201
|
Glantschnig H, Hampton RA, Lu P, Zhao JZ, Vitelli S, Huang L, Haytko P, Cusick T, Ireland C, Jarantow SW, Ernst R, Wei N, Nantermet P, Scott KR, Fisher JE, Talamo F, Orsatti L, Reszka AA, Sandhu P, Kimmel D, Flores O, Strohl W, An Z, Wang F. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 2010; 285:40135-47. [PMID: 20929859 DOI: 10.1074/jbc.m110.166892] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnt/LRP5 signaling is a central regulatory component of bone formative and resorptive activities, and the pathway inhibitor DKK1 is a suppressor of bone formation and bone mass accrual in mice. In addition, augmented DKK1 levels are associated with high bone turnover in diverse low bone mass states in rodent models and disease etiologies in human. However, examination of the precise role of DKK1 in the normal skeleton and in higher species requires the development of refined DKK1-specific pharmacological tools. Here, we report the strategy resulting in isolation of a panel of fully human anti-DKK1 antibodies applicable to studies interrogating the roles of mouse, rhesus, and human DKK1. Selected anti-DKK1 antibodies bind primate and human DKK-1 with picomolar affinities yet do not appreciably bind to DKK2 or DKK4. Epitopes mapped within the DKK1 C-terminal domain necessary for interaction with LRP5/6 and consequently effectively neutralized DKK1 function in vitro. When introduced into naïve normal growing female mice, IgGs significantly improved trabecular bone volume and structure and increased both trabecular and cortical bone mineral densities in a dose-related fashion. Furthermore, fully human DKK1-IgG displayed favorable pharmacokinetic parameters in non-human primates. In summary, we demonstrate here a rate-limiting function of physiologic DKK1 levels in the regulation of bone mass in intact female mice, amendable to specific pharmacologic neutralization by newly identified DKK1-IgGs. Importantly the fully human IgGs display a profile of attributes that recommends their testing in higher species and their use in evaluating DKK1 function in relevant disease models.
Collapse
|
202
|
Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 2010; 25:1897-904. [PMID: 20564241 DOI: 10.1002/jbmr.161] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Paszty
- Metabolic Disorders, Amgen Inc, Thousand Oaks, CA 91320-1799, USA.
| | | | | |
Collapse
|
203
|
Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, Loots GG, Yellowley CE. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 2010; 110:457-67. [PMID: 20336693 DOI: 10.1002/jcb.22559] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in sclerostin function or expression cause sclerosing bone dysplasias, involving decreased antagonism of Wnt/Lrp5 signaling. Conversely, deletion of the VHL tumor suppressor in osteoblasts, which stabilize HIF-alpha isoforms and thereby enables HIF-alpha/beta-driven gene transcription, increases bone mineral content and cross-sectional area compared to wild-type controls. We examined the influence of cellular hypoxia (1% oxygen) upon sclerostin expression and canonical Wnt signaling. Osteoblasts and osteocytes cultured under hypoxia revealed decreased sclerostin transcript and protein, and increased expression and nuclear localization of activated beta-catenin. Similarly, both hypoxia and the hypoxia mimetic DFO increased beta-catenin gene reporter activity. Hypoxia and its mimetics increased expression of the BMP antagonists gremlin and noggin and decreased Smad-1/5/8 phosphorylation. As a partial explanation for the mechanism of regulation of sclerostin by oxygen, MEF2 reporter assays revealed decreased activity. Modulation of VEGF signaling under normoxia or hypoxia revealed no influence upon Sost transcription. These data suggest that hypoxia inhibits sclerostin expression, through enhanced antagonism of BMP signaling independent of VEGF.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, UC Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Moester MJC, Papapoulos SE, Löwik CWGM, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 2010; 87:99-107. [PMID: 20473488 PMCID: PMC2903685 DOI: 10.1007/s00223-010-9372-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/23/2010] [Indexed: 01/12/2023]
Abstract
In recent years study of rare human bone disorders has led to the identification of important signaling pathways that regulate bone formation. Such diseases include the bone sclerosing dysplasias sclerosteosis and van Buchem disease, which are due to deficiency of sclerostin, a protein secreted by osteocytes that inhibits bone formation by osteoblasts. The restricted expression pattern of sclerostin in the skeleton and the exclusive bone phenotype of good quality of patients with sclerosteosis and van Buchem disease provide the basis for the design of therapeutics that stimulate bone formation. We review here current knowledge of the regulation of the expression and formation of sclerostin, its mechanism of action, and its potential as a bone-building treatment for patients with osteoporosis.
Collapse
Affiliation(s)
- M. J. C. Moester
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - S. E. Papapoulos
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - C. W. G. M. Löwik
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - R. L. van Bezooijen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
205
|
Power J, Poole KES, van Bezooijen R, Doube M, Caballero-Alías AM, Lowik C, Papapoulos S, Reeve J, Loveridge N. Sclerostin and the regulation of bone formation: Effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res 2010; 25:1867-76. [PMID: 20200987 DOI: 10.1002/jbmr.70] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Remodeling imbalance in the elderly femoral neck can result in thin cortices and porosity predisposing to hip fracture. Hip osteoarthritis protects against intracapsular hip fracture. By secreting sclerostin, osteocytes may inhibit Wnt signaling and reduce bone formation by osteoblasts. We hypothesised that differences in osteocytic sclerostin expression might account for differences in osteonal bone-formation activity between controls and subjects with hip fracture or hip osteoarthritis. Using specific antibody staining, we determined the osteocytic expression of sclerostin within osteons of the femoral neck cortex in bone removed from subjects undergoing surgery for hip osteoarthritis (hOA: 5 males, 5 females, 49 to 92 years of age) or hip fracture fixation (FNF: 5 males, 5 females, 73 to 87 years of age) and controls (C: 5 males, 6 females, 61 to 90 years of age). Sclerostin expression and distances of each osteocyte to the canal surface and cement line were assessed for all osteonal osteocytes in 636 unremodeled osteons chosen from fields ( approximately 0.5 mm in diameter) with at least one canal staining for alkaline phosphatase (ALP), a marker of bone formation. In adjacent sections, ALP staining was used to classify basic multicellular unit (BMUs) as quiescent or actively forming bone (ALP(+)). The areal densities of scl(-) and scl(+) osteocytes (number of cells per unit area) in the BMU were inversely correlated and were strong determinants of ALP status in the BMU. In controls and hip fracture patients only, sclerostin-negative osteocytes were closer to osteonal surfaces than positively stained cells. Osteon maturity (progress to closure) was strongly associated with the proportion of osteonal osteocytes expressing sclerostin, and sclerostin expression was the chief determinant of ALP status. hOA patients had 18% fewer osteocytes per unit bone area than controls, fewer osteocytes expressed sclerostin on average than in controls, but wide variation was seen between subjects. Thus, in most hOA patients, there was increased osteonal ALP staining and reduced sclerostin staining of osteocytes. In FNF patients, newly forming osteons were similar in this respect to hOA osteons, but with closure, there was a much sharper reduction in ALP staining that was only partly accounted for by the increased proportions of osteonal osteocytes staining positive for sclerostin. There was no evidence for a greater effect on ALP expression by osteocytes near the osteonal canal. In line with data from blocking antibody experiments, osteonal sclerostin appears to be a strong determinant of whether osteoblasts actively produce bone. In hOA, reduced sclerostin expression likely mediates increased osteoblastic activity in the intracapsular cortex. In FNF, full osteonal closure is postponed, with increased porosity, in part because the proportion of osteocytes expressing sclerostin increases sharply with osteonal maturation.
Collapse
Affiliation(s)
- Jon Power
- Bone Research Division, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Mason JJ, Williams BO. SOST and DKK: Antagonists of LRP Family Signaling as Targets for Treating Bone Disease. J Osteoporos 2010; 2010:460120. [PMID: 20948575 PMCID: PMC2951123 DOI: 10.4061/2010/460120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
The study of rare human genetic disorders has often led to some of the most significant advances in biomedical research. One such example was the body of work that resulted in the identification of the Low Density Lipoprotein-Related Protein (LRP5) as a key regulator of bone mass. Point mutations were identified that encoded forms of LRP5 associated with very high bone mass (HBM). HBM patients live to a normal age and do not appear to have increased susceptibility to carcinogenesis or other disease. Thus, devising methods to mimic the molecular consequences of this mutation to treat bone diseases associated with low bone mass is a promising avenue to pursue. Two groups of agents related to putative LRP5/6 functions are under development. One group, the focus of this paper, is based on antagonizing the functions of putative inhibitors of Wnt signaling, Dickkopf-1 (DKK1), and Sclerostin (SOST). Another group of reagents under development is based on the observation that LRP5 may function to control bone mass by regulating the secretion of serotonin from the enterrochromaffin cells of the duodenum.
Collapse
Affiliation(s)
- James J. Mason
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Orthopaedic Cell and Tissue Mechanics, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O. Williams
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,*Bart O. Williams:
| |
Collapse
|
207
|
Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 2010; 429:1-12. [PMID: 20545624 DOI: 10.1042/bj20100305] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFbeta (transforming growth factor-beta) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-beta superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.
Collapse
|
208
|
Collette NM, Genetos D, Murugesh D, Harland RM, Loots GG. Genetic evidence that SOST inhibits WNT signaling in the limb. Dev Biol 2010; 342:169-79. [PMID: 20359476 PMCID: PMC2896299 DOI: 10.1016/j.ydbio.2010.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 11/17/2022]
Abstract
SOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior-posterior and proximal-distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost(-/-) significantly rescues the Lrp6(-/-) skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6.
Collapse
Affiliation(s)
- Nicole M. Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Damian Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Deepa Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Gabriela G. Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| |
Collapse
|
209
|
Schulze J, Seitz S, Saito H, Schneebauer M, Marshall RP, Baranowsky A, Busse B, Schilling AF, Friedrich FW, Albers J, Spiro AS, Zustin J, Streichert T, Ellwanger K, Niehrs C, Amling M, Baron R, Schinke T. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One 2010; 5:e10309. [PMID: 20436912 PMCID: PMC2860505 DOI: 10.1371/journal.pone.0010309] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/24/2010] [Indexed: 12/17/2022] Open
Abstract
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.
Collapse
Affiliation(s)
- Jochen Schulze
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sebastian Seitz
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hiroaki Saito
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Schneebauer
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Robert P. Marshall
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bjoern Busse
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Arndt F. Schilling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Felix W. Friedrich
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joachim Albers
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander S. Spiro
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jozef Zustin
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Ellwanger
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Roland Baron
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
210
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
211
|
Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 2010; 95:1991-7. [PMID: 20156921 PMCID: PMC2853994 DOI: 10.1210/jc.2009-2283] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONTEXT Sclerostin is a negative regulator of bone formation. OBJECTIVE The aim of the study was to compare serum sclerostin levels in premenopausal and postmenopausal women and evaluate its relationship to estrogen, TH, bone turnover, and bone mass. DESIGN, SETTING, AND PARTICIPANTS We conducted a cross-sectional observational study of healthy community-dwelling pre- and postmenopausal women. INTERVENTION(S) There were no interventions. MAIN OUTCOME MEASURE(S) We compared serum sclerostin levels in pre- and postmenopausal women and correlated sclerostin levels with female sex hormones, calciotropic hormones, bone turnover markers, and bone mineral density. RESULTS Premenopausal women were 26.8 yr old, and postmenopausal women were 56.8 yr old. Postmenopausal women had lower values for estradiol (30 +/- 23 vs. 10 +/- 4 pg/ml; P < 0.001), estrone (61 +/- 24 vs. 29 +/- 10 pg/ml; P <0.001), and free estrogen index (FEI) (6 +/- 4 vs. 3 +/- 2 pmol/nmol; P = 0.008) and significantly lower bone mineral density at all sites compared to premenopausal women, with no significant differences in levels of PTH, 25-hydroxy or 1,25-dihydroxy vitamin D levels. Postmenopausal women had significantly higher serum sclerostin levels (1.16 +/- 0.38 ng/ml vs. 0.48 +/- 0.15 ng/ml; P < 0.001). Because most of the premenopausal women were on oral contraceptives, subsequent analyses were limited to postmenopausal women. There were significant negative correlations between sclerostin and FEI and sclerostin and PTH in this group. Using multiple regression analysis, both FEI (beta = -0.629; P = 0.002) and PTH (beta = -0.554; P = 0.004) were found to be independent predictors of sclerostin levels in postmenopausal women. CONCLUSIONS Our findings suggest that serum sclerostin levels are regulated by both estrogens and PTH in postmenopausal women. These findings need to be explored further in larger prospective studies.
Collapse
Affiliation(s)
- Faryal S Mirza
- University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
212
|
Qiu W, Hu Y, Andersen TE, Jafari A, Li N, Chen W, Kassem M. Tumor necrosis factor receptor superfamily member 19 (TNFRSF19) regulates differentiation fate of human mesenchymal (stromal) stem cells through canonical Wnt signaling and C/EBP. J Biol Chem 2010; 285:14438-49. [PMID: 20223822 DOI: 10.1074/jbc.m109.052001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms controlling human multipotent mesenchymal (stromal) stem cell (hMSC) differentiation into osteoblasts or adipocytes are poorly understood. We have previously demonstrated that Wnt signaling in hMSC enhanced osteoblast differentiation and inhibited adipogenesis by comparing two hMSC cell lines overexpressing mutated forms of the Wnt co-receptor LRP5: T253I (hMSC-LRP5(T253)) and T244M (hMSC-LRP5(T244)) conducting high and low level of Wnt signaling, respectively. To explore the underlying molecular mechanisms, we compared gene expression profiles of hMSC-LRP5(T253) and hMSC-LRP5(T244) treated with Wnt3a using whole genome expression microarrays and found that TNFRSF19 is differentially up-regulated between the two cells lines. Bioinformatic analysis and dual luciferase assay of its promoter revealed that TNFRSF19 transcript 2 (TNFRSF19.2) is a target of canonical Wnt signaling. Knocking down TNFRSF19 in hMSC-LRP5(T253) cells decreased Wnt3a-induced osteoblast differentiation marker alkaline phosphate activity and its overexpression in hMSC-LRP5(T244) cells increased alkaline phosphate activity. In addition, TNFRSF19 was negatively regulated by adipogenic transcription factor CCAAT/enhancer-binding proteins (C/EBP). Knocking down TNFRSF19 in hMSC-LRP5(T253) cells or its overexpression in hMSC-LRP5(T244) cells significantly increased or decreased adipogenesis, respectively. In conclusion, we revealed a novel function of TNFRSF19 as a factor mediating differentiation signals that determine the hMSC differentiating fate into osteoblasts or adipocytes.
Collapse
Affiliation(s)
- Weimin Qiu
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism, University Hospital of Odense, J. B. Winsløws Vej 25, 1, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | |
Collapse
|
213
|
Craig TA, Sommer SL, Beito TG, Kumar R. Production and characterization of monoclonal antibodies to human sclerostin. Hybridoma (Larchmt) 2010; 28:377-81. [PMID: 19857121 DOI: 10.1089/hyb.2009.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We developed and characterized monoclonal antibodies directed against the amino-terminal and carboxy-terminal regions of human and mouse sclerostin (scl). Amino-terminal and carboxy-terminal scl peptides with limited homology to scl domain-containing protein-1 were synthesized using f-moc chemistry. The peptides were conjugated to keyhole limpet hemocyanin and the conjugates were used for immunization of mice. Monoclonal antibodies were obtained and characterized using bacterially expressed and insect cell-expressed recombinant scl. The amino-terminal (IgG 2aK) and carboxy-terminal (IgG 2bK) antibodies bound bioactive sclerostin that was expressed in an insect-cell expression system with dissociation constants in the nanomolar range. The antibodies are potentially useful agents that can be used for modulating sclerostin bioactivity.
Collapse
Affiliation(s)
- Theodore A Craig
- Nephrology Research, Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
214
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
215
|
Abstract
The purpose of this review is to provide a better understanding for the LRP co-receptor-mediated Wnt pathway signaling. Using proteomics, we have also subdivided the LRP receptor family into six sub-families, encompassing the twelve family members. This review includes a discussion of proteins containing a cystine-knot protein motif (i.e., Sclerostin, Dan, Sostdc1, Vwf, Norrin, Pdgf, Mucin) and discusses how this motif plays a role in mediating Wnt signaling through interactions with LRP.
Collapse
|
216
|
Craig TA, Bhattacharya R, Mukhopadhyay D, Kumar R. Sclerostin binds and regulates the activity of cysteine-rich protein 61. Biochem Biophys Res Commun 2009; 392:36-40. [PMID: 20043874 DOI: 10.1016/j.bbrc.2009.12.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 01/18/2023]
Abstract
Sclerostin, a secreted glycoprotein, regulates osteoblast function. Using yeast two-hybrid and direct protein interaction analyses, we demonstrate that sclerostin binds the Wnt-modulating and Wnt-modulated, extracellular matrix protein, cysteine-rich protein 61 (Cyr61, CCN1), which regulates mesenchymal stem cell proliferation and differentiation, osteoblast and osteoclast function, and angiogenesis. Sclerostin was shown to inhibit Cyr61-mediated fibroblast attachment, and Cyr61 together with sclerostin increases vascular endothelial cell migration and increases osteoblast cell division. The data show that sclerostin binds to and influences the activity of Cyr61.
Collapse
Affiliation(s)
- Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
217
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
218
|
Murrills RJ, Matteo JJ, Bhat BM, Coleburn VE, Allen KM, Chen W, Damagnez V, Bhat RA, Bex FJ, Bodine PV. A cell-based Dkk1 binding assay reveals roles for extracellular domains of LRP5 in Dkk1 interaction and highlights differences between wild-type and the high bone mass mutant LRP5(G171V). J Cell Biochem 2009; 108:1066-75. [DOI: 10.1002/jcb.22335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
219
|
Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 2009; 4:e7930. [PMID: 19936252 PMCID: PMC2775917 DOI: 10.1371/journal.pone.0007930] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/27/2009] [Indexed: 12/14/2022] Open
Abstract
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.
Collapse
Affiliation(s)
- Hong Y. Choi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Institut für Physiologische Chemie und Pathobiochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| | - Andreas Niemeier
- Department of Orthopaedics and IBMII: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
220
|
Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FMK, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, the GEnetic Factors For Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 2009; 41:1199-206. [PMID: 19801982 PMCID: PMC2783489 DOI: 10.1038/ng.446] [Citation(s) in RCA: 550] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/21/2009] [Indexed: 12/15/2022]
Abstract
Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 x 10(-8)), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.
Collapse
Affiliation(s)
- Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Karol Estrada
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - J. Brent Richards
- Department of Medicine, McGill University, Montréal, H3G 1Y6 Canada
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Fotini K. Kavvoura
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - L. Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | | | - Serkalem Demissie
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, H3A 1A4, Canada
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - David Karasik
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - Joyce B. van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Ben Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, H3A 1A4, Canada
| | - Huibert A.P. Pols
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Gunnar Sigurdsson
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Department of Endocrinology and Metabolism, University Hospital, 108 Reykjavik, Iceland
| | - Nicole Soranzo
- Department of Medicine, McGill University, Montréal, H3G 1Y6 Canada
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics, 101 Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Frances MK Williams
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
- School of Medicine & Pharmacology, The University of Western Australia and Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | - Yanhua Zhou
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | - Stuart H. Ralston
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | | | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - Douglas P. Kiel
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - Kari Stefansson
- deCODE Genetics, 101 Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - John P.A. Ioannidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
- Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | |
Collapse
|
221
|
Gogakos AI, Cheung MS, Bassett JD, Williams GR. Bone signaling pathways and treatment of osteoporosis. Expert Rev Endocrinol Metab 2009; 4:639-650. [PMID: 30780784 DOI: 10.1586/eem.09.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporotic fractures are a major healthcare burden costing over US$50 billion/per year. Bone turnover is a continuous process regulated by the coupled activities of osteocytes, osteoclasts and osteoblasts that maintain bone mass and strength. Osteoclastic bone resorption is regulated by the RANKL/osteoprotegerin/RANK pathway, while osteoblastic bone formation is controlled by canonical Wnt signaling. Antiresorptive bisphosphonates remain the mainstay of treatment but recombinant parathyroid hormone is increasingly being used as an anabolic agent. Nevertheless, these drugs are limited by patient compliance, efficacy and cost. Cathepsin K inhibitors and RANKL antibodies have been developed as new antiresorptive drugs, while short-acting calcilytics and antibodies to Dickkopf-1 and sclerostin are promising anabolics. The recent identification of adipocytes and duodenal enterochromaffin cells as novel regulators of bone mass represent exciting opportunities for future drug development.
Collapse
Affiliation(s)
- Apostolos I Gogakos
- a Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Moira S Cheung
- b Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Jh Duncan Bassett
- c Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2b, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Graham R Williams
- d Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2a, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
222
|
Johnson ML, Lara N, Kamel MA. How genomics has informed our understanding of the pathogenesis of osteoporosis. Genome Med 2009; 1:84. [PMID: 19735586 PMCID: PMC2768991 DOI: 10.1186/gm84] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal disorder characterized by compromised bone strength that predisposes a person to an increased risk of fracture. Osteoporosis is a complex trait that involves multiple genes, environmental factors, and gene-gene and gene-environment interactions. Twin and family studies have indicated that between 25% and 85% of the variation in bone mass and other skeletal phenotypes is heritable, but our knowledge of the underlying genes is limited. Bone mineral density is the most common assessment for diagnosing osteoporosis and is the most often used quantitative value in the design of genetic studies. In recent years, our understanding of the pathophysiology of osteoporosis has been greatly facilitated by advances brought about by the Human Genome Project. Genetic approaches ranging from family studies of monogenic traits to association studies with candidate genes, to whole-genome scans in both humans and animals have identified a small number of genes that contribute to the heritability of bone mass. Studies with transgenic and knockout mouse models have revealed major new insights into the biology of many of these identified genes, but much more needs to be learned. Ultimately, we hope that by revealing the underlying genetics and biology driving the pathophysiology of osteoporosis, new and effective treatment can be developed to combat and possibly cure this devastating disease. Here we review the rapidly evolving field of the genomics of osteoporosis with a focus on important gene discoveries, new biological/physiological paradigms that are emerging, and many of the unanswered questions and hurdles yet to be overcome in the field.
Collapse
Affiliation(s)
- Mark L Johnson
- Department of Oral Biology, University of Missouri - Kansas City School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, USA.
| | | | | |
Collapse
|
223
|
Leeming DJ, Henriksen K, Byrjalsen I, Qvist P, Madsen SH, Garnero P, Karsdal MA. Is bone quality associated with collagen age? Osteoporos Int 2009; 20:1461-70. [PMID: 19330423 DOI: 10.1007/s00198-009-0904-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/27/2009] [Indexed: 12/27/2022]
Abstract
The World Health Organization defines osteoporosis as a systemic disease characterized by decreased bone tissue mass and microarchitectural deterioration, resulting in increased fracture risk. Since this statement, a significant amount of data has been generated showing that these two factors do not cover all risks for fracture. Other independent clinical factors, such as age, as well as aspects related to qualitative changes in bone tissue, are believed to play an important role. The term "bone quality" encompasses a variety of parameters, including the extent of mineralization, the number and distribution of microfractures, the extent of osteocyte apoptosis, and changes in collagen properties. The major mechanism controlling these qualitative factors is bone remodeling, which is tightly regulated by the osteoclast/osteoblast activity. We focus on the relationship between bone remodeling and changes in collagen properties, especially the extent of one posttranslational modification. In vivo, measurements of the ratio between native and isomerized C-telopeptides of type I collagen provides an index of bone matrix age. Current preclinical and clinical studies suggests that this urinary ratio provides information about bone strength and fracture risk independent of bone mineral density and that it responds differently according to the type of therapy regulating bone turnover.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
225
|
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009. [PMID: 19619488 DOI: 10.1016/j.devcel] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
226
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
227
|
Abstract
A variety of new treatments for osteoporosis have become available within the last several years, and a number of emerging treatments remain in late clinical stage development. New and emerging treatments include more potent members, or more convenient formulations, of existing classes of therapy, but a number of the emerging treatments are first-generation compounds addressing specific therapeutic targets based on recent advances in understanding of basic bone biology. These new and emerging treatments include agents with anticatabolic effects, compounds with anabolic effects, and one agent possibly containing both anticatabolic and anabolic effects. The increasing variety of new and emerging treatments increases the possibility that effective therapy will be targeted to the specific needs of the individual patient.
Collapse
Affiliation(s)
- Bart L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
228
|
Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 2009; 284:23159-68. [PMID: 19553665 PMCID: PMC2755721 DOI: 10.1074/jbc.m109.025478] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.
Collapse
Affiliation(s)
| | - Sonia Guidato
- From the Divisions of Developmental Neurobiology and
| | - Alison Rowe
- From the Divisions of Developmental Neurobiology and
| | - José W. Saldanha
- Mathematical Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nobue Itasaki
- From the Divisions of Developmental Neurobiology and
| |
Collapse
|
229
|
Huang QY, Li GHY, Kung AWC. The -9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBPalpha and FOXA1 binding is associated with osteoporosis. Bone 2009; 45:289-94. [PMID: 19371798 DOI: 10.1016/j.bone.2009.03.676] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022]
Abstract
Accumulating evidence shows that genes that cause monogenic diseases also contribute to similar complex disease in the general population. We sought to determine whether the allelic variation in seven monogenic bone disease genes (CLCN7, TCIRGI, SOST, CA2, CSTK, TGFB1 and SLC26A2) contributes to osteoporosis/bone mineral density (BMD) variation in the normal Chinese population. We conducted a gene-wide tag SNP-based association study in 1243 Chinese subjects with low BMD (Z-scores < or = -1.28, equivalent to the lowest 10% of the population) and high BMD (Z-score > or = +1.0). Twenty-two tag SNPs were selected and genotyped by using the high-throughput Sequenom genotyping platform. Allelic and haplotype association tests were conducted by Haploview and binary logistic regression analyses. The -9247 polymorphism rs1230399 in the upstream regulatory region of the sclerostin gene showed significant genotypic/allelic associations with spine, femoral neck, trochanter and total hip BMD (P=0.03-0.004). The T-allele of rs1230399 increased the risk of osteoporosis (OR=1.52, P=0.005). Computational analysis showed that rs1230399 is located at the core consensus recognition site of two cooperating transcription factors C/EBPalpha and FOXA1 that modulate estrogen receptor function. T-->C polymorphism abolishes the binding of both C/EBPalpha and FOXA1 to the sclerostin gene. Our data suggest a mechanistic link between rs1230399 and BMD through estrogen ERalpha/FOXA1 signaling pathways driven by long-distance enhancers.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
230
|
van Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PCW, van der Wee-Pals L, Balemans W, Oostenbroek HJ, Van Hul W, Hamersma H, Dikkers FG, Hamdy NAT, Papapoulos SE, Löwik CWGM. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res 2009; 88:569-74. [PMID: 19587164 DOI: 10.1177/0022034509338340] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sclerostin is an inhibitor of bone formation expressed by osteocytes. We hypothesized that sclerostin is expressed by cells of the same origin and also embedded within mineralized matrices. In this study, we analyzed (a) sclerostin expression using immunohistochemistry, (b) whether the genomic defect in individuals with van Buchem disease (VBD) was associated with the absence of sclerostin expression, and (c) whether this was associated with hypercementosis. Sclerostin was expressed by cementocytes in mouse and human teeth and by mineralized hypertrophic chondrocytes in the human growth plate. In individuals with VBD, sclerostin expression was absent or strongly decreased in osteocytes and cementocytes. This was associated with increased bone formation, but no overt changes in cementum thickness. In conclusion, sclerostin is expressed by all 3 terminally differentiated cell types embedded within mineralized matrices: osteocytes, cementocytes, and hypertrophic chondrocytes.
Collapse
Affiliation(s)
- R L van Bezooijen
- Departments of Endocrinology and Metabolic Diseases, C4R, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
|
232
|
Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009; 13:485-96. [PMID: 19335070 DOI: 10.1517/14728220902841961] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a regulator of bone formation and regeneration. OBJECTIVE To review the molecular basis for Wnt pathway modulation and discuss strategies that target it and improve bone mass. METHODS Data in peer-reviewed reports and meeting abstracts are discussed. RESULTS/CONCLUSIONS Neutralizing inhibitors of Wnt signaling have emerged as promising strategies. Small-molecule inhibitors of glycogen synthase kinase 3beta increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs but are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety.
Collapse
Affiliation(s)
- Luke H Hoeppner
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
233
|
Katsube KI, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 2009; 51:55-67. [PMID: 19128405 DOI: 10.1111/j.1440-169x.2009.01077.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CCN family of genes constitutes six members of small secreted cysteine rich proteins, which exists only in vertebrates. The major members of CCN are CCN1 (Cyr61), CCN2 (CTGF), and CCN3 (Nov). CCN4, CCN5, and CCN6 were formerly reported to be in the Wisp family, but they are now integrated into CCN due to the resemblance of their four principal modules: insulin like growth factor binding protein, von Willebrand factor type C, thrombospondin type 1, and carboxy-terminal domain. CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues, but most studies have focused on their principal role in osteo/chondrogenesis and vasculo/angiogenesis from the aspect of migration, growth, and differentiation of mesenchymal cells. CCN proteins simultaneously integrate and modulate the signals of integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch by direct binding. However, the priority in the use of the signals is different depending on the cell status. Even the equivalent counterparts show a difference in signal usage among species. It may be that the evolution of the CCN family continues to keep pace with vertebrate evolution itself.
Collapse
Affiliation(s)
- Ken-ichi Katsube
- Oral Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
234
|
Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 2009; 284:10890-900. [PMID: 19208630 DOI: 10.1074/jbc.m807994200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted glycoprotein sclerostin has recently emerged as a key negative regulator of Wnt signaling in bone and has stimulated considerable interest as a potential target for therapeutics designed to treat conditions associated with low bone mass, such as osteoporosis. We have determined the structure of sclerostin, which resulted in the identification of a previously unknown binding site for heparin, suggestive of a functional role in localizing sclerostin to the surface of target cells. We have also mapped the interaction site for an antibody that blocks the inhibition of Wnt signaling by sclerostin. This shows minimal overlap with the heparin binding site and highlights a key role for this region of sclerostin in protein interactions associated with the inhibition of Wnt signaling. The conserved N- and C-terminal arms of sclerostin were found to be unstructured, highly flexible, and unaffected by heparin binding, which suggests a role in stabilizing interactions with target proteins.
Collapse
Affiliation(s)
- Vaclav Veverka
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Ideno H, Takanabe R, Shimada A, Imaizumi K, Araki R, Abe M, Nifuji A. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro. Exp Cell Res 2009; 315:474-84. [DOI: 10.1016/j.yexcr.2008.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/18/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
|
236
|
NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun 2009; 380:160-5. [PMID: 19166819 DOI: 10.1016/j.bbrc.2009.01.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/13/2009] [Indexed: 11/21/2022]
Abstract
Sclerostin has been identified as a negative regulator of bone growth. Initially it was considered that Sclerostin performs its regulatory function via acting as a modulator of bone morphogenetic proteins (BMPs) similar to known examples such as Noggin, Chordin, and members of the DAN family. Recent findings, however, show that Sclerostin interferes with the Wnt signaling pathway due to binding to the Wnt co-receptor LRP5 thereby modulating bone growth. As Sclerostin is exclusively produced by osteocytes located in bones, neutralization of its bone-inhibiting functions makes it a highly interesting target for an osteoanabolic therapeutic approach in diseases characterized by bone loss, such as osteoporosis. Despite the huge interest in Sclerostin inhibitors the molecular basis of its function and its interaction with components of the Wnt signaling cascade has remained unclear. Here, we present the NMR structure of murine Sclerostin providing the first insights how Sclerostin might bind to LRP5.
Collapse
|
237
|
Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab 2009; 27:265-71. [PMID: 19333681 DOI: 10.1007/s00774-009-0064-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/17/2008] [Indexed: 12/17/2022]
Abstract
A variety of in vivo models have increased understanding of the role of Wnt signaling in bone since mutations in the LRP5 gene were found in human bone disorders. Canonical Wnt signaling encourages mesenchymal progenitor cells to differentiate into osteoblasts. In osteoblasts, Wnt pathway also promotes proliferation and mineralization, while blocks apoptosis and osteoclastogenesis by increasing the OPG/RANKL ratio. Lrp6-mediated signaling in osteoblasts may regulate osteoclastogenesis. However, the role of canonical Wnt signaling in osteoclasts remains unknown, and our understanding of the role of non-canonical Wnt signaling in bone biology is also not sufficient. As to pharmacological intervention, many levels may be considered to target in Wnt signaling pathway, although tumorigenicity and toxicity to other tissues are important. Mesd might be one of target molecules to increase the quantity of LRP5/6 in the plasma membrane. Since sclerostin is almost exclusively expressed in osteocytes, abrogating sclerostin is the most promising design.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
238
|
Ohazama A, Johnson EB, Ota MS, Choi HJ, Porntaveetus T, Oommen S, Itoh N, Eto K, Gritli-Linde A, Herz J, Sharpe PT. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 2008; 3:e4092. [PMID: 19116665 PMCID: PMC2605561 DOI: 10.1371/journal.pone.0004092] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
Abstract
The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Eric B. Johnson
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Masato S. Ota
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong J. Choi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Shelly Oommen
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Kazuhiro Eto
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at Goteborg University, Goteborg, Sweden
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul T. Sharpe
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
239
|
Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A 2008; 105:20764-9. [PMID: 19075223 DOI: 10.1073/pnas.0805133106] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.
Collapse
|
240
|
O'Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 2008; 3:e2942. [PMID: 18698360 PMCID: PMC2491588 DOI: 10.1371/journal.pone.0002942] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022] Open
Abstract
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Charles A. O'Brien
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (CO); (TB)
| | - Lilian I. Plotkin
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Carlo Galli
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Joseph J. Goellner
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arancha R. Gortazar
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mary Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ernestina Schipani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles H. Turner
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robert L. Jilka
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert S. Weinstein
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stavros C. Manolagas
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Teresita Bellido
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (CO); (TB)
| |
Collapse
|
241
|
Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman ML, Van Hul W. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int 2008; 82:445-53. [PMID: 18521528 DOI: 10.1007/s00223-008-9130-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 04/08/2008] [Indexed: 12/17/2022]
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5), a Wnt coreceptor, plays an important role in bone metabolism as loss-of-function and gain-of-function mutations in LRP5 result in the autosomal recessive osteoporosis-pseudoglioma syndrome and autosomal dominant high-bone mass (HBM) phenotypes, respectively. Prior studies suggested that the presence of HBM-associated LRP5 mutations results in decreased antagonism of LRP5-mediated Wnt signaling. In the present study, we investigated six different HBM-LRP5 mutations and confirm that neither Dickkopf1 (DKK1) nor sclerostin efficiently inhibits HBM-LRP5 signaling. In addition, when coexpressed, DKK1 and sclerostin do not inhibit HBM-LRP5 mutants better than either inhibitor by itself. Also, DKK1 and sclerostin do not simultaneously bind to wild-type LRP5, and DKK1 is able to displace sclerostin from previously formed sclerostin-LRP5 complexes. In conclusion, our results indicate that DKK1 and sclerostin are independent, and not synergistic, regulators of LRP5 signaling and that the function of each is impaired by HBM-LRP5 mutations.
Collapse
Affiliation(s)
- Wendy Balemans
- Department of Medical Genetics, University and University Hospital of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
242
|
Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 2008; 23:860-9. [PMID: 18269310 DOI: 10.1359/jbmr.080216] [Citation(s) in RCA: 702] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone. MATERIALS AND METHODS Gene targeting was used to inactivate SOST and generate a line of SOST KO mice. Radiography, densitometry, microCT, histomorphometry, and mechanical testing were used to characterize the impact of sclerostin deficiency on bone in male and female mice. Comparisons were made between same sex KO and wildtype (WT) mice. RESULTS The results for male and female SOST KO mice were similar, with differences only in the magnitude of some effects. SOST KO mice had increased radiodensity throughout the skeleton, with general skeletal morphology being normal in appearance. DXA analysis of lumbar vertebrae and whole leg showed that there was a significant increase in BMD (>50%) at both sites. microCT analysis of femur showed that bone volume was significantly increased in both the trabecular and cortical compartments. Histomorphometry of trabecular bone revealed a significant increase in osteoblast surface and no significant change in osteoclast surface in SOST KO mice. The bone formation rate in SOST KO mice was significantly increased for trabecular bone (>9-fold) at the distal femur, as well as for the endocortical and periosteal surfaces of the femur midshaft. Mechanical testing of lumbar vertebrae and femur showed that bone strength was significantly increased at both sites in SOST KO mice. CONCLUSIONS SOST KO mice have a high bone mass phenotype characterized by marked increases in BMD, bone volume, bone formation, and bone strength. These results show that sclerostin is a key negative regulator of a powerful, evolutionarily conserved bone formation pathway that acts on both trabecular and cortical bone.
Collapse
|
243
|
Piters E, Boudin E, Van Hul W. Wnt signaling: A win for bone. Arch Biochem Biophys 2008; 473:112-6. [DOI: 10.1016/j.abb.2008.03.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 01/22/2023]
|
244
|
Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone 2008; 42:606-15. [PMID: 18280232 PMCID: PMC2349095 DOI: 10.1016/j.bone.2007.12.224] [Citation(s) in RCA: 712] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/20/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
The majority of bone cell biology focuses on activity on the surface of the bone with little attention paid to the activity that occurs below the surface. However, with recent new discoveries, osteocytes, cells embedded within the mineralized matrix of bone, are becoming the target of intensive investigation. In this article, the distinctions between osteoblasts and their descendants, osteocytes, are reviewed. Osteoblasts are defined as cells that make bone matrix and osteocytes are thought to translate mechanical loading into biochemical signals that affect bone (re)modeling. Osteoblasts and osteocytes should have similarities as would be expected of cells of the same lineage, yet these cells also have distinct differences, particularly in their responses to mechanical loading and utilization of the various biochemical pathways to accomplish their respective functions. For example, the Wnt/beta-catenin signaling pathway is now recognized as an important regulator of bone mass and bone cell functions. This pathway is important in osteoblasts for differentiation, proliferation and the synthesis bone matrix, whereas osteocytes appear to use the Wnt/beta-catenin pathway to transmit signals of mechanical loading to cells on the bone surface. New emerging evidence suggests that the Wnt/beta-catenin pathway in osteocytes may be triggered by crosstalk with the prostaglandin pathway in response to loading which then leads to a decrease in expression of negative regulators of the pathway such as Sost and Dkk1. The study of osteocyte biology is becoming an intense area of research interest and this review will examine some of the recent findings that are reshaping our understanding of bone/bone cell biology.
Collapse
Affiliation(s)
- Lynda F Bonewald
- University of Missouri, Kansas City School of Dentistry, Department of Oral Biology, 650 East 25th Street, Kansas City, MO 64108, USA.
| | | |
Collapse
|
245
|
Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 2008; 118:421-8. [PMID: 18246192 DOI: 10.1172/jci33612] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An important, unfilled clinical need is the development of new approaches to improve fracture healing and to treat osteoporosis by increasing bone mass. Recombinant forms of bone morphogenetic protein 2 (BMP2) and BMP7 are FDA approved to promote spinal fusion and fracture healing, respectively, and the first FDA-approved anabolic drug for osteoporosis, parathyroid hormone, increases bone mass when administered intermittently but can only be given to patients in the US for two years. As we discuss here, the tremendous explosion over the last two decades in our fundamental understanding of the mechanisms of bone remodeling has led to the prospect of mechanism-based anabolic therapies for bone disorders.
Collapse
Affiliation(s)
- Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
246
|
Abstract
Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morphogenesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-1, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3beta support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.
Collapse
|
247
|
ten Dijke P, Krause C, de Gorter DJJ, Löwik CWGM, van Bezooijen RL. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am 2008; 90 Suppl 1:31-5. [PMID: 18292354 DOI: 10.2106/jbjs.g.01183] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sclerosteosis and Van Buchem disease are rare, high-bone-mass disorders that have been linked to deficiency in the SOST gene, encoding sclerostin. Sclerostin belongs to the DAN family of glycoproteins, of which multiple family members have been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity. Sclerostin is specifically expressed by osteocytes and inhibits BMP-induced osteoblast differentiation and ectopic bone formation. Sclerostin binds only weakly to BMPs and does not inhibit direct BMP-induced responses. Instead, sclerostin antagonizes canonical Wnt signaling by binding to Wnt coreceptors, low-density lipoprotein receptor-related protein 5 and 6. Several lipoprotein receptor-related protein-5 mutants that cause the high-bone-mass trait are defective in sclerostin binding. Thus, high bone mass in sclerosteosis and Van Buchem disease may result from increased Wnt signaling due to the absence of or insensitivity to sclerostin.
Collapse
Affiliation(s)
- Peter ten Dijke
- Department of Molecular Cell Biology, Building 2, Room R-02-022, Leiden University Medical Center, Postzone S-1-P, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
248
|
Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T, Wada M, Amano K, Yoneda T. Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab 2008; 26:203-12. [PMID: 18470659 DOI: 10.1007/s00774-007-0824-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/02/2007] [Indexed: 12/11/2022]
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2007; 283:5866-75. [PMID: 18089564 DOI: 10.1074/jbc.m705092200] [Citation(s) in RCA: 955] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sclerostin, the protein product of the Sost gene, is a potent inhibitor of bone formation. Among bone cells, sclerostin is found nearly exclusively in the osteocytes, the cell type that historically has been implicated in sensing and initiating mechanical signaling. The recent discovery of the antagonistic effects of sclerostin on Lrp5 receptor signaling, a crucial mediator of skeletal mechanotransduction, provides a potential mechanism for the osteocytes to control mechanotransduction, by adjusting their sclerostin (Wnt inhibitory) signal output to modulate Wnt signaling in the effector cell population. We investigated the mechanoregulation of Sost and sclerostin under enhanced (ulnar loading) and reduced (hindlimb unloading) loading conditions. Sost transcripts and sclerostin protein levels were dramatically reduced by ulnar loading. Portions of the ulnar cortex receiving a greater strain stimulus were associated with a greater reduction in Sost staining intensity and sclerostin-positive osteocytes (revealed via in situ hybridization and immunohistochemistry, respectively) than were lower strain portions of the tissue. Hindlimb unloading yielded a significant increase in Sost expression in the tibia. Modulation of sclerostin levels appears to be a finely tuned mechanism by which osteocytes coordinate regional and local osteogenesis in response to increased mechanical stimulation, perhaps via releasing the local inhibition of Wnt/Lrp5 signaling.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
|