriptional level. While much of our understanding of the cellular processes modulated by miRNAs has come from studies on development and tumorigenesis, the role of miRNAs in immune responses is now being gradually uncovered. Nevertheless, whether miRNA-mediated posttranscriptional gene regulation is involved in the fine-tuning of epithelial cell immune responses against pathogen infection remains undefined. Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelium. TLR/NF-κB-mediated innate immune responses by epithelial cells are critical to the host's defense to infection. Using an in vitro model of human cryptosporidiosis, we show here differential alterations in the miRNA expression profile in biliary epithelial cells following C. parvum infection. Promoter binding of NF-κB p65 subunit accounts for the upregulation of a panel of miRNA genes in cells infected by C. parvum. Importantly, functional inhibition of several NF-κB p65-dependent miRNAs in epithelial cells increases C. parvum infection burden. Our findings suggest that host epithelial cells activate NF-κB signaling to regulate miRNA expression in response to C. parvum infection. Moreover, NF-κB-mediated miRNA expression is involved in epithelial anti-microbial defense. Our study provides new insights into epithelial cell immunoregulation.
Collapse
|
206
|
Beveridge NJ, Tooney PA, Carroll AP, Tran N, Cairns MJ. Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 2009; 21:1837-45. [DOI: 10.1016/j.cellsig.2009.07.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/09/2009] [Accepted: 07/30/2009] [Indexed: 01/07/2023]
|
207
|
Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A. Absolute quantification of microRNAs by using a universal reference. RNA (NEW YORK, N.Y.) 2009; 15:2375-84. [PMID: 19861428 PMCID: PMC2779673 DOI: 10.1261/rna.1754109] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/03/2009] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) are a species of small RNAs approximately 21-23-nucleotides long that have been shown to play an important role in many different cellular, developmental, and physiological processes. Accordingly, numerous PCR-, sequencing-, or hybridization-based methods have been established to identify and quantify miRNAs. Their short length results in a high dynamic range of melting temperatures and therefore impedes a proper selection of detection probes or optimized PCR primers. While miRNA microarrays allow for massive parallel and accurate relative measurement of all known miRNAs, they have so far been less useful as an assay for absolute quantification. Here, we present a microarray-based approach for global and absolute quantification of miRNAs. The method relies on the parallel hybridization of the sample of interest labeled with Cy5 and a universal reference of 954 synthetic miRNAs in equimolar concentrations that are labeled with Cy3 on a microarray slide containing probes for all human, mouse, rat, and viral miRNAs (miRBase 12.0). Each single miRNA is quantified with respect to the universal reference canceling biases related to sequence, labeling, or hybridization. We demonstrate the accuracy of the method by various spike-in experiments. Furthermore, we quantified miRNA copy numbers in liver samples and CD34(+)/CD133(-) hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Ute Bissels
- Miltenyi Biotec GmbH, 51429 Bergisch Gladbach, Germany
| | | | | | | | | | | | | |
Collapse
|
208
|
MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009; 2009:654346. [PMID: 19841678 PMCID: PMC2762243 DOI: 10.1155/2009/654346] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/11/2009] [Accepted: 07/20/2009] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have rapidly emerged as biologically important mediators of posttranscriptional and epigenetic regulation in both plants and animals. miRNAs function through a variety of mechanisms including mRNA degradation and translational repression; additionally, miRNAs may guide gene expression by serving as transcription factors. miRNAs are highly expressed in human brain. Tissue and cell type-specific enrichments of certain miRNAs within the nervous system argue for a biological significance during neurodevelopmental stages. On the other hand, a large number of studies have reported links between alterations of miRNA homeostasis and pathologic conditions such as cancer, heart diseases, and neurodegeneration. Thus, profiles of distinct or aberrant miRNA signatures have most recently surged as one of the most fascinating interests in current biology. Here, the most recent insights into the involvement of miRNAs in the biology of the nervous system and the occurrence of neuropathological disorders are reviewed and discussed.
Collapse
|
209
|
Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Bénès V, Roché H, Dalenc F, Auboeuf D, Millevoi S, Vagner S. Widespread Estrogen-Dependent Repression of microRNAs Involved in Breast Tumor Cell Growth. Cancer Res 2009; 69:8332-40. [DOI: 10.1158/0008-5472.can-09-2206] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
210
|
Cheng JY, Chen HY. Microfluidic ARray Synthesizer (MArS) for rapid preparation and hybridization of custom DNA microarray. Biotechnol Bioeng 2009; 104:400-7. [DOI: 10.1002/bit.22383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
211
|
Bogner PN, Patnaik SK, Pitoniak R, Kannisto E, Repasky E, Hylander B, Yendamuri S, Ramnath N. Lung cancer xenografting alters microRNA profile but not immunophenotype. Biochem Biophys Res Commun 2009; 386:305-10. [PMID: 19523437 PMCID: PMC2742962 DOI: 10.1016/j.bbrc.2009.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
Lung tumor xenografts grown in immunocompromised mice provide a renewable source of tumor tissue for research and a means to study individualized response to chemotherapy. Critical to this utility is verification that the xenograft cells retain core phenotypic characteristics of the original tumor. We compared eight non-small cell lung carcinomas with their corresponding xenografts grown in mice with severe combined immunodeficiency by way of histology, immunohistochemistry, and microRNA expression profiling. Six of the eight xenografts closely resembled their original tumor by light microscopy. The xenografts also largely retained key immunophenotypic features. With expression profiling of human microRNAs, however, xenografts clustered separately from the original tumors. While this may be partly due to contamination by non-neoplastic human and mouse stroma, the results suggest that miRNA expression may be altered in xenografts and that this possibility should be further evaluated.
Collapse
Affiliation(s)
- Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28:2719-32. [PMID: 19696742 DOI: 10.1038/emboj.2009.214] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/02/2009] [Indexed: 12/24/2022] Open
Abstract
We here report that miR-17-92 cluster is a novel target for p53-mediated transcriptional repression under hypoxia. We found the expression levels of miR-17-92 cluster were reduced in hypoxia-treated cells containing wild-type p53, but were unchanged in hypoxia-treated p53-deficient cells. The repression of miR-17-92 cluster under hypoxia is independent of c-Myc. Luciferase reporter assays mapped the region responding to p53-mediated repression to a p53-binding site in the proximal region of the miR-17-92 promoter. Chromatin immunoprecipitation (ChIP), Re-ChIP and gel retardation assays revealed that the binding sites for p53- and the TATA-binding protein (TBP) overlap within the miR-17-92 promoter; these proteins were found to compete for binding. Finally, we show that pri-miR-17-92 expression correlated well with p53 status in colorectal carcinomas. Over-express miR-17-92 cluster markedly inhibits hypoxia-induced apoptosis, whereas blocked miR-17-5p and miR-20a sensitize the cells to hypoxia-induced apoptosis. These data indicated that p53-mediated repression of miR-17-92 expression likely has an important function in hypoxia-induced apoptosis, and thus further our understanding of the tumour suppressive function of p53.
Collapse
|
213
|
Deng YB, Nong LG, Wang YF. HBV S gene-specific antisense locked nucleic acid significantly inhibits HBV replication and expression in HBV transgenic mice. Shijie Huaren Xiaohua Zazhi 2009; 17:2338-2345. [DOI: 10.11569/wcjd.v17.i23.2338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) S gene-specific antisense locked nucleic acid (LNA) on HBV replication and expression.
METHODS: Thirty HBV transgenic mice were randomly divided into five groups (n = 6): glucose (5% GLU solution) control group, empty liposome control group, LNA group, S-ASODN-liposome group and LNA-liposome group. Antisense LNA was injected into mice via the tail vein. Serum HBsAg was quantified by ELISA. Serum HBV DNA was quantified by PCR. The expression of HBsAg in the liver was detected by immunohistochemistry. Serum ALB, ALT, BUN, CR, ApoA1 and ApoB were measured using an automatic biochemical analyzer. The effects of antisense LNA on mouse organs were investigated by HE staining of mouse liver and kidney sections.
RESULTS: On days 1, 3, 7 and 14 after LNA injection, serum HBsAg levels in the LNA-liposome group were reduced by 41.7%, 52.8%, 57.8% and 30.5%, respectively, while serum HBV DNA expression levels were decreased by 18.5%, 36.1%, 52.9% and 32.7%, respectively. These values were significantly higher than those in the control groups (all P < 0.05). No significant differences were noted in serum ALB, ALT, BUN, CR, ApoA1 and ApoB between the experiment group and the control groups (all P > 0.05). The expression level of HBsAg in the liver in the LNA-liposome group was significantly lower than those in the control groups. No significant histological abnormalities were found in the liver in all groups.
CONCLUSION: HBV S gene-specific antisense LNA can significantly inhibit the replication and expression of HBV.
Collapse
|
214
|
MicroRNAs as Novel Biomarkers for Breast Cancer. JOURNAL OF ONCOLOGY 2009; 2009:950201. [PMID: 19639033 PMCID: PMC2712985 DOI: 10.1155/2010/950201] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 05/08/2009] [Indexed: 12/16/2022]
Abstract
Breast cancer is a complex phenotypically diverse genetic disease, involving a variety of changes in gene expression and structure. Recent advances in molecular profiling technology have made great progress in unravelling the molecular taxonomy of breast cancer, which has shed new light on the aetiology of the disease and also heralded great potential for the development of novel biomarkers and therapeutic targets. Mi(cro)RNAs are a contemporary class of small noncoding endogenous RNA molecules, generating great excitement in the clinical and scientific communities.
The recent discovery that miRNA expression is frequently dysregulated in cancer has uncovered an entirely new repertoire of molecular factors upstream of gene expression, which warrants extensive investigation to further elucidate their precise role in malignancy. We present a comprehensive and timely review of the role of miRNAs in cancer: addressing miRNA function, their putative role as oncogenes or tumor suppressors, with a particular emphasis on breast cancer throughout. We discuss the recent discovery of quantifiable circulating cancer-associated miRNAs, which heralds immense potential for their use as novel minimally invasive biomarkers for breast and other cancers. Finally, we comment on the potential role of miRNAs in breast cancer management, particularly in improving current prognostic tools and achieving the goal of individualized cancer
treatment.
Collapse
|
215
|
Chambers C, Shuai B. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC PLANT BIOLOGY 2009; 9:87. [PMID: 19591667 PMCID: PMC2715406 DOI: 10.1186/1471-2229-9-87] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/10/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. In higher plants, miRNAs are involved in developmental processes and stress responses. Sexual reproduction in flowering plants relies on pollen, the male gametophyte, to deliver sperm cells to fertilize the egg cell hidden in the embryo sac. Studies indicated that post-transcriptional processes are important for regulating gene expression during pollen function. However, we still have very limited knowledge on the involved gene regulatory mechanisms. Especially, the function of miRNAs in pollen remains unknown. RESULTS Using miRCURY LNA array technology, we have profiled the expression of 70 known miRNAs (representing 121 miRBase IDs) in Arabidopsis mature pollen, and compared the expression of these miRNAs in pollen and young inflorescence. Thirty-seven probes on the array were identified using RNAs isolated from mature pollen, 26 of which showed significant differences in expression between mature pollen and inflorescence. Real-time PCR based on TaqMan miRNA assays confirmed the expression of 22 miRNAs in mature pollen, and identified 8 additional miRNAs that were expressed at low level in mature pollen. However, the expression of 11 miRNA that were identified on the array could not be confirmed by the Taqman miRNA assays. Analyses of transcriptome data for some miRNA target genes indicated that miRNAs are functional in pollen. CONCLUSION In summary, our results showed that some known miRNAs were expressed in Arabidopsis mature pollen, with most of them being low abundant. The results can be utilized in future research to study post-transcriptional gene regulation in pollen function.
Collapse
Affiliation(s)
- Carrie Chambers
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
216
|
Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009; 76:665-77. [DOI: 10.1002/mrd.21005] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
217
|
|
218
|
Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009; 10:R64. [PMID: 19531210 PMCID: PMC2718498 DOI: 10.1186/gb-2009-10-6-r64] [Citation(s) in RCA: 818] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/02/2009] [Accepted: 06/16/2009] [Indexed: 01/03/2023] Open
Abstract
The mean expression value: a new method for accurate and reliable normalization of microRNA expression data from RT-qPCR experiments. Gene expression analysis of microRNA molecules is becoming increasingly important. In this study we assess the use of the mean expression value of all expressed microRNAs in a given sample as a normalization factor for microRNA real-time quantitative PCR data and compare its performance to the currently adopted approach. We demonstrate that the mean expression value outperforms the current normalization strategy in terms of better reduction of technical variation and more accurate appreciation of biological changes.
Collapse
Affiliation(s)
- Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
The accurate quantification of nucleic acids is of utmost importance for clinical diagnostics, drug discovery, and basic science research. These applications require the concurrent measurement of multiple targets while demanding high-throughput analysis, high sensitivity, specificity between closely related targets, and a wide dynamic range. In attempt to create a technology that can simultaneously meet these demands, we recently developed a method of multiplexed analysis using encoded hydrogel particles. Here, we demonstrate tuning of hydrogel porosity with semi-interpenetrating networks of poly(ethylene glycol), develop a quantitative model to understand hybridization kinetics, and use the findings from these studies to enhance particle design for nucleic acid detection. With an optimized particle design and efficient fluorescent labeling scheme, we demonstrate subattomole sensitivity and single-nucleotide specificity for small RNA targets.
Collapse
Affiliation(s)
- Daniel C Pregibon
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
220
|
Zhang X, Cairns M, Rose B, O'Brien C, Shannon K, Clark J, Gamble J, Tran N. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 2009; 124:2855-63. [DOI: 10.1002/ijc.24298] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
221
|
MicroRNA profiling and head and neck cancer. Comp Funct Genomics 2009:837514. [PMID: 19753298 PMCID: PMC2688814 DOI: 10.1155/2009/837514] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/13/2009] [Indexed: 12/21/2022] Open
Abstract
Head and neck/oral cancer (HNOC) is a devastating disease. Despite advances in diagnosis and treatment, mortality rates have not improved significantly over the past three decades. Improvement in patient survival requires a better understanding of the disease progression so that HNOC can be detected early in the disease process and targeted therapeutic interventions can be deployed. Accumulating evidence suggests that microRNAs play important roles in many human cancers. They are pivotal regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, and morphogenesis. MicroRNA expression patterns may become powerful biomarkers for diagnosis and prognosis of HNOC. In addition, microRNA therapy could be a novel strategy for HNOC prevention and therapeutics. Recent advances in microRNA expression profiling have led to a better understanding of the cancer pathogenesis. In this review, we will survey recent technological advances in microRNA profiling and their applications in defining microRNA markers/targets for cancer prediction, diagnostics, treatment, and prognostics. MicroRNA alterations that consistently identified in HNOC will be discussed, such as upregulation of miR-21, miR-31, miR-155, and downregulation of miR-26b, miR-107, miR-133b, miR-138, and miR-139.
Collapse
|
222
|
Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 2009; 200:661.e1-7. [PMID: 19285651 DOI: 10.1016/j.ajog.2008.12.045] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The purpose of this study was to perform a comprehensive analysis of the microRNA expression profile in placentas from preeclamptic pregnancies vs normal placentas. STUDY DESIGN Placentas were obtained from patients with (1) mild preeclampsia (n = 8) and (2) severe preeclampsia (n = 15) and (3) in a normal control group (n = 11) with elective cesarean delivery. The microRNA expression profile was assessed by microRNA microarray and real-time reverse transcriptase-polymerase chain reaction analysis. RESULTS Thirty-four microRNAs were expressed differentially in preeclamptic placentas, compared with normal placentas. Of these, 11 microRNAs were overexpressed, and 23 microRNAs were underexpressed in preeclamptic pregnancies. Notably, several microRNA clusters on human chromosome 19q13.42, 13q31.3, Xq26.2, Xq26.3, and 14q32.31 (a human imprinted region) were expressed differentially in preeclamptic placentas. These results were confirmed with the use of real-time polymerase chain reaction for selected microRNAs (miR-210, -152, -411, and so on). CONCLUSION The results show that 34 microRNAs are deregulated in preeclamptic pregnancies, which suggests the involvement of these microRNAs in the pathogenesis of preeclampsia.
Collapse
|
223
|
|
224
|
Guo L, Huang ZX, Chen XW, Deng QK, Yan W, Zhou MJ, Ou CS, Ding ZH. Differential Expression Profiles of microRNAs in NIH3T3 Cells in Response to UVB Irradiation. Photochem Photobiol 2009; 85:765-73. [DOI: 10.1111/j.1751-1097.2008.00482.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
225
|
Martinez K, Estevez MC, Wu Y, Phillips JA, Medley CD, Tan W. Locked nucleic acid based beacons for surface interaction studies and biosensor development. Anal Chem 2009; 81:3448-54. [PMID: 19351140 PMCID: PMC3164480 DOI: 10.1021/ac8027239] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA sensors and microarrays permit fast, simple, and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective, and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon's poor stability because of the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics, and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity, and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization.
Collapse
Affiliation(s)
- Karen Martinez
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - M.-Carmen Estevez
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Yanrong Wu
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Joseph A. Phillips
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Colin D. Medley
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Weihong Tan
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
226
|
Zhang B, Wang X, Wang Y. Altered gene expression and miRNA expression associated with cancerous IEC-6 cell transformed by MNNG. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:56. [PMID: 19397828 PMCID: PMC2678987 DOI: 10.1186/1756-9966-28-56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/28/2009] [Indexed: 11/13/2022]
Abstract
Background Tumorigenesis is thought to be the consequence of gene mutation and disordered gene expression. However, the detailed molecular mechanism underlying the development and progress of colon cancer have not been elucidate completely. This study aimed to find out the genes associated with cancer biological pathways involved in transformation and tumorigenesis. Methods Normal intestinal cell line 6 (IEC-6) cells were transformed to cancer cells by treatment with cancerogenic agent of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and Phorbol 12-myristate 13 acetate (PMA). Then we investigated the altered gene expression of transformed IEC-6 cells by the microarray containing 113 genes associated with cancer pathway. Also the altered miRNAs of transformed IEC-6 cells were analyzed by array hybridization (miRCURY Array v9.2, Exiqon). The levels of acetylated histone H3 in transformed IEC-6 cells was evaluated by western blot. Results Cell proliferation was significantly increased as IEC-6 cells were transformed and tumor xenografts could be detected in animals as transformed IEC-6 cells were inoculated subcutaneously in nude mice. Result of microarray showed nine genes were increased and two decreased, as well as 13 miRNA were increased and 97 decreased. Verification by real-time PCR implies that the data obtained from microarray analysis were reliable. Western blot showed the levels of acetylated histone H3 were increased dramatically after MNNG/PMA treatment. Conclusion Our results showed many important biological pathways and miRNAs were involved in transformation and tumorigenesis of IEC-6 cells, which suggested the transformation of normal cells was involved with large mount of genetic and epigenetic variation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Genetics, Third Military Medical University, Chongqing, PR China.
| | | | | |
Collapse
|
227
|
Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:4994-5002. [PMID: 19342679 DOI: 10.4049/jimmunol.0803560] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic airway inflammation is characterized by marked in situ changes in gene and protein expression, yet the role of microRNAs (miRNAs), a new family of key mRNA regulatory molecules, in this process has not yet been reported. Using a highly sensitive microarray-based approach, we identified 21 miRNAs with differential expression between doxycycline-induced lung-specific IL-13 transgenic mice (with allergic airway inflammation) and control mice. In particular, we observed overexpression of miR-21 and underexpression of miR-1 in the induced IL-13 transgenic mice compared with control mice. These findings were validated in two independent models of allergen-induced allergic airway inflammation and in IL-4 lung transgenic mice. Although IL-13-induced miR-21 expression was IL-13Ralpha1 dependent, allergen-induced miR-21 expression was mediated mainly independent of IL-13Ralpha1 and STAT6. Notably, predictive algorithms identified potential direct miR-21 targets among IL-13-regulated lung transcripts, such as IL-12p35 mRNA, which was decreased in IL-13 transgenic mice. Introduction of pre-miR-21 dose dependently inhibited cellular expression of a reporter vector harboring the 3'-untranslated region of IL-12p35. Moreover, mutating miR-21 binding sites in IL-12p35 3'-untranslated region abrogated miR-21-mediated repression. In summary, we have identified a miRNA signature in allergic airway inflammation, which includes miR-21 that modulates IL-12, a molecule germane to Th cell polarization.
Collapse
Affiliation(s)
- Thomas X Lu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
228
|
Seio K, Takaku Y, Miyazaki K, Kurohagi S, Masaki Y, Ohkubo A, Sekine M. Synthesis of terminally modified oligonucleotides and their hybridization dependence on the size of the target RNAs. Org Biomol Chem 2009; 7:2440-51. [PMID: 19462056 DOI: 10.1039/b900301k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed new artificial oligonucleotide probes that show selective recognition for short RNA targets over long RNA targets. Our results suggested that modification of the termini of the oligonucleotide probes by bulky substituents such as cyclohexyl and 4-(3,6,9-trioxaundecylenedioxy)phenyl (Bzcr) groups significantly improved the selectivity of the probes toward the short RNA targets. The selectivity was further improved by the addition of a phosphate group on the cyclohexane ring. Although much improved selectivity toward short RNA targets is desirable in a general sense, it is particularly applicable to the selective detection of matured-miRNA over pre-miRNAs.
Collapse
Affiliation(s)
- Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuka, Midori-ku, Yokohama, 226-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
229
|
Peptide nucleic acid-based array for detecting and genotyping human papillomaviruses. J Clin Microbiol 2009; 47:1785-90. [PMID: 19369432 DOI: 10.1128/jcm.01398-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel array for accurate and reliable genotyping of human papillomavirus (HPV) using peptide nucleic acid (PNA) probes. In order to exploit the superior hybridization properties of PNA with target HPV DNAs, we developed a novel PNA array (PANArray HPV). PANArray HPV enables the detection and genotyping of HPVs using 32 type-specific PNA capture probes for medically important HPVs. All tested HPV types showed highly unique hybridization patterns with type-specific PNA probes. PNA array results showed stable specificities and sensitivities after up to 13 months of storage at room temperature. Also, we demonstrated the superior specificity, sensitivity, and stability of PNA arrays for HPV genotyping. We compared the genotyping results of the PNA array to sequencing with MY09/11 PCR products derived from 72 clinical samples. The results showed excellent agreement between the PNA array and sequencing, except for samples reflecting multiple infections. The results from the PNA array were compared with those of type-specific PCR when discrepant results occurred owing to multiple infections. The results for the PNA array matched those of type-specific PCR in all cases. Newly developed PNA arrays show excellent specificity and sensitivity and long shelf life. Our results suggest that the PNA array represents a reliable alternative to conventional DNA arrays for HPV genotyping, as well as for diagnostics.
Collapse
|
230
|
Computational evaluation of the stability of 2′-O-methyl-RNA/RNA duplexes incorporating 3-deazaguanine derivatives by ab initio calculations and a molecular dynamics simulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
231
|
Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, Sepulveda AR, Xu X. MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2009; 2:519-527. [PMID: 19636399 PMCID: PMC2713447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/20/2009] [Indexed: 05/28/2023]
Abstract
microRNAs (miRNAs) are approximately 22nt RNAs that regulate target gene expression. Altered expression of miRNAs has been demonstrated in many different human cancers. Many studies using microarray technologies to characterize miRNA expression profiles have relied on fresh tissue to determine the miRNA signatures. In this study, we prepared total RNA from paired samples of formalin-fixed paraffin-embedded (FFPE) and fresh frozen malignant melanoma, and used that in microarray experiments to compare miRNA expression profiles between FFPE and fresh tissue with corresponding mRNA expression profiles from the same tissue sources. We demonstrate that miRNA expression profile from FFPE tissues closely resembles that from fresh tissues, and the correlation is significantly better than that for mRNA profiles from FFPE and fresh tissues. These results underscore the suitability of FFPE tissues as appropriate resources for molecular expression analyses and support the notion that miRNAs are more vigorous analytes for this purpose than mRNAs.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Pathology and Laboratory Medicine 6 Founders Pavilion, The Hospital for the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Petersen J, Poulsen L, Birgens H, Dufva M. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development. PLoS One 2009; 4:e4808. [PMID: 19277213 PMCID: PMC2653225 DOI: 10.1371/journal.pone.0004808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022] Open
Abstract
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
Collapse
Affiliation(s)
- Jesper Petersen
- Department of Haematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lena Poulsen
- Department of Micro and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Birgens
- Department of Haematology, Copenhagen University Hospital, Herlev, Denmark
| | - Martin Dufva
- Department of Micro and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
233
|
Siva AC, Nelson LJ, Fleischer CL, Majlessi M, Becker MM, Vessella RL, Reynolds MA. Molecular assays for the detection of microRNAs in prostate cancer. Mol Cancer 2009; 8:17. [PMID: 19267923 PMCID: PMC2656451 DOI: 10.1186/1476-4598-8-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/06/2009] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs (about 21 to 24 nucleotides in length) that effectively reduce the translation of their target mRNAs. Several studies have shown miRNAs to be differentially expressed in prostate cancer, many of which are found in fragile regions of chromosomes. Expression profiles of miRNAs can provide information to separate malignancies based upon stage, progression and prognosis. Here we describe research prototype assays that detect a number of miRNA sequences with high analytical sensitivity and specificity, including miR-21, miR-182, miR-221 and miR-222, which were identified through expression profiling experiments with prostate cancer specimens. The miRNAs were isolated, amplified and quantified using magnetic bead-based target capture and a modified form of Transcription-Mediated Amplification (TMA). Results Analytical sensitivity and specificity were demonstrated in model system experiments using synthetic mature microRNAs or in vitro miRNA hairpin precursor transcripts. Research prototype assays for miR-21, miR-182, miR-221 and miR-222 provided analytical sensitivities ranging from 50 to 500 copies of target per reaction in sample transport medium. Specific capture and detection of mature miR-221 from complex samples was demonstrated in total RNA isolated from human prostate cancer cell lines and xenografts. Conclusion Research prototype real-time TMA assays for microRNAs provide accurate and reproducible quantitation using 10 nanograms of input total RNA. These assays can also be used directly with tissue specimens, without the need for a preanalytic RNA isolation step, and thus provide a high-throughput method of microRNA profiling in clinical specimens.
Collapse
Affiliation(s)
- Amara C Siva
- Gen-Probe Incorporated, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
234
|
Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, Lefort K, Dotto GP, Harshman K. Impact of normalization on miRNA microarray expression profiling. RNA (NEW YORK, N.Y.) 2009; 15:493-501. [PMID: 19176604 PMCID: PMC2657010 DOI: 10.1261/rna.1295509] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 12/05/2008] [Indexed: 05/18/2023]
Abstract
Profiling miRNA levels in cells with miRNA microarrays is becoming a widely used technique. Although normalization methods for mRNA gene expression arrays are well established, miRNA array normalization has so far not been investigated in detail. In this study we investigate the impact of normalization on data generated with the Agilent miRNA array platform. We have developed a method to select nonchanging miRNAs (invariants) and use them to compute linear regression normalization coefficients or variance stabilizing normalization (VSN) parameters. We compared the invariants normalization to normalization by scaling, quantile, and VSN with default parameters as well as to no normalization using samples with strong differential expression of miRNAs (heart-brain comparison) and samples where only a few miRNAs are affected (by p53 overexpression in squamous carcinoma cells versus control). All normalization methods performed better than no normalization. Normalization procedures based on the set of invariants and quantile were the most robust over all experimental conditions tested. Our method of invariant selection and normalization is not limited to Agilent miRNA arrays and can be applied to other data sets including those from one color miRNA microarray platforms, focused gene expression arrays, and gene expression analysis using quantitative PCR.
Collapse
Affiliation(s)
- Sylvain Pradervand
- Lausanne DNA Array Facility, Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Shen YL, Jiang YG, Greenlee AR, Zhou LL, Liu LH. MicroRNA expression profiles and miR-10a target in anti-benzo[a] pyrene-7, 8-diol-9, 10-epoxide-transformed human 16HBE cells. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:14-21. [PMID: 19462682 DOI: 10.1016/s0895-3988(09)60016-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To screen miRNA profiles of malignantly transformed human bronchial epithelial cells, 16HBE-T, induced by anti-benzo[a]pyrene-trans-7,8-diol-9,10-epoxide (anti-BPDE), and to analyze putative miR-10a targets in 16HBE-T. METHODS A novel microarray platform was employed to screen miRNA profiles of 16HBE-T cells transformed by anti-BPDE. Microarray data for miR-10a and miR-320 were validated using quantitative real time polymerase chain reaction (QRT-PCR). The expression of a putative target for miR-10a, HOXA1, was analyzed by reverse transcription polymerase chain reaction (RT-PCR) and QRT-PCR. RESULTS In comparison with the vehicle-treated cells (16HBE-N), 16HBE-T exhibited differential expression of 54 miRNAs, in which, 45 were over-expressed and 9 were down-regulated. The five most highly expressed miRNAs were miR-494, miR-320, miR-498, miR-129, and miR-106a. The lowest expressed miRNAs were miR-10a, miR-493-5p, and miR-363*. Three members of miR-17-92 cluster, miR-17-5p, miR-20a, and miR-92, showed significantly higher abundance in 16BHE-T as miR-21, miR-141, miR-27a, miR-27b, miR-16 and miRNAs of the let-7 family. The putative target for miR-10a, HOXA1 mRNA was up-regulated 3-9-fold in 16HBE-T, as compared with 16HBE-N. CONCLUSION The findings of the study provide information on differentially expressed miRNA in malignant 16HBE-T, and also suggest a potential role of these miRNAs in cell transformation induced by anti-BPDE. HOXA1 is similarly up-regulated, suggesting that miR-10a is associated with the process of HOXA 1-mediated transformation.
Collapse
Affiliation(s)
- Yue-Lan Shen
- Institute for Chemical Carcinogenesis, Guangzhou Medical College, Guangzhou 510182, Guangdong, China
| | | | | | | | | |
Collapse
|
236
|
Gong AY, Zhou R, Hu G, Li X, Splinter PL, O'Hara SP, LaRusso NF, Soukup GA, Dong H, Chen XM. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1325-33. [PMID: 19155478 PMCID: PMC2652126 DOI: 10.4049/jimmunol.182.3.1325] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biliary epithelial cells (cholangiocytes) respond to proinflammatory cytokines such as IFN-gamma and actively participate in the regulation of biliary inflammatory response in the liver. B7-H1 (also known as CD274 or PD-L1) is a member of the B7 costimulatory molecules and plays a critical immunoregulatory role in cell-mediated immune responses. In this study, we show that resting human cholangiocytes in culture express B7-H1 mRNA, but not B7-H1 protein. IFN-gamma induces B7-H1 protein expression and alters the microRNA (miRNA) expression profile in cholangiocytes. Of those IFN-gamma-down-regulated miRNAs, we identified microRNA-513 (miR-513) with complementarity to the 3'-untranslated region of B7-H1 mRNA. Targeting of the B7-H1 3'-untranslated region by miR-513 results in translational repression. Transfection of cholangiocytes with an antisense oligonucleotide to miR-513 induces B7-H1 protein expression. Additionally, transfection of miR-513 precursor decreases IFN-gamma-induced B7-H1 protein expression and consequently influences B7-H1-associated apoptotic cell death in cocultured Jurkat cells. Thus, miR-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in human cholangiocytes, suggesting a role for miRNA-mediated gene silencing in the regulation of cholangiocyte response to IFN-gamma.
Collapse
Affiliation(s)
- Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem 2009; 394:1117-24. [PMID: 19132354 DOI: 10.1007/s00216-008-2570-2] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs approximately 22 nt in length that regulate gene expression and play fundamental roles in multiple biological processes, including cell differentiation, proliferation and apoptosis as well as disease processes. The study of miRNA has thus become a rapidly emerging field in life science. The detection of miRNA expression is a very important first step in miRNA exploration. Several methodologies, including cloning, northern blotting, real-time RT-PCR, microRNA arrays and ISH (in situ hybridization), have been developed and applied successfully in miRNA profiling. This review discusses the main existing microRNA detection technologies, while emphasizing microRNA arrays.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | |
Collapse
|
238
|
Abstract
DNA microarrays can be used for large number of application where high-throughput is needed. The ability to probe a sample for hundred to million different molecules at once has made DNA microarray one of the fastest growing techniques since its introduction about 15 years ago. Microarray technology can be used for large scale genotyping, gene expression profiling, comparative genomic hybridization and resequencing among other applications. Microarray technology is a complex mixture of numerous technology and research fields such as mechanics, microfabrication, chemistry, DNA behaviour, microfluidics, enzymology, optics and bioinformatics. This chapter will give an introduction to each five basic steps in microarray technology that includes fabrication, target preparation, hybridization, detection and data analysis. Basic concepts and nomenclature used in the field of microarray technology and their relationships will also be explained.
Collapse
Affiliation(s)
- Martin Dufva
- Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
239
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
240
|
Pandey P, Brors B, Srivastava PK, Bott A, Boehn SNE, Groene HJ, Gretz N. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 2008; 9:624. [PMID: 19102782 PMCID: PMC2640396 DOI: 10.1186/1471-2164-9-624] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/23/2008] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD). Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD.
Collapse
Affiliation(s)
- Priyanka Pandey
- Medical Research Center, University Hospital Mannheim, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
241
|
Liu GY, Luo Q, Xiong B, Pan C, Yin P, Liao HF, Zhuang WC, Gao HZ. Tissue array for Tp53, C-myc, CCND1 gene over-expression in different tumors. World J Gastroenterol 2008; 14:7199-207. [PMID: 19084934 PMCID: PMC2776877 DOI: 10.3748/wjg.14.7199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To rapidly detect molecular alterations in different malignancies and investigate the possible role of Tp53, C-myc, and CCND1 genes in development of tumors in human organs and their adjacent normal tissues, as well as the possible relation between well- and poorly-differentiated tumors.
METHODS: A tissue array consisting of seven different tumors was generated. The tissue array included 120 points of esophagus, 120 points of stomach, 80 points of rectum, 60 points of thyroid gland, 100 points of mammary gland, 80 points of liver, and 80 points of colon. Expressions of Tp53, C-myc, and CCND1 were determined by RNA in situ hybridization. 3’ terminal digoxin-labeled anti-sense single stranded oligonucleotide and locked nucleic acid modifying probe were used.
RESULTS: The expression level of Tp53 gene was higher in six different carcinoma tissue samples than in paracancerous tissue samples with the exception in colon carcinoma tissue samples (P < 0.05). The expression level of CCND1 gene was significantly different in different carcinoma tissue samples with the exception in esophagus and colon carcinoma tissue samples. The expression level of C-myc gene was different in esophagus carcinoma tissue samples (χ2 = 18.495, P = 0.000), stomach carcinoma tissue samples (χ2 = 23.750, P = 0.000), and thyroid gland tissue samples (χ2 = 10.999, P = 0.004). The intensity of signals was also different in different carcinoma tissue samples and paracancerous tissue samples.
CONCLUSION: Over-expression of the Tp53, CCND1, and C-myc genes appears to play a role in development of human cancer by regulating the expression of mRNA. Tp53, CCND1 and C-myc genes are significantly correlated with the development of different carcinomas.
Collapse
|
242
|
Abstract
MicroRNAs (miRNAs) are a class of small RNAs ( approximately 22-nt) that play an important role in the control of different cell processes by negative regulation of protein-coding genes. In the last several years, a number of miRNA profiling strategies have been used to document the miRNA expression changes during physiological and pathological processes. Aberrant expression of miRNAs has been linked to developmental defects, cancer, neurological disorders, and heart diseases. Over 540 human miRNAs have been validated to date; however, computer models suggest there may be thousands more. As bench work continue to verify in silico predictions, miRNA profiling will remain a prominent tool for identification of differential expression miRNAs in normal cellular courses and human disorders. This review focuses on current strategies for miRNA expression profiling and discusses their sensitivity and specificity, as well as advantage and disadvantage.
Collapse
Affiliation(s)
- William Kong
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | | | |
Collapse
|
243
|
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456:980-4. [PMID: 19043405 DOI: 10.1038/nature07511] [Citation(s) in RCA: 1881] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 10/03/2008] [Indexed: 01/06/2023]
Abstract
MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.
Collapse
Affiliation(s)
- Thomas Thum
- Department of Medicine I, Interdisziplinäres Zentrum für Klinische Forschung (IZKF), University of Wuerzburg, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 2008; 3:190-6. [PMID: 18274520 DOI: 10.1038/nprot.2007.528] [Citation(s) in RCA: 481] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are short, about 21 nucleotides in length, noncoding, regulatory RNA molecules representing a new layer in post-transcriptional regulation of gene expression. Intensive miRNA research has necessitated the development of effective miRNA detection methods such as northern analyses, quantitative real-time PCR and microarrays. Northern analysis is a widely used method for miRNA analyses because it is generally a readily available technology for laboratories and does not require special equipment and technical knowledge. The major disadvantages of the northern blot technology using the traditional DNA oligonucleotide probes are its poor sensitivity and the high time consumption. Here, we describe an improved protocol for miRNA northern blot analysis, which includes RNA extraction, polyacrylamide gel electrophoresis and northern blotting, and the hybridization and detection of locked nucleic acid (LNA)-modified oligonucleotide probes. The use of LNA-modified oligonucleotide probes allows highly sensitive and specific detection of mature miRNAs and also dramatically reduces the period of time necessary for carrying out the protocol. Using this approach, the hybridization, washing and signal-detection steps can be performed ideally in 4 h.
Collapse
Affiliation(s)
- Eva Várallyay
- Agricultural Biotechnology Center, Plant Virology Group, Szent-Györgyi Albert ut 4, Gödöllõ H-2100, Hungary
| | | | | |
Collapse
|
245
|
miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 2008; 3:321-9. [PMID: 18274534 DOI: 10.1038/nprot.2008.4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) represent a class of short (22 nt) noncoding RNAs that control gene expression post-transcriptionally. Microarray technology is frequently applied to monitor miRNA expression levels but is challenged by (i) the short length of miRNAs that offers little sequence for appending detection molecules; (ii) low copy number of some miRNA; and (iii) a wide range of predicted melting temperatures (Tm) versus their DNA complementary sequences. We recently developed a microarray platform for genome-wide profiling of miRNAs (miChip) by applying locked nucleic acid (LNA)-modified capture probes. Here, we provide detailed protocols for the generation of the miChip microarray platform, the preparation and fluorescent labeling of small RNA containing total RNA, its hybridization to the immobilized LNA-modified capture probes and the post-hybridization handling of the microarray. Starting from the intact tissue sample, the entire protocol takes approximately 3 d to yield highly accurate and sensitive data about miRNA expression levels.
Collapse
|
246
|
Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 2008; 19:2069-75. [PMID: 18832437 PMCID: PMC2573018 DOI: 10.1681/asn.2008020162] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/01/2008] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) are in a class of endogenous, small, noncoding RNAs that exert their effects through posttranscriptional repression of specific target mRNAs. Although miRNAs have been implicated in the regulation of diverse biologic processes, little is known about miRNA function in the kidney. Here, mice lacking functional miRNAs in the developing podocyte were generated through podocyte-specific knockout of Dicer, an enzyme required for the production of mature miRNAs (Nphs2-Cre; Dicer(flx/flx)). Podocyte-specific loss of miRNAs resulted in significant proteinuria by 2 wk after birth, rapid progression of marked glomerular and tubular injury beginning at 3 wk, and death by 4 wk. Expression of the slit diaphragm proteins nephrin and podocin was decreased, and expression of the transcription factor WT1 was relatively unaffected. To identify miRNA-mRNA interactions that contribute to this phenotype, we profiled the glomerular expression of miRNAs; three miRNAs expressed in glomeruli were identified: mmu-miR-23b, mmu-miR-24, and mmu-miR-26a. These results suggest that miRNA function is dispensable for the initial development of glomeruli but is critical to maintain the glomerular filtration barrier.
Collapse
Affiliation(s)
- Jacqueline Ho
- Department of Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
247
|
Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA (NEW YORK, N.Y.) 2008; 14:2348-60. [PMID: 18812439 PMCID: PMC2578865 DOI: 10.1261/rna.1034808] [Citation(s) in RCA: 895] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/29/2008] [Indexed: 05/22/2023]
Abstract
To investigate the global expression profile of miRNAs in primary breast cancer (BC) and normal adjacent tumor tissues (NATs) and its potential relevance to clinicopathological characteristics and patient survival, the genome-wide expression profiling of miRNAs in BC was investigated using a microarray containing 435 mature human miRNA oligonucleotide probes. Nine miRNAs of hsa-miR-21, hsa-miR-365, hsa-miR-181b, hsa-let-7f, hsa-miR-155, hsa-miR-29b, hsa-miR-181d, hsa-miR-98, and hsa-miR-29c were observed to be up-regulated greater than twofold in BC compared with NAT, whereas seven miRNAs of hsa-miR-497, hsa-miR-31, hsa-miR-355, hsa-miR-320, rno-mir-140, hsa-miR-127 and hsa-miR-30a-3p were observed to be down-regulated greater than twofold. The most significantly up-regulated miRNAs, hsa-mir-21 (miR-21), was quantitatively analyzed by TaqMan real-time PCR in 113 BC tumors. Interestingly, among the 113 BC cases, high level expression of miR-21 was significantly correlated with advanced clinical stage (P = 0.006, Fisher's exact text), lymph node metastasis (P = 0.007, Fisher's exact text), and shortened survival of the patients (hazard ratio [HR]=5.476, P < 0.001). Multivariate Cox regression analysis revealed this prognostic impact (HR=4.133, P = 0.001) to be independent of disease stage (HR=2.226, P = 0.013) and histological grade (HR=3.681, P = 0.033). This study could identify the differentiated miRNAs expression profile in BC and reveal that miR-21 overexpression was correlated with specific breast cancer biopathologic features, such as advanced tumor stage, lymph node metastasis, and poor survival of the patients, indicating that miR-21 may serve as a molecular prognostic marker for BC and disease progression.
Collapse
Affiliation(s)
- Li-Xu Yan
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
248
|
MicroRNAome of Splenic Macrophages in Hypersplenism due to Portal Hypertension in Hepatitis B Virus-Related Cirrhosis. Exp Biol Med (Maywood) 2008; 233:1454-61. [DOI: 10.3181/0711-rm-321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a recently discovered class of post-transcriptional regulators of gene expression with critical functions in health and disease. Their role in the pathogenesis of hypersplenism, however, is completely unknown. To determine whether miRNA expression is altered in splenic macrophages associated with hypersplenism due to portal hypertension in hepatitis-B-virus (HBV)-related cirrhosis, we analyzed the entire miRNAome in macrophages from normal and portal hypertensive spleen samples by microarray and Real-Time PCR. In this study, we identified 99 miRNA differences in expression in splenic macrophages associated with hypersplenism due to portal hypertension in HBV-related cirrhosis. Among the miRNAs identified in this study, hsa-miR-615–3p was significantly up-regulated in hypersplenism. Dynamic changes in miRNA expression occurred during the pathogenesis of portal hypertension-induced hypersplenism in HBV-related cirrhosis. The miRNAs then are novel regulatory RNAs in hypersplenism in patients with HBV-related cirrhosis.
Collapse
|
249
|
Wang WX, Rajeev BW, Baldwin DA, Isett RB, Ren N, Stromberg A, Nelson PT. Focus on RNA isolation: obtaining RNA for microRNA (miRNA) expression profiling analyses of neural tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:749-57. [PMID: 18316046 PMCID: PMC2650220 DOI: 10.1016/j.bbagrm.2008.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/15/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15-E18 neurons versus rat primary E15-E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed.
Collapse
Affiliation(s)
- Wang-Xia Wang
- University of Kentucky Sanders-Brown Center on Aging and Department of Pathology
| | - Bernard W. Rajeev
- University of Kentucky Sanders-Brown Center on Aging and Department of Pathology
| | - Donald A. Baldwin
- University of Pennsylvania Department of Pathology and Microarray Core Facility
| | - R. Benjamin Isett
- University of Pennsylvania Department of Pathology and Microarray Core Facility
| | - Na Ren
- University of Kentucky Department of Statistics
| | | | - Peter T. Nelson
- University of Kentucky Sanders-Brown Center on Aging and Department of Pathology
| |
Collapse
|
250
|
Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008; 36:e143. [PMID: 18940866 PMCID: PMC2588502 DOI: 10.1093/nar/gkn725] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs implicated in a wide variety of cellular processes. Research in this field is accelerating, and the growing number of miRNAs emphasizes the need for high-throughput and sensitive detection methods. Here we present the successful evaluation of the Megaplex reverse transcription format of the stem-loop primer-based real-time quantitative polymerase chain reaction (RT-qPCR) approach to quantify miRNA expression. The Megaplex reaction provides simultaneous reverse transcription of 450 mature miRNAs, ensuring high-throughput detection. Further, the introduction of a complementary DNA pre-amplification step significantly reduces the amount of input RNA needed, even down to single-cell level. To evaluate possible pre-amplification bias, we compared the expression of 384 miRNAs in three different cancer cell lines with Megaplex RT, with or without an additional pre-amplification step. The normalized Cq values of all three sample pairs showed a good correlation with maintenance of differential miRNA expression between the cell lines. Moreover, pre-amplification using 10 ng of input RNA enabled the detection of miRNAs that were undetectable when using Megaplex alone with 400 ng of input RNA. The high specificity of RT-qPCR together with a superior sensitivity makes this approach the method of choice for high-throughput miRNA expression profiling.
Collapse
Affiliation(s)
- Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|