201
|
Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CGT, Cheng Z, Li A, Chang W, Bikle DD. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. J Bone Miner Res 2015; 30:1572-84. [PMID: 25801198 PMCID: PMC5690481 DOI: 10.1002/jbmr.2510] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair.
Collapse
Affiliation(s)
- Tao Wang
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
- Department of Orthopedics, Civil Aviation General Hospital, Beijing, China
| | - Yongmei Wang
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Alicia Menendez
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Chak Fong
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Muriel Babey
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Candice GT Tahimic
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| | - Daniel D. Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
202
|
Aydin A, Halici Z, Akpinar E, Aksakal AM, Saritemur M, Yayla M, Kunak CS, Cadirci E, Atmaca HT, Karcioglu SS. What is the role of bosentan in healing of femur fractures in a rat model? J Bone Miner Metab 2015; 33:496-506. [PMID: 25298328 DOI: 10.1007/s00774-014-0622-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to examine the effects bosentan (which is a strong vasoconstrictor) on bone fracture pathophysiology, and investigate the roles of the nonselective endothelin 1 receptor blocker bosentan on the bone fractures formed in rats through radiographic, histopathologic, and immunohistochemical methods. The rats were divided into three groups (six rats in each group): a femoral fracture control group, a femoral fracture plus bosentan at 50 mg/kg group, and a femoral fracture plus bosentan at 100 mg/kg group. The femoral fracture model was established by transversely cutting the femur at the midsection. After manual reduction, the fractured femur was fixed with intramedullary Kirschner wires. The radiographic healing scores of the bosentan 100 and 50 mg/kg groups were significantly better that those of the fracture control group. The fracture callus percent of new bone in the bosentan 100 mg/kg group was significantly greater than that in the control group. Also, semiquantitative analysis showed higher positive vascular endothelial growth factor and osteocalcin staining and lower positive endothelin receptor type A staining in the treatment groups than in the control group. Bosentan treatment also decreased tissue endothelin 1 expression relative to that in the fracture control group. As a result of our study, the protective effect of bosentan was shown in experimental femoral fracture healing in rats by radiographic, histopathologic, and molecular analyses.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 2015; 78:87-93. [PMID: 25959413 DOI: 10.1016/j.bone.2015.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications.
Collapse
Affiliation(s)
- Jonathan M Karnes
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Scott D Daffner
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Colleen M Watkins
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
204
|
Al Subaie AE, Eimar H, Abdallah MN, Durand R, Feine J, Tamimi F, Emami E. Anti-VEGFs hinder bone healing and implant osseointegration in rat tibiae. J Clin Periodontol 2015; 42:688-96. [PMID: 26073407 DOI: 10.1111/jcpe.12424] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
AIM To assess the effect of anti-vascular endothelial growth factors (VEGF) on bone healing (defect volume) and implant osseointegration (bone-implant contact per cent) in rat tibia. MATERIALS AND METHODS In Sprague-Dawley rats (n = 36), a unicortical defect was created in the right tibia and a titanium implant was placed in the left tibia of each rat. Rats were assigned into three groups and received either anti-vascular endothelial growth factor neutralizing antibody, Ranibizumab or saline (control). Two weeks following surgery, rats were euthanized and bone samples were retrieved. Bone healing and osseointegration were assessed using micro-CT and histomorphometry. One-way anova followed by the Tukey's test was used for data analyses. RESULTS The volume of the bone defects in the anti-VEGF group (2.48 ± 0.33 mm(3) ) was larger (p = 0.026) than in the controls (2.11 ± 0.36 mm(3) ) as measured by μ-CT. Bone-implant contact percent in the anti-VEGF (19.9 ± 9.4%) and Ranibizumab (21.7 ± 9.2%) groups were lower (p < 0.00) than in the control group (41.8 ± 12.4%). CONCLUSIONS The results of this study suggest that drugs that inhibit the activity of vascular endothelial growth factor (i.e. anti-VEGF) may hinder bone healing and implant osseointegration in rat tibiae.
Collapse
Affiliation(s)
- Ahmed Ebraheem Al Subaie
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,College of Dentistry, University of Dammam, Dammam, Saudi Arabia
| | - Hazem Eimar
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | | - Robert Durand
- College of Dentistry, University of Dammam, Dammam, Saudi Arabia
| | - Jocelyne Feine
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
205
|
Neumann S. WITHDRAWN: New hypothesis on the pathogenesis of osteoarthritis. Med Hypotheses 2015:S0306-9877(15)00252-2. [PMID: 26163059 DOI: 10.1016/j.mehy.2015.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 11/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Stephan Neumann
- Institute of Veterinary Medicine, University of Goettingen, Burckhardtweg 2, D-37077 Goettingen, Germany.
| |
Collapse
|
206
|
Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, Ii M, Akimaru H, Kuroda T, Horii M, Yokoyama A, Alev C, Kuroda R, Kurosaka M, Asahara T. Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion following Bone Fracture. Cell Transplant 2015; 24:1379-93. [DOI: 10.3727/096368914x681586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34+ cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34+ cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34+ cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 105 GM-PB CD34+ cells (CD34+ group), 1 × 107 GM-PB MNCs (containing approximately 1 × 105 GM-PB CD34+ cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34+ and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34+ group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34+ cells is a practical and effective strategy for treatment of nonunion after fracture.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kawakami
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroshi Akimaru
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Horii
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ayumi Yokoyama
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
207
|
Herrmann M, Verrier S, Alini M. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair. Front Bioeng Biotechnol 2015; 3:79. [PMID: 26082926 PMCID: PMC4451737 DOI: 10.3389/fbioe.2015.00079] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/16/2015] [Indexed: 12/17/2022] Open
Abstract
The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) - CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions.
Collapse
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos , Davos , Switzerland
| |
Collapse
|
208
|
Kamimura M, Mori Y, Sugahara-Tobinai A, Takai T, Itoi E. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12. PLoS One 2015; 10:e0128210. [PMID: 26030755 PMCID: PMC4452492 DOI: 10.1371/journal.pone.0128210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/23/2015] [Indexed: 01/03/2023] Open
Abstract
Osteoclasts play an important role in bone metabolism, but their exact role in fracture healing remains unclear. DAP12 is an immunoadaptor protein with associated immunoreceptors on myeloid lineage cells, including osteoclasts. Its deficiency causes osteopetrosis due to suppression of osteoclast development and activation. In this report, we assessed the impact of DAP12 on the fracture healing process using C57BL/6 (B6) and DAP12–/– mice. Healing was evaluated using radiography, micro-CT, histology, immunohistochemistry and real-time RT-PCR. Radiography showed lower callus volume and lower callus radiolucency in DAP12–/– mice during later stages. Micro-CT images and quantitative structural analysis indicated that DAP12–/– mice developed calluses of dense trabecular structures and experienced deteriorated cortical shell formation on the surface. Histologically, DAP12–/– mice showed less cartilaginous resorption and woven bone formation. In addition, prominent cortical shell formation was much less in DAP12–/– mice. Immunohistochemistry revealed lower invasion of F4/80 positive monocytes and macrophages into the fracture hematoma in DAP12–/– mice. The expression levels of Col1a1, Col2a1 and Col10a1 in DAP12–/– mice increased and subsequently became higher than those in B6 mice. There was a decrease in the gene expression of Tnf during the early stages in DAP12–/– mice. Our results indicate that DAP12 deficiency impairs fracture healing, suggesting a significant role of DAP12 in the initial inflammatory response, bone remodeling and regeneration.
Collapse
Affiliation(s)
- Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine 1–1 Seiryo-machi, Aobaku, Sendai, Miyagi, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine 1–1 Seiryo-machi, Aobaku, Sendai, Miyagi, Japan
- * E-mail:
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University4-1 Seiryo-machi, Aobaku, Sendai, Miyagi, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University4-1 Seiryo-machi, Aobaku, Sendai, Miyagi, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine 1–1 Seiryo-machi, Aobaku, Sendai, Miyagi, Japan
| |
Collapse
|
209
|
Miedel EL, Brisson BK, Hamilton T, Gleason H, Swain GP, Lopas L, Dopkin D, Perosky JE, Kozloff KM, Hankenson KD, Volk SW. Type III collagen modulates fracture callus bone formation and early remodeling. J Orthop Res 2015; 33:675-84. [PMID: 25626998 PMCID: PMC4406871 DOI: 10.1002/jor.22838] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
Type III collagen (Col3) has been proposed to play a key role in tissue repair based upon its temporospatial expression during the healing process of many tissues, including bone. Given our previous finding that Col3 regulates the quality of cutaneous repair, as well as our recent data supporting its role in regulating osteoblast differentiation and trabecular bone quantity, we hypothesized that mice with diminished Col3 expression would exhibit altered long-bone fracture healing. To determine the role of Col3 in bone repair, young adult wild-type (Col3+/+) and haploinsufficent (Col3+/-) mice underwent bilateral tibial fractures. Healing was assessed 7, 14, 21, and 28 days following fracture utilizing microcomputed tomography (microCT), immunohistochemistry, and histomorphometry. MicroCT analysis revealed a small but significant increase in bone volume fraction in Col3+/- mice at day 21. However, histological analysis revealed that Col3+/- mice have less bone within the callus at days 21 and 28, which is consistent with the established role for Col3 in osteogenesis. Finally, a reduction in fracture callus osteoclastic activity in Col3+/- mice suggests Col3 also modulates callus remodeling. Although Col3 haploinsufficiency affected biological aspects of bone repair, it did not affect the regain of mechanical function in the young mice that were evaluated in this study. These findings provide evidence for a modulatory role for Col3 in fracture repair and support further investigations into its role in impaired bone healing.
Collapse
Affiliation(s)
- Emily L. Miedel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Becky K. Brisson
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Todd Hamilton
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hadley Gleason
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary P. Swain
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luke Lopas
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Dopkin
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Joseph E. Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Susan W. Volk
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
210
|
Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells 2015; 7:630-640. [PMID: 25914769 PMCID: PMC4404397 DOI: 10.4252/wjsc.v7.i3.630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.
Collapse
|
211
|
Schmidt-Bleek K, Kwee BJ, Mooney DJ, Duda GN. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:354-64. [PMID: 25742724 DOI: 10.1089/ten.teb.2014.0677] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.
Collapse
Affiliation(s)
- Katharina Schmidt-Bleek
- 1 Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Brian J Kwee
- 3 The Mooney Lab: Laboratory for Cell and Tissue Engineering, Harvard-School of Engineering and Applied Sciences , Cambridge, Massachusetts
| | - David J Mooney
- 3 The Mooney Lab: Laboratory for Cell and Tissue Engineering, Harvard-School of Engineering and Applied Sciences , Cambridge, Massachusetts
| | - Georg N Duda
- 1 Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
212
|
Improved fracture healing in patients with concomitant traumatic brain injury: proven or not? Mediators Inflamm 2015; 2015:204842. [PMID: 25873754 PMCID: PMC4385630 DOI: 10.1155/2015/204842] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
Over the last 3 decades, scientific evidence advocates an association between traumatic brain injury (TBI) and accelerated fracture healing. Multiple clinical and preclinical studies have shown an enhanced callus formation and an increased callus volume in patients, respectively, rats with concomitant TBI. Over time, different substances (cytokines, hormones, etc.) were in focus to elucidate the relationship between TBI and fracture healing. Until now, the mechanism behind this relationship is not fully clarified and a consensus on which substance plays the key role could not be attained in the literature. In this review, we will give an overview of current concepts and opinions on this topic published in the last decade and both clinical and pathophysiological theories will be discussed.
Collapse
|
213
|
Haller JM, McFadden M, Kubiak EN, Higgins TF. Inflammatory cytokine response following acute tibial plateau fracture. J Bone Joint Surg Am 2015; 97:478-83. [PMID: 25788304 DOI: 10.2106/jbjs.n.00200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The objective of the present study was to evaluate human synovial fluid for inflammatory cytokine concentrations following acute tibial plateau fracture. Our hypothesis was that there would be an elevated inflammatory response following intra-articular fracture, and that the inflammatory response would be greater after high-energy compared with low-energy injuries. METHODS Between December 2011 and June 2013, we prospectively enrolled forty-five patients with an acute tibial plateau fracture. Synovial fluid aspirations were performed on the injured and uninjured knees. Twenty patients who required an external fixator followed by delayed fixation underwent aspiration at both surgical procedures. The concentrations of interferon-gamma (IFN-γ), interleukin-1 beta (IL-1β), interleukin-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12(p70), IL-13, IL-17A, tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) were quantified with use of multiplex assays. RESULTS The forty-five patients had an average age of forty-two years (range, twenty to sixty years). There were twenty-four low-energy and twenty-one high-energy tibial plateau injuries. There was a significant difference between injured and uninjured knees (p < 0.001) with regard to concentrations of IL-1β, IL-6, IL-8, IL-10, IL-1RA, and MCP-1. There was not a detectable difference in synovial fluid cytokine concentrations between high and low-energy injuries. The concentrations of IL-10 (p < 0.001), IL-1RA (p = 0.002), IL-6 (p < 0.001), IL-8 (p < 0.001), and MCP-1 (p = 0.002) were significantly greater in the injured knee than in the uninjured knee at the second aspiration, at a mean of 9.5 days (range, three to twenty-one days) after the initial injury. CONCLUSIONS There was a significant local inflammatory response following acute tibial plateau fracture. There was not a detectable difference in inflammatory cytokine concentration between high and low-energy injuries. Synovial fluid concentrations of IL-10, IL-8, IL-6, IL-1RA, and MCP-1 remained elevated at the second aspiration.
Collapse
Affiliation(s)
- Justin M Haller
- Department of Orthopaedics (J.M.H., E.N.K., and T.F.H.) and Division of Epidemiology, Department of Internal Medicine (M.McF.), University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, UT 84108. E-mail address for T.F. Higgins:
| | - Molly McFadden
- Department of Orthopaedics (J.M.H., E.N.K., and T.F.H.) and Division of Epidemiology, Department of Internal Medicine (M.McF.), University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, UT 84108. E-mail address for T.F. Higgins:
| | - Erik N Kubiak
- Department of Orthopaedics (J.M.H., E.N.K., and T.F.H.) and Division of Epidemiology, Department of Internal Medicine (M.McF.), University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, UT 84108. E-mail address for T.F. Higgins:
| | - Thomas F Higgins
- Department of Orthopaedics (J.M.H., E.N.K., and T.F.H.) and Division of Epidemiology, Department of Internal Medicine (M.McF.), University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, UT 84108. E-mail address for T.F. Higgins:
| |
Collapse
|
214
|
Caballé-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo-Albiol J, Buser D, Gruber R. Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res 2015; 27:226-32. [PMID: 25754222 DOI: 10.1111/clr.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Guenther Schuldt Filho
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Implant Dentistry, School of Dentistry, Universidade Federal de Santa Catarina Florianopolis, Florianópolis, Brazil
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
215
|
Lybrand K, Bragdon B, Gerstenfeld L. Mouse models of bone healing: fracture, marrow ablation, and distraction osteogenesis. ACTA ACUST UNITED AC 2015; 5:35-49. [PMID: 25727199 DOI: 10.1002/9780470942390.mo140161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three commonly used murine surgical models of bone healing [closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming] are presented. Detailed surgical protocols for each model are outlined. The nature of the regenerative processes and the types of research questions that may be addressed with these models are briefly outlined. The relative strengths and weaknesses of these models are compared to a number of other surgical models that are used to address similar research questions.
Collapse
Affiliation(s)
- Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Department of Orthopaedic Surgery, Boston Medical Center, Boston, Massachusetts
| | - Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
216
|
Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2015; 5:21-34. [PMID: 25727198 PMCID: PMC4358754 DOI: 10.1002/9780470942390.mo140166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fractures are one of the most common large-organ, traumatic injuries in humans, and osteoporosis-related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post-natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co-morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented.
Collapse
Affiliation(s)
- Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| |
Collapse
|
217
|
Modulatory effects of l-arginine and soy enriched diet on bone homeostasis abnormalities in streptozotocin-induced diabetic rats. Chem Biol Interact 2015; 229:9-16. [DOI: 10.1016/j.cbi.2015.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
|
218
|
Guo J, Wang L, Xu H, Che X. Effect of heterologous bone marrow mononuclear cell transplantation on midpalatal expansion in rats. Exp Ther Med 2015; 9:1235-1240. [PMID: 25780415 PMCID: PMC4353775 DOI: 10.3892/etm.2015.2253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to explore whether bone marrow mononuclear cell (BMMC) transplantation is able to accelerate the bone remodeling induced by midpalatal expansion in rats. A total of 48 male Sprague-Dawley rats (mean weight, 208.36±7.32 g) were divided into control and midpalatal expansion with or without BMMC transplantation groups. Histological and morphological changes were observed in each group. The osteogenic activities and differential potentials of the transplanted BMMCs labeled with bromodeoxyuridine in the midpalatal bone tissue were assessed by osteocalcin expression. The receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) ratio was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to reflect the equilibrium between bone resorption and formation. The results demonstrated that the width of the maxillary dental arch increased distinctly within 2 weeks of midpalatal expansion with BMMC transplantation. The morphology of the midpalatal suture in this group changed significantly; the cartilage was completely replaced by fibrous-like tissue expressing osteocalcin. The palatal bone was reorganized from a cancellous form into a mature compact structure after an additional 2-week relapse period. Immunostaining results indicated that the heterologous transplanted BMMCs survived and differentiated into osteoblasts during the remodeling induced by midpalatal expansion. The RANKL/OPG expression ratio significantly decreased after 2 weeks of midpalatal expansion with BMMC transplantation due to the inhibition of RANKL expression. Heterologous BMMC transplantation appears to accelerate the midpalatal bone remodeling induced by expansion of the rats through increasing the number of osteoprogenitor cells and regulating the RANKL-OPG signaling pathway.
Collapse
Affiliation(s)
- Jie Guo
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China ; Shandong Provinicial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lue Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haihua Xu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaoxia Che
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
219
|
Abstract
Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed.
Collapse
Affiliation(s)
- Thomas A Einhorn
- Orthopaedic Surgery, Boston University Medical Centre, Doctor's Office Building Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
| | - Louis C Gerstenfeld
- Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord Street, E243, Boston, MA 02118, USA
| |
Collapse
|
220
|
Petrova NL, Petrov PK, Edmonds ME, Shanahan CM. Inhibition of TNF-α Reverses the Pathological Resorption Pit Profile of Osteoclasts from Patients with Acute Charcot Osteoarthropathy. J Diabetes Res 2015; 2015:917945. [PMID: 26137498 PMCID: PMC4468294 DOI: 10.1155/2015/917945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 02/01/2023] Open
Abstract
We hypothesised that tumour necrosis factor-α (TNF-α) may enhance receptor activator of nuclear factor-κβ ligand- (RANKL-) mediated osteoclastogenesis in acute Charcot osteoarthropathy. Peripheral blood monocytes were isolated from 10 acute Charcot patients, 8 diabetic patients, and 9 healthy control subjects and cultured in vitro on plastic and bone discs. Osteoclast formation and resorption were assessed after treatment with (1) macrophage-colony stimulating factor (M-CSF) and RANKL and (2) M-CSF, RANKL, and neutralising antibody to TNF-α (anti-TNF-α). Resorption was measured on the surface of bone discs by image analysis and under the surface using surface profilometry. Although osteoclast formation was similar in M-CSF + RANKL-treated cultures between the groups (p > 0.05), there was a significant increase in the area of resorption on the surface (p < 0.01) and under the surface (p < 0.01) in Charcot patients compared with diabetic patients and control subjects. The addition of anti-TNF-α resulted in a significant reduction in the area of resorption on the surface (p < 0.05) and under the surface (p < 0.05) only in Charcot patients as well as a normalisation of the aberrant erosion profile. We conclude that TNF-α modulates RANKL-mediated osteoclastic resorption in vitro in patients with acute Charcot osteoarthropathy.
Collapse
Affiliation(s)
- Nina L. Petrova
- Diabetic Foot Clinic, King's College Hospital, London SE5 9RS, UK
- *Nina L. Petrova:
| | - Peter K. Petrov
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
221
|
Gómez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 2015; 70:93-101. [PMID: 25093266 DOI: 10.1016/j.bone.2014.07.033] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Bone fracture healing impairment related to mechanical problems has been largely corrected by advances in fracture management. Better protocols, more strict controls of time and function, and hardware and surgical technique evolution have contributed to better prognosis, even in complex fractures. However, atrophic nonunion persists in clinical cases where, for different reasons, the osteogenic capability is impaired. When this is the case, a better understanding of the basic mechanisms under bone repair and augmentation techniques may put in perspective the current possibilities and future opportunities. Among those, cell therapy particularly aims to correct this insufficient osteogenesis. However, the launching of safe and efficacious cell therapies still requires substantial amount of research, especially clinical trials. This review will envisage the current clinical trials on bone healing augmentation based on cell therapy, with the experience provided by the REBORNE Project, and the insight from investigator-driven clinical trials on advanced therapies towards the future. This article is part of a Special Issue entitled Stem Cells and Bone.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Dept. of Orthopaedic Surgery and Traumatology, Hospital La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Philippe Rosset
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Daniel Lozano
- Metabolic Bone Research Unit, Instituto de Investigación Sanitaria FJD, Madrid, Spain
| | - Julien Stanovici
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Christian Ermthaller
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| | - Florian Gerbhard
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
222
|
Köttstorfer J, Thomas A, Gregori M, Kecht M, Kaiser G, Eipeldauer S, Sarahrudi K. Are OPG and RANKL involved in human fracture healing? J Orthop Res 2014; 32:1557-61. [PMID: 25212894 DOI: 10.1002/jor.22723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/24/2014] [Indexed: 02/04/2023]
Abstract
Human fracture healing is a complex interaction of several cytokines that regulate osteoblast and osteoclast activity. By monitoring OPG (osteoprotegerin) and sRANKL we aimed to possibly predict normal or impaired fracture healing. In 64 patients with a fracture of a long bone serum level of sRANKL and OPG were evaluated with respect to bony union (n=57) or pseudarthrosis (n=7). Measurements were carried out at admission and at 1, 2, 4, 6, 8, 12, 24, and 48 weeks after the injury. Patients' serum levels were compared to 33 healthy controls. Fracture hematoma contained significantly higher sRANKL and OPG concentrations compared to patients serum (p=0.005, p=0.028). OPG level in fracture hematoma was higher compared to the unions serum level (p=0.028). sRANKL was decreased in unions during the observation period. In non-unions sRANKL and OPG levels showed a variable course, with no statistical significance. This is the first study to document the course of OPG and sRANKL in normal and delayed human fracture healing emphasizing its local and systemic involvement. We provide evidence of strongly enhanced OPG levels in patients with a long bone fracture compared to healthy controls. Further, levels of free sRANKL were decreased during regular fracture repair.
Collapse
Affiliation(s)
- Julia Köttstorfer
- Medical University Vienna, University Clinic for Trauma Surgery, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
223
|
Sidney LE, Heathman TRJ, Britchford ER, Abed A, Rahman CV, Buttery LDK. Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng Part A 2014; 21:362-73. [PMID: 25104438 DOI: 10.1089/ten.tea.2014.0100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ∼80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ∼70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ∼64% and PGE2 production by ∼52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications.
Collapse
Affiliation(s)
- Laura E Sidney
- 1 Division of Drug Delivery and Tissue Engineering, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
224
|
Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3192-204. [PMID: 25285719 DOI: 10.1016/j.ajpath.2014.08.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
The distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80(+)Mac-2(+)) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front. They were also associated with key events during soft-to-hard callus transition. Resident macrophages (F4/80(+)Mac-2(neg)), including osteal macrophages, predominated in the maturing hard callus. Macrophage Fas-induced apoptosis transgenic mice were used to induce macrophage depletion in vivo in the femoral fracture model. Callus formation was completely abolished when macrophage depletion was initiated at the time of surgery and was significantly reduced when depletion was delayed to coincide with initiation of early anabolic phase. Treatment initiating 5 days after fracture with the pro-macrophage cytokine colony stimulating factor-1 significantly enhanced soft callus formation. The data support that inflammatory macrophages were required for initiation of fracture repair, whereas both inflammatory and resident macrophages promoted anabolic mechanisms during endochondral callus formation. Overall, macrophages make substantive and prolonged contributions to fracture healing and can be targeted as a therapeutic approach for enhancing repair mechanisms. Thus, macrophages represent a viable target for the development of pro-anabolic fracture treatments with a potentially broad therapeutic window.
Collapse
Affiliation(s)
- Liza J Raggatt
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Martin E Wullschleger
- Trauma Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; School of Medicine, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Kylie A Alexander
- UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Andy C K Wu
- UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Susan M Millard
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Simranpreet Kaur
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Michelle L Maugham
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Laura S Gregory
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Allison R Pettit
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
225
|
Ziran NM, Smith WR. The 'Ziran' wrap: reconstruction of critical-sized long bone defects using a fascial autograft and reamer-irrigator-aspirator autograft. Patient Saf Surg 2014; 8:40. [PMID: 25298784 PMCID: PMC4189609 DOI: 10.1186/s13037-014-0040-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022] Open
Abstract
Reconstruction of critical-size bony defects remains a challenge to surgeons despite recent technological advances. Current treatments include distraction osteogenesis, cancellous autograft, induced membranes (Masquelet procedure), polymeric membranes, and titanium-mesh cages filled with bone graft. In this article, the authors presents two cases in which critical-sized defects were reconstructed using a meshed fascial autograft encasing reamer-irrigator-aspirator (RIA) autograft and cancellous allograft. This article will discuss the clinical outcomes of the technique, comparison to other current techniques, and technical insight into the potential biological mechanism.
Collapse
Affiliation(s)
- Navid M Ziran
- Hip & Pelvis Institute, 2001 Santa Monica Blvd, Suite 760, 90404 Santa Monica, California USA
| | - Wade R Smith
- Mountain Orthopaedic Trauma Surgeons at Swedish, 701 E. Hampden Ave, CO 80113 Englewood, UK
| |
Collapse
|
226
|
Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of skeletal repair (fracture healing and its assessment). Methods Mol Biol 2014; 1130:13-31. [PMID: 24482162 DOI: 10.1007/978-1-62703-989-5_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of postnatal skeletal repair is of immense clinical interest. Optimal repair of skeletal tissue is necessary in all varieties of elective and reparative orthopedic surgical treatments. However, the repair of fractures is unique in this context in that fractures are one of the most common traumas that humans experience and are the end-point manifestation of osteoporosis, the most common chronic disease of aging. In the first part of this introduction the basic biology of fracture healing is presented. The second part discusses the primary methodological approaches that are used to examine repair of skeletal hard tissue and specific considerations for choosing among and implementing these approaches.
Collapse
|
227
|
Ma QL, Zhao LZ, Liu RR, Jin BQ, Song W, Wang Y, Zhang YS, Chen LH, Zhang YM. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014; 35:9853-9867. [PMID: 25201737 DOI: 10.1016/j.biomaterials.2014.08.025] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The use of endosseous implanted materials is often limited by undesirable effects that may be due to macrophage-related inflammation. The purpose of this study was to fabricate a nanostructured surface on a titanium implant to regulate the macrophage inflammatory response and improve the performance of the implant. Anodization at 5 and 20 V as well as UV irradiation were used to generate hydrophilic, nanostructured TiO2 surfaces (denoted as NT5 and NT20, respectively). Their surface characteristics and in vivo osseointegration as well as the inflammatory response they elicit were analyzed. In addition, the behavior of macrophages in vitro was evaluated. Although the in vitro osteogenic activity on the two surfaces was similar, the NT5 surface was associated with more bone formation, less inflammation, and a reduced CD68(+) macrophage distribution in vivo compared to the NT20 and polished Ti surfaces. Consistently, further experiments revealed that the NT5 surface induced healing-associated M2 polarization in vitro and in vivo. By contrast, the NT20 surface promoted the pro-inflammatory M1 polarization, which could further impair bone regeneration. The results demonstrate the dominant role of macrophage-related inflammation in bone healing around implants and that surface nanotopography can be designed to have an immune-regulating effect in support of the success of implants.
Collapse
Affiliation(s)
- Qian-Li Ma
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ling-Zhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rong-Rong Liu
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Bo-Quan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Song
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yu-Si Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li-Hua Chen
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Yu-Mei Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
228
|
A pilot study investigating the histology and growth factor content of human non-union tissue. INTERNATIONAL ORTHOPAEDICS 2014; 38:2623-9. [DOI: 10.1007/s00264-014-2496-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/03/2014] [Indexed: 11/27/2022]
|
229
|
Sathyendra V, Donahue HJ, Vrana KE, Berg A, Fryzel D, Gandhi J, Reid JS. Single Nucleotide Polymorphisms in Osteogenic Genes in Atrophic Delayed Fracture-Healing: A Preliminary Investigation. J Bone Joint Surg Am 2014; 96:1242-1248. [PMID: 25100770 DOI: 10.2106/jbjs.m.00453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED UpdateThis article was updated on September 10, 2014, because of a previous error. On page 1242, in the byline, and on page 1247, in the author addresses, the academic degree for Henry J. Donahue had previously read "MD." The degree now reads "PhD." BACKGROUND We propose that fracture-healing potential is affected by the patient's genome. This genotype is then phenotypically expressed by the patient at the time of injury. We examined the hypothesis that patients who exhibit delayed or impaired fracture-healing may have one or more single nucleotide polymorphisms (SNPs) within a series of genes related to bone formation. METHODS We performed a population-based, case-controlled study of delayed fracture-healing. Sixty-two adults with a long-bone fracture were identified from a surgical database. Thirty-three patients had an atrophic nonunion (delayed healing), and twenty-nine displayed normal fracture-healing. These patients underwent buccal mucosal cell harvesting. SNP genotyping was performed with use of bead array technology. One hundred and forty-four SNPs (selected from HapMap) within thirty genes associated with fracture-healing were investigated. Three SNPs did not segregate in the population and were excluded from the analysis. Eight of the remaining SNPs failed the test for Hardy-Weinberg equilibrium (p value smaller than the Bonferroni-corrected level of 0.05/141 = 0.000355) and were excluded. RESULTS Five SNPs on four genes were found to have a p value of <0.05 in the additive genetic model. Of these five significant SNPs, three had an odds ratio (OR) of >1, indicating that the presence of the allele increased the risk of nonunion. The rs2853550 SNP, which had the largest effect (OR = 5.9, p = 0.034), was on the IL1B gene, which codes for interleukin 1 beta. The rs2297514 SNP (OR = 3.98, p = 0.015) and the rs2248814 SNP (OR = 2.27, p = 0.038) were on the NOS2 gene coding for nitric oxide synthase. The remaining two SNPs had an OR of <1, indicating that the presence of the allele may be protective against nonunion. The rs3819089 SNP (OR = 0.26, p = 0.026) was on the MMP13 gene for matrix metallopeptidase 13, and the rs270393 SNP (OR = 0.30, p = 0.015) was on the BMP6 gene for bone morphogenetic protein 6. CONCLUSIONS Variations in the IL1B and NOS2 genes may contribute to delayed fracture-healing and warrant further investigation. CLINICAL RELEVANCE Impaired fracture union may have genetic contributions.
Collapse
Affiliation(s)
- Vikram Sathyendra
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Henry J Donahue
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Kent E Vrana
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Arthur Berg
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - David Fryzel
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Jonathan Gandhi
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - J Spence Reid
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| |
Collapse
|
230
|
Treatment with α-lipoic acid enhances the bone healing after femoral fracture model of rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1025-36. [DOI: 10.1007/s00210-014-1021-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
|
231
|
Mize TW, Sundararaj KP, Leite RS, Huang Y. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis. J Periodontal Res 2014; 50:315-9. [PMID: 25040058 DOI: 10.1111/jre.12208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. MATERIAL AND METHODS Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. RESULTS Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. CONCLUSION The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated.
Collapse
Affiliation(s)
- T W Mize
- Division of Periodontics, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
232
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
233
|
Furman BD, Mangiapani DS, Zeitler E, Bailey KN, Horne PH, Huebner JL, Kraus VB, Guilak F, Olson SA. Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res Ther 2014; 16:R134. [PMID: 24964765 PMCID: PMC4229982 DOI: 10.1186/ar4591] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA.
Collapse
|
234
|
Al-Sebaei MO, Daukss DM, Belkina AC, Kakar S, Wigner NA, Cusher D, Graves D, Einhorn T, Morgan E, Gerstenfeld LC. Role of Fas and Treg cells in fracture healing as characterized in the fas-deficient (lpr) mouse model of lupus. J Bone Miner Res 2014; 29:1478-91. [PMID: 24677136 PMCID: PMC4305200 DOI: 10.1002/jbmr.2169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/10/2013] [Accepted: 12/28/2013] [Indexed: 11/09/2022]
Abstract
Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Fas(lpr) /J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Fas(lpr) /J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Fas(lpr) /J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Fas(lpr) /J mice had elevated Treg cells in both spleens and bones of B6.MRL/Fas(lpr) /J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Fas(lpr) /J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Fas(lpr) /J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption.
Collapse
Affiliation(s)
- Maisa O Al-Sebaei
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, MA, USA; King Abdul Aziz University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Timmen M, Hidding H, Wieskötter B, Baum W, Pap T, Raschke MJ, Schett G, Zwerina J, Stange R. Influence of antiTNF-alpha antibody treatment on fracture healing under chronic inflammation. BMC Musculoskelet Disord 2014; 15:184. [PMID: 24885217 PMCID: PMC4059090 DOI: 10.1186/1471-2474-15-184] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/16/2014] [Indexed: 12/29/2022] Open
Abstract
Background The overexpression of tumor necrosis factor (TNF)-α leads to systemic as well as local loss of bone and cartilage and is also an important regulator during fracture healing. In this study, we investigate how TNF-α inhibition using a targeted monoclonal antibody affects fracture healing in a TNF-α driven animal model of human rheumatoid arthritis (RA) and elucidate the question whether enduring the anti TNF-α therapy after trauma is beneficial or not. Methods A standardized femur fracture was applied to wild type and human TNF-α transgenic mice (hTNFtg mice), which develop an RA-like chronic polyarthritis. hTNFtg animals were treated with anti-TNF antibody (Infliximab) during the fracture repair. Untreated animals served as controls. Fracture healing was evaluated after 14 and 28 days of treatment by clinical assessment, biomechanical testing and histomorphometry. Results High levels of TNF-α influence fracture healing negatively, lead to reduced cartilage and more soft tissue in the callus as well as decreased biomechanical bone stability. Blocking TNF-α in hTNFtg mice lead to similar biomechanical and histomorphometrical properties as in wild type. Conclusions High levels of TNF-α during chronic inflammation have a negative impact on fracture healing. Our data suggest that TNF-α inhibition by an anti-TNF antibody does not interfere with fracture healing.
Collapse
Affiliation(s)
- Melanie Timmen
- Institute for Experimental Muskuloskeletal Medicine IEMM, University Hospital Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
237
|
Petrova NL, Shanahan CM. Neuropathy and the vascular-bone axis in diabetes: lessons from Charcot osteoarthropathy. Osteoporos Int 2014; 25:1197-207. [PMID: 24091593 DOI: 10.1007/s00198-013-2511-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Emerging evidence from the last two decades has shown that vascular calcification (VC) is a regulated, cell-mediated process orchestrated by vascular smooth muscle cells (VSMCs) and that this process bears many similarities to bone mineralization. While many of the mechanisms driving VSMC calcification have been well established, it remains unclear what factors in specific disease states act to promote vascular calcification and in parallel, bone loss. Diabetes is a condition most commonly associated with VC and bone abnormalities. In this review, we describe how factors associated with the diabetic milieu impact on VSMCs, focusing on the role of oxidative stress, inflammation, impairment of the advanced glycation end product (AGE)/receptor for AGE system and, importantly, diabetic neuropathy. We also explore the link between bone and VC in diabetes with a specific emphasis on the receptor activator of nuclear factor κβ ligand/osteoprotegerin system. Finally, we describe what insights can be gleaned from studying Charcot osteoarthropathy, a rare complication of diabetic neuropathy, in which the occurrence of VC is frequent and where bone lysis is extreme.
Collapse
Affiliation(s)
- N L Petrova
- Diabetic Foot Clinic, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | | |
Collapse
|
238
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
239
|
Elgali I, Igawa K, Palmquist A, Lennerås M, Xia W, Choi S, Chung UI, Omar O, Thomsen P. Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes. Biomaterials 2014; 35:3229-42. [DOI: 10.1016/j.biomaterials.2013.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 12/31/2022]
|
240
|
Yin G, Sheu TJ, Menon P, Pang J, Ho HC, Shi S, Xie C, Smolock E, Yan C, Zuscik MJ, Berk BC. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice. PLoS One 2014; 9:e89127. [PMID: 24586541 PMCID: PMC3929643 DOI: 10.1371/journal.pone.0089127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT) and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31) were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.
Collapse
Affiliation(s)
- Guoyong Yin
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Prashanthi Menon
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hsin-Chiu Ho
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shanshan Shi
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chao Xie
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elaine Smolock
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chen Yan
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Zuscik
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bradford C. Berk
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
241
|
Abstract
The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented, and general considerations when setting up an experiment using this model are described.
Collapse
|
242
|
Tomlinson RE, Silva MJ. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res 2013; 1:311-22. [PMID: 26273509 DOI: 10.4248/br201304002] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023] Open
Abstract
Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| |
Collapse
|
243
|
Gruber R, Roos G, Caballé-Serrano J, Miron R, Bosshardt DD, Sculean A. TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis. Clin Oral Investig 2013; 18:1639-46. [PMID: 24221580 DOI: 10.1007/s00784-013-1129-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Emdogain, containing an extract of fetal porcine enamel matrix proteins, is a potent stimulator of in vitro osteoclastogenesis. The underlying molecular mechanisms are, however, unclear. MATERIAL AND METHODS Here, we have addressed the role of transforming growth factor-beta receptor type 1 (TGF-βRI) kinase activity on osteoclastogenesis in murine bone marrow cultures. RESULTS Inhibition of TGF-βRI kinase activity with SB431542 abolished the effect of Emdogain on osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand or tumor necrosis factor-alpha. SB431542 also suppressed the Emdogain-mediated increase of OSCAR, a co-stimulatory protein, and dendritic cell-specific transmembrane protein and Atp6v0d2, the latter two being involved in cell fusion. Similar to transforming growth factor-beta1 (TGF-β), Emdogain could not compensate for the inhibition of IL-4 and IFNγ on osteoclast formation. When using the murine macrophage cell line RAW246.7, SB431542 and the smad-3 inhibitor SIS3 blocked Emdogain-stimulated expression of the transcription factor NFATc1. CONCLUSIONS Taken together, the data suggest that TGF-βRI kinase activity is necessary to mediate in vitro effects of Emdogain on osteoclastogenesis. CLINICAL RELEVANCE Based on these in vitro data, we can speculate that at least part of the clinical effects of Emdogain on osteoclastogenesis is mediated via TGF-β signaling.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland,
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Bone healing is a complex process that can be influenced by both host and environmental factors. In this article, we review the biology involved in the regeneration of new bone after fracture, and factors influencing bone healing, including diabetes, smoking, NSAID use, and bisphosphonates.
Collapse
|
245
|
Rundle CH, Mohan S, Edderkaoui B. Duffy antigen receptor for chemokines regulates post-fracture inflammation. PLoS One 2013; 8:e77362. [PMID: 24146983 PMCID: PMC3798395 DOI: 10.1371/journal.pone.0077362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022] Open
Abstract
There is now considerable experimental data to suggest that inflammatory cells collaborate in the healing of skeletal fractures. In terms of mechanisms that contribute to the recruitment of inflammatory cells to the fracture site, chemokines and their receptors have received considerable attention. Our previous findings have shown that Duffy antigen receptor for chemokines (Darc), the non-classical chemokine receptor that does not signal, but rather acts as a scavenger of chemokines that regulate cell migration, is a negative regulator of peak bone density in mice. Furthermore, because Darc is expressed by inflammatory and endothelial cells, we hypothesized that disruption of Darc action will affect post-fracture inflammation and consequently will affect fracture healing. To test this hypothesis, we evaluated fracture healing in mice with targeted disruption of Darc and corresponding wild type (WT) control mice. We found that fracture callus cartilage formation was significantly greater (33%) at 7 days post-surgery in Darc-KO compared to WT mice. The increased cartilage was associated with greater Collagen (Col) II expression at 3 days post-fracture and Col-X at 7 days post-fracture compared to WT mice, suggesting that Darc deficiency led to early fracture cartilage formation and differentiation. We then compared the expression of cytokine and chemokine genes known to be induced during inflammation. Interleukin (Il)-1β, Il-6, and monocyte chemotactic protein 1 were all down regulated in the fractures derived from Darc-KO mice at one day post-fracture, consistent with an altered inflammatory response. Furthermore, the number of macrophages was significantly reduced around the fractures in Darc-KO compared to WT mice. Based on these data, we concluded that Darc plays a role in modulating the early inflammatory response to bone fracture and subsequent cartilage formation. However, the early cartilage formation was not translated with an early bone formation at the fracture site in Darc-KO compared to WT mice.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
246
|
Horikiri Y, Shimo T, Kurio N, Okui T, Matsumoto K, Iwamoto M, Sasaki A. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One 2013; 8:e76785. [PMID: 24124594 PMCID: PMC3790742 DOI: 10.1371/journal.pone.0076785] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/03/2013] [Indexed: 02/01/2023] Open
Abstract
Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH) expression is positively correlated with phosphorylated focal adhesion kinase (FAK) Tyr(397). However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemical analysis revealed that SHH and pFAK Tyr(397) were expressed in bone marrow cells and that pFAK Tyr(397) was also detected in ALP-positive osteoblasts near the TRAP-positive osteoclasts in the fracture site in the ribs of mice on day 5 after fracture. SHH and pFAK Tyr(397) were detectable in osteoblasts near the hypertrophic chondrocytes on day 14. In vitro analysis showed that SHH up-regulated the expression of FAK mRNA and pFAK Tyr(397) time dependently in osteoblastic MC3T3-E1 cells. Functional analysis revealed that 5 lentivirus encoding short hairpin FAK RNAs (shFAK)-infected MC3T3-E1 cell groups displayed a round morphology and decreased proliferation, adhesion, migration, and differentiation. SHH stimulated the proliferation and differentiation of MC3T3-E1 cells, but had no effect on the shFAK-infected cells. SHH also stimulated osteoclast formation in a co-culture system containing MC3T3-E1 and murine CD11b(+) bone marrow cells, but did not affect the shFAK-infected MC3T3-E1 co-culture group. These data suggest that SHH signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture and regulated their proliferation and differentiation, as well as osteoclast formation, via FAK signaling.
Collapse
Affiliation(s)
- Yuu Horikiri
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Naito Kurio
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Iwamoto
- Division of Orthopedic Surgery, the Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
247
|
Wigner NA, Soung DY, Einhorn TA, Drissi H, Gerstenfeld LC. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development. J Cell Physiol 2013; 228:2232-42. [PMID: 23625810 DOI: 10.1002/jcp.24396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022]
Abstract
Runx2 and Runx3 are known to be expressed in the growth plate during endochondral bone formation. Here we addressed the functional role of Runx3 as distinct from Runx2 by using two models of postnatal bone repair: fracture healing that proceeds by an endochondral process and marrow ablation that proceeds by only an intramembranous process. Both Runx2 and Runx3 mRNAs were differentially up regulated during fracture healing. In contrast, only Runx2 showed increased expression after marrow ablation. During fracture healing, Runx3 was expressed earlier than Runx2, was concurrent with the period of chondrogenesis, and coincident with maximal aggrecan expression a protein associated with proliferating and permanent cartilage. Immunohistological analysis showed Runx3 protein was also expressed by chondrocytes in vivo. In contrast, Runx2 was expressed later during chondrocyte hypertrophy, and primary bone formation. The functional activities of Runx3 during chondrocyte differentiation were assessed by examining its regulatory actions on aggrecan gene expression. Aggrecan mRNA levels and aggrecan promoter activity were enhanced in response to the over-expression of either Runx2 and Runx3 in ATDC5 chondrogenic cell line, while sh-RNA knocked down of each Runx protein showed that only Runx3 knock down specifically suppressed aggrecan mRNA expression and promoter activity. ChIP assay demonstrated that Runx3 interactions were selective to sites within the aggrecan promoter and were only observed during early periods of chondrogenesis before hypertrophy. Our studies suggest that Runx3 positively regulates aggrecan expression and suggest that its function is more limited to cartilage development than to bone. In aggregate these data further suggest that the various members of the Runx transcription factors are involved in the coordination of chondrocyte development, maturation, and hypertrophy during endochondral bone formation.
Collapse
Affiliation(s)
- Nathan A Wigner
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
248
|
Musumeci G, Castrogiovanni P, Loreto C, Castorina S, Pichler K, Weinberg AM. Post-traumatic caspase-3 expression in the adjacent areas of growth plate injury site: a morphological study. Int J Mol Sci 2013; 14:15767-84. [PMID: 23899790 PMCID: PMC3759885 DOI: 10.3390/ijms140815767] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022] Open
Abstract
The epiphyseal plate is a hyaline cartilage plate that sits between the diaphysis and the epiphysis. The objective of this study was to determine the impact of an injury in the growth plate chondrocytes through the study of histological morphology, immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1, and levels of the inflammatory cytokines, Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α), in order to acquire more information about post-injury reactions of physeal cell turnover. In our results, morphological analysis showed that in experimental bones, neo-formed bone trabeculae-resulting from bone formation repair-invaded the growth plate and reached the metaphyseal bone tissue (bone bridge), and this could result in some growth arrest. We demonstrated, by ELISA, increased expression levels of the inflammatory cytokines IL-6 and TNF-α. Immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1 showed that the physeal apoptosis rate of the experimental bones was significantly higher than that of the control ones. In conclusion, we could assume that the inflammation process causes stress to chondrocytes that will die as a biological defense mechanism, and will also increase the survival of new chondrocytes for maintaining cell homeostasis. Nevertheless, the exact stimulus leading to the increased apoptosis rate, observed after injury, needs additional research to understand the possible contribution of chondrocyte apoptosis to growth disturbance.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania 95123, Italy; E-Mails: (P.C.); (C.L.); (S.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-953-782-043; Fax: +39-0-953-782-034
| | - Paola Castrogiovanni
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania 95123, Italy; E-Mails: (P.C.); (C.L.); (S.C.)
| | - Carla Loreto
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania 95123, Italy; E-Mails: (P.C.); (C.L.); (S.C.)
| | - Sergio Castorina
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania 95123, Italy; E-Mails: (P.C.); (C.L.); (S.C.)
| | - Karin Pichler
- Department of Orthopaedic Surgery, Medical University of Graz, Graz 8036, Austria; E-Mails: (K.P.); (A.W.W.)
| | - Annelie Martina Weinberg
- Department of Orthopaedic Surgery, Medical University of Graz, Graz 8036, Austria; E-Mails: (K.P.); (A.W.W.)
| |
Collapse
|
249
|
Hyperbaric oxygen stimulates vascularization and bone formation in rat calvarial defects. Int J Oral Maxillofac Surg 2013; 42:907-14. [DOI: 10.1016/j.ijom.2013.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/05/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022]
|
250
|
Unraveling macrophage contributions to bone repair. BONEKEY REPORTS 2013; 2:373. [PMID: 25035807 DOI: 10.1038/bonekey.2013.107] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 12/23/2022]
Abstract
Macrophages have reemerged to prominence with widened understanding of their pleiotropic contributions to many biologies and pathologies. This includes clear advances in revealing their importance in wound healing. Here we have focused on the current state of knowledge with respect to bone repair, which has received relatively little scientific attention compared with its soft-tissue counterparts. Our detailed characterization of resident tissue macrophages residing in bone-lining tissues (osteomacs), including their pro-anabolic function, exposed a more prominent role for these cells in bone biology than previously anticipated. Recent studies have confirmed the importance of macrophages in early inflammatory processes that establish the healing cascade after bone fracture. Emerging data support that macrophage influence extends into both anabolic and catabolic phases of repair, suggesting that these cells have prolonged and diverse functions during fracture healing. More research is needed to clarify macrophage phase-specific contributions, temporospatial subpopulation variance and macrophage specific-molecular mediators. There is also clear motivation for determining whether macrophage alterations underlie compromised fracture healing. Overall, there is strong justification to pursue strategies targeting macrophages and/or their products for improving normal bone healing and overcoming failed repair.
Collapse
|