201
|
Park BY, Larivière S, Rodríguez-Cruces R, Royer J, Tavakol S, Wang Y, Caciagli L, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Alvim MKM, Yasuda C, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp BAK, Domin M, von Podewils F, Langner S, Rummel C, Rebsamen M, Wiest R, Martin P, Kotikalapudi R, Bender B, O’Brien TJ, Law M, Sinclair B, Vivash L, Kwan P, Desmond PM, Malpas CB, Lui E, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Parodi C, Tortora D, Hatton SN, Vos SB, Duncan JS, Galovic M, Whelan CD, Bargalló N, Pariente J, Conde-Blanco E, Vaudano AE, Tondelli M, Meletti S, Kong X, Francks C, Fisher SE, Caldairou B, Ryten M, Labate A, Sisodiya SM, Thompson PM, McDonald CR, Bernasconi A, Bernasconi N, Bernhardt BC. Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain 2022; 145:1285-1298. [PMID: 35333312 PMCID: PMC9128824 DOI: 10.1093/brain/awab417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raul Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Marina K M Alvim
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa Yasuda
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Radiology, Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Radiology, Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia M Desmond
- Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Lui
- Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James’ Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Department of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariasavina Severino
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Costanza Parodi
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Núria Bargalló
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Radiology CDIC, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jose Pariente
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Xiang‐Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Mina Ryten
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Angelo Labate
- Neurology, BIOMORF Department, University of Messina, Messina, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
202
|
Seguin C, Mansour L S, Sporns O, Zalesky A, Calamante F. Network communication models narrow the gap between the modular organization of structural and functional brain networks. Neuroimage 2022; 257:119323. [PMID: 35605765 DOI: 10.1016/j.neuroimage.2022.119323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Structural and functional brain networks are modular. Canonical functional systems, such as the default mode network, are well-known modules of the human brain and have been implicated in a large number of cognitive, behavioral and clinical processes. However, modules delineated in structural brain networks inferred from tractography generally do not recapitulate canonical functional systems. Neuroimaging evidence suggests that functional connectivity between regions in the same systems is not always underpinned by anatomical connections. As such, direct structural connectivity alone would be insufficient to characterize the functional modular organization of the brain. Here, we demonstrate that augmenting structural brain networks with models of indirect (polysynaptic) communication unveils a modular network architecture that more closely resembles the brain's established functional systems. We find that diffusion models of polysynaptic connectivity, particularly communicability, narrow the gap between the modular organization of structural and functional brain networks by 20-60%, whereas routing models based on single efficient paths do not improve mesoscopic structure-function correspondence. This suggests that functional modules emerge from the constraints imposed by local network structure that facilitates diffusive neural communication. Our work establishes the importance of modeling polysynaptic communication to understand the structural basis of functional systems.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sina Mansour L
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Cognitive Science Program, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Network Science Institute, Indiana University, Bloomington, IN, United States
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Calamante
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
203
|
Valk SL, Xu T, Paquola C, Park BY, Bethlehem RAI, Vos de Wael R, Royer J, Masouleh SK, Bayrak Ş, Kochunov P, Yeo BTT, Margulies D, Smallwood J, Eickhoff SB, Bernhardt BC. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat Commun 2022; 13:2341. [PMID: 35534454 PMCID: PMC9085871 DOI: 10.1038/s41467-022-29886-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Brain structure scaffolds intrinsic function, supporting cognition and ultimately behavioral flexibility. However, it remains unclear how a static, genetically controlled architecture supports flexible cognition and behavior. Here, we synthesize genetic, phylogenetic and cognitive analyses to understand how the macroscale organization of structure-function coupling across the cortex can inform its role in cognition. In humans, structure-function coupling was highest in regions of unimodal cortex and lowest in transmodal cortex, a pattern that was mirrored by a reduced alignment with heritable connectivity profiles. Structure-function uncoupling in macaques had a similar spatial distribution, but we observed an increased coupling between structure and function in association cortices relative to humans. Meta-analysis suggested regions with the least genetic control (low heritable correspondence and different across primates) are linked to social-cognition and autobiographical memory. Our findings suggest that genetic and evolutionary uncoupling of structure and function in different transmodal systems may support the emergence of complex forms of cognition.
Collapse
Affiliation(s)
- Sofie L. Valk
- grid.419524.f0000 0001 0041 5028Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ting Xu
- grid.428122.f0000 0004 7592 9033Center for the Developing Brain, Child Mind Institute, New York, NY USA
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Structural and functional organisation of the brain (INM-1), Research Centre Jülich, Jülich, Germany, FZ Jülich, Jülich, Germany
| | - Bo-yong Park
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada ,grid.202119.90000 0001 2364 8385Department of Data Science, Inha University, Incheon, South Korea ,grid.410720.00000 0004 1784 4496Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | - Reinder Vos de Wael
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| | - Jessica Royer
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| | - Shahrzad Kharabian Masouleh
- grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Şeyma Bayrak
- grid.419524.f0000 0001 0041 5028Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Kochunov
- grid.411024.20000 0001 2175 4264Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - B. T. Thomas Yeo
- grid.4280.e0000 0001 2180 6431Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore ,grid.32224.350000 0004 0386 9924Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Daniel Margulies
- grid.425274.20000 0004 0620 5939Neuroanatomy and Connectivity Lab, Institut de Cerveau et de la Moelle epiniere, Paris, France
| | - Jonathan Smallwood
- grid.410356.50000 0004 1936 8331Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Simon B. Eickhoff
- grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C. Bernhardt
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| |
Collapse
|
204
|
Girn M, Roseman L, Bernhardt B, Smallwood J, Carhart-Harris R, Nathan Spreng R. Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical differentiation of unimodal and transmodal cortex. Neuroimage 2022; 256:119220. [PMID: 35483649 DOI: 10.1016/j.neuroimage.2022.119220] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Lysergic acid diethylamide (LSD) and psilocybin are serotonergic psychedelic compounds with potential in the treatment of mental health disorders. Past neuroimaging investigations have revealed that both compounds can elicit significant changes to whole-brain functional organization and dynamics. A recent proposal linked past findings into a unified model and hypothesized reduced whole-brain hierarchical organization as a key mechanism underlying the psychedelic state, but this has yet to be directly tested. We applied a non-linear dimensionality reduction technique previously used to map hierarchical connectivity gradients to assess cortical organization in the LSD and psilocybin state from two previously published pharmacological resting-state fMRI datasets (N = 15 and 9, respectively). Results supported our primary hypothesis: The principal gradient of cortical connectivity, describing a hierarchy from unimodal to transmodal cortex, was significantly flattened under both drugs relative to their respective placebo conditions. Between-condition contrasts revealed that this was driven by a reduction of functional differentiation at both hierarchical extremes - default and frontoparietal networks at the upper end, and somatomotor at the lower. Gradient-based connectivity mapping indicated that this was underpinned by a disruption of modular unimodal connectivity and increased unimodal-transmodal crosstalk. Results involving the second and third gradient, which, respectively represent axes of sensory and executive differentiation, also showed significant alterations across both drugs. These findings provide support for a recent mechanistic model of the psychedelic state relevant to therapeutic applications of psychedelics. More fundamentally, we provide the first evidence that macroscale connectivity gradients are sensitive to an acute pharmacological manipulation, supporting a role for psychedelics as scientific tools to perturb cortical functional organization.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada.
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Boris Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada
| | | | - Robin Carhart-Harris
- Neuroscape Psychedelics Division, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Verdun, QC, Canada; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
205
|
Lee D, Park HJ. A populational connection distribution map for the whole brain white matter reveals ordered cortical wiring in the space of white matter. Neuroimage 2022; 254:119167. [PMID: 35378287 DOI: 10.1016/j.neuroimage.2022.119167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The white matter in the brain is composed of neural fibers that wire the cortical and subcortical brain systems. Considering the complexity in terms of interconnections of many neural populations within the narrow space surrounded by the folding walls of the gray matter, the brain requires a certain way of structured wiring. To explore the three-dimensional organization of wiring in an accessible manner, we focused on voxel-level wiring patterns in the white matter according to cortical distributions in which each voxel mediates the wiring. We constructed a voxel-wise connection distribution map from the whole white matter voxels to 360 cortical regions using probabilistic tractography of the 100 diffusion imaging data in the Human Connectome Project. We then explored the spatial organization of the fiber bundles at the white matter voxels in terms of the maximal and second maximal cortical connection labels and the local gradient and entropy of cortical connection density using the population connection distribution map. We presented dominant cortical connection labels, local gradient, and connection entropy for the most representative white matter regions, including the internal capsule, external capsule, corpus callosum, cingulum bundle, and uncinate fascicles, most of which were introduced in the current study. Those major tracts showed a gradient organization of connection distributions for individual voxels. This organized pattern, as reflected in the whole brain connection distribution map, could be established to optimize wiring in the entire brain within the physical space of the white matter.
Collapse
Affiliation(s)
- Dongha Lee
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Republic of Korea.
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
206
|
Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome. Commun Biol 2022; 5:261. [PMID: 35332230 PMCID: PMC8948277 DOI: 10.1038/s42003-022-03185-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints. Mantwill et al. analysed the relationship between functional connectivity markers that are specific to individuals (i.e. brain fingerprints) and those predictive of behaviour. They reveal that these markers are unrelated and suggest an alternative perspective on the basis of individual signatures.
Collapse
|
207
|
Multimodal Gradient Mapping of Rodent Hippocampus. Neuroimage 2022; 253:119082. [PMID: 35278707 DOI: 10.1016/j.neuroimage.2022.119082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023] Open
Abstract
The hippocampus plays a central role in supporting our coherent and enduring sense of self and our place in the world. Understanding its functional organisation is central to understanding this complex role. Previous studies suggest function varies along a long hippocampal axis, but there is disagreement about the presence of sharp discontinuities or gradual change along that axis. Other open questions relate to the underlying drivers of this variation and the conservation of organisational principles across species. Here, we delineate the primary organisational principles underlying patterns of hippocampal functional connectivity (FC) in the mouse using gradient analysis on resting state fMRI data. We further applied gradient analysis to mouse gene co-expression data to examine the relationship between variation in genomic anatomy and functional organisation. Two principal FC gradients along a hippocampal axis were revealed. The principal gradient exhibited a sharp discontinuity that divided the hippocampus into dorsal and ventral compartments. The second, more continuous, gradient followed the long axis of the ventral compartment. Dorsal regions were more strongly connected to areas involved in spatial navigation while ventral regions were more strongly connected to areas involved in emotion, recapitulating patterns seen in humans. In contrast, gene co-expression gradients showed a more segregated and discrete organisation. Our findings suggest that hippocampal functional organisation exhibits both sharp and gradual transitions and that hippocampal genomic anatomy exerts only a subtle influence on this organisation.
Collapse
|
208
|
Kiwitz K, Brandstetter A, Schiffer C, Bludau S, Mohlberg H, Omidyeganeh M, Massicotte P, Amunts K. Cytoarchitectonic Maps of the Human Metathalamus in 3D Space. Front Neuroanat 2022; 16:837485. [PMID: 35350721 PMCID: PMC8957853 DOI: 10.3389/fnana.2022.837485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The human metathalamus plays an important role in processing visual and auditory information. Understanding its layers and subdivisions is important to gain insights in its function as a subcortical relay station and involvement in various pathologies. Yet, detailed histological references of the microanatomy in 3D space are still missing. We therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB) and its subdivisions in the BigBrain – a high-resolution 3D-reconstructed histological model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem brains were studied. Three MGB subdivisions (MGBv, MGBd, MGBm) were identified on every 5th BigBrain section, and a deep-learning based tool was applied to map them on every remaining section. The maps were 3D-reconstructed to show the shape and extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were additionally identified in nine other postmortem brains. Probabilistic cytoarchitectonic maps in the MNI “Colin27” and MNI ICBM152 reference spaces were computed which reveal an overall low interindividual variability in topography and extent. The probabilistic maps were included into the Julich-Brain atlas, and are freely available. They can be linked to other 3D data of human brain organization and serve as an anatomical reference for diagnostic, prognostic and therapeutic neuroimaging studies of healthy brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a basis for data integration, brain modeling and simulation to bridge the larger scale involvement of thalamocortical and local subcortical circuits.
Collapse
Affiliation(s)
- Kai Kiwitz
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- *Correspondence: Kai Kiwitz,
| | - Andrea Brandstetter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Schiffer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Helmholtz AI, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Mona Omidyeganeh
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- National Research Council of Canada, Ottawa, ON, Canada
| | - Philippe Massicotte
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
209
|
Xia M, Liu J, Mechelli A, Sun X, Ma Q, Wang X, Wei D, Chen Y, Liu B, Huang CC, Zheng Y, Wu Y, Chen T, Cheng Y, Xu X, Gong Q, Si T, Qiu S, Lin CP, Cheng J, Tang Y, Wang F, Qiu J, Xie P, Li L, He Y. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol Psychiatry 2022; 27:1384-1393. [PMID: 35338312 DOI: 10.1038/s41380-022-01519-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Patients with major depressive disorder (MDD) exhibit concurrent deficits in both sensory and higher-order cognitive processing. Connectome studies have suggested a principal primary-to-transmodal gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether this gradient structure is disrupted in patients with MDD and how this disruption associates with gene expression profiles and treatment outcome remain unknown. Using a large cohort of resting-state fMRI data from 2227 participants (1148 MDD patients and 1079 healthy controls) recruited at nine sites, we investigated MDD-related alterations in the principal connectome gradient. We further used Neurosynth, postmortem gene expression, and an 8-week antidepressant treatment (20 MDD patients) data to assess the meta-analytic cognitive functions, transcriptional profiles, and treatment outcomes related to MDD gradient alterations, respectively. Relative to the controls, MDD patients exhibited global topographic alterations in the principal primary-to-transmodal gradient, including reduced explanation ratio, gradient range, and gradient variation (Cohen's d = 0.16-0.21), and focal alterations mainly in the primary and transmodal systems (d = 0.18-0.25). These gradient alterations were significantly correlated with meta-analytic terms involving sensory processing and higher-order cognition. The transcriptional profiles explained 53.9% variance of the altered gradient pattern, with the most correlated genes enriched in transsynaptic signaling and calcium ion binding. The baseline gradient maps of patients significantly predicted symptomatic improvement after treatment. These results highlight the connectome gradient dysfunction in MDD and its linkage with gene expression profiles and clinical management, providing insight into the neurobiological underpinnings and potential biomarkers for treatment evaluation in this disorder.
Collapse
Affiliation(s)
- Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| | - Qing Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Institute of Neuroscience, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
210
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|
211
|
Griffa A, Amico E, Liégeois R, Ville DVD, Preti MG. Brain structure-function coupling provides signatures for task decoding and individual fingerprinting. Neuroimage 2022; 250:118970. [DOI: 10.1016/j.neuroimage.2022.118970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
|
212
|
Shao X, Mckeown B, Karapanagiotidis T, Vos de Wael R, Margulies DS, Bernhardt B, Smallwood J, Krieger-Redwood K, Jefferies E. Individual differences in gradients of intrinsic connectivity within the semantic network relate to distinct aspects of semantic cognition. Cortex 2022; 150:48-60. [DOI: 10.1016/j.cortex.2022.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
213
|
Faskowitz J, Betzel RF, Sporns O. Edges in brain networks: Contributions to models of structure and function. Netw Neurosci 2022; 6:1-28. [PMID: 35350585 PMCID: PMC8942607 DOI: 10.1162/netn_a_00204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Network models describe the brain as sets of nodes and edges that represent its distributed organization. So far, most discoveries in network neuroscience have prioritized insights that highlight distinct groupings and specialized functional contributions of network nodes. Importantly, these functional contributions are determined and expressed by the web of their interrelationships, formed by network edges. Here, we underscore the important contributions made by brain network edges for understanding distributed brain organization. Different types of edges represent different types of relationships, including connectivity and similarity among nodes. Adopting a specific definition of edges can fundamentally alter how we analyze and interpret a brain network. Furthermore, edges can associate into collectives and higher order arrangements, describe time series, and form edge communities that provide insights into brain network topology complementary to the traditional node-centric perspective. Focusing on the edges, and the higher order or dynamic information they can provide, discloses previously underappreciated aspects of structural and functional network organization.
Collapse
Affiliation(s)
- Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
214
|
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia 2022; 63:537-550. [DOI: 10.1111/epi.17171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Ezequiel Gleichgerrcht
- Department of Neurology Medical University of South Carolina Charleston South Carolina USA
| | - Bernd J. Vorderwülbecke
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
- Department of Neurology Epilepsy Center Berlin‐Brandenburg Charité–Universitätsmedizin Berlin Berlin Germany
| | - Serge Vulliémoz
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
| | | |
Collapse
|
215
|
Hilgetag CC, Goulas A, Changeux JP. A natural cortical axis connecting the outside and inside of the human brain. Netw Neurosci 2022; 6:950-959. [PMID: 36875013 PMCID: PMC9976644 DOI: 10.1162/netn_a_00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/04/2022] Open
Abstract
What structural and connectivity features of the human brain help to explain the extraordinary human cognitive abilities? We recently proposed a set of relevant connectomic fundamentals, some of which arise from the size scaling of the human brain relative to other primate brains, while others of these fundamentals may be uniquely human. In particular, we suggested that the remarkable increase of the size of the human brain due to its prolonged prenatal development has brought with it an increased sparsification, hierarchical modularization, as well as increased depth and cytoarchitectonic differentiation of brain networks. These characteristic features are complemented by a shift of projection origins to the upper layers of many cortical areas as well as the significantly prolonged postnatal development and plasticity of the upper cortical layers. Another fundamental aspect of cortical organization that has emerged in recent research is the alignment of diverse features of evolution, development, cytoarchitectonics, function, and plasticity along a principal, natural cortical axis from sensory ("outside") to association ("inside") areas. Here we highlight how this natural axis is integrated in the characteristic organization of the human brain. In particular, the human brain displays a developmental expansion of outside areas and a stretching of the natural axis such that outside areas are more widely separated from each other and from inside areas than in other species. We outline some functional implications of this characteristic arrangement.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris, France.,Communications Cellulaires, Collège de France, Paris, France
| |
Collapse
|
216
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|
217
|
Monroe DC, DuBois SL, Rhea CK, Duffy DM. Age-Related Trajectories of Brain Structure–Function Coupling in Female Roller Derby Athletes. Brain Sci 2021; 12:brainsci12010022. [PMID: 35053766 PMCID: PMC8774127 DOI: 10.3390/brainsci12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
Contact and collision sports are believed to accelerate brain aging. Postmortem studies of the human brain have implicated tau deposition in and around the perivascular space as a biomarker of an as yet poorly understood neurodegenerative process. Relatively little is known about the effects that collision sport participation has on the age-related trajectories of macroscale brain structure and function, particularly in female athletes. Diffusion MRI and resting-state functional MRI were obtained from female collision sport athletes (n = 19 roller derby (RD) players; 23–45 years old) and female control participants (n = 14; 20–49 years old) to quantify structural coupling (SC) and decoupling (SD). The novel and interesting finding is that RD athletes, but not controls, exhibited increasing SC with age in two association networks: the frontoparietal network, important for cognitive control, and default-mode network, a task-negative network (permuted p = 0.0006). Age-related increases in SC were also observed in sensorimotor networks (RD, controls) and age-related increases in SD were observed in association networks (controls) (permuted p ≤ 0.0001). These distinct patterns suggest that competing in RD results in compressed neuronal timescales in critical networks as a function of age and encourages the broader study of female athlete brains across the lifespan.
Collapse
Affiliation(s)
- Derek C. Monroe
- Correspondence: ; Tel.: +1-336-334-5347; Fax: +1-336-334-3238
| | | | | | | |
Collapse
|
218
|
Jung H, Wager TD, Carter RM. Novel Cognitive Functions Arise at the Convergence of Macroscale Gradients. J Cogn Neurosci 2021; 34:381-396. [PMID: 34942643 DOI: 10.1162/jocn_a_01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Functions in higher-order brain regions are the source of extensive debate. Although past trends have been to describe the brain-especially posterior cortical areas-in terms of a set of functional modules, a new emerging paradigm focuses on the integration of proximal functions. In this review, we synthesize emerging evidence that a variety of novel functions in the higher-order brain regions are due to convergence: convergence of macroscale gradients brings feature-rich representations into close proximity, presenting an opportunity for novel functions to arise. Using the TPJ as an example, we demonstrate that convergence is enabled via three properties of the brain: (1) hierarchical organization, (2) abstraction, and (3) equidistance. As gradients travel from primary sensory cortices to higher-order brain regions, information becomes abstracted and hierarchical, and eventually, gradients meet at a point maximally and equally distant from their sensory origins. This convergence, which produces multifaceted combinations, such as mentalizing another person's thought or projecting into a future space, parallels evolutionary and developmental characteristics in such regions, resulting in new cognitive and affective faculties.
Collapse
Affiliation(s)
- Heejung Jung
- University of Colorado Boulder.,Dartmouth College
| | - Tor D Wager
- University of Colorado Boulder.,Dartmouth College
| | | |
Collapse
|
219
|
Blazquez Freches G, Haak KV, Beckmann CF, Mars RB. Connectivity gradients on tractography data: Pipeline and example applications. Hum Brain Mapp 2021; 42:5827-5845. [PMID: 34559432 PMCID: PMC8596970 DOI: 10.1002/hbm.25623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.
Collapse
Affiliation(s)
- Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Koen V. Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nufeld Department of Clinical NeurosciencesJohn Radclife Hospital, University of OxfordOxfordUK
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
220
|
Bazeille T, DuPre E, Richard H, Poline JB, Thirion B. An empirical evaluation of functional alignment using inter-subject decoding. Neuroimage 2021; 245:118683. [PMID: 34715319 PMCID: PMC11653789 DOI: 10.1016/j.neuroimage.2021.118683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
Collapse
Affiliation(s)
- Thomas Bazeille
- Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
| | - Elizabeth DuPre
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Hugo Richard
- Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
| | | | | |
Collapse
|
221
|
Wang J, Zhou Y, Ding J, Xiao J. Functional gradient alteration in individuals with cognitive vulnerability to depression. J Psychiatr Res 2021; 144:338-344. [PMID: 34735837 DOI: 10.1016/j.jpsychires.2021.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Establishing a better understanding of the structure of the hierarchy is a primary goal of neuroscience. Recent research has highlighted a connectome gradient dysfunction in patients with major depressive disorder (MDD). However, it remains unclear whether these changes exist prior to the onset of the disease. METHODS We used a newly developed resting-state functional connectivity (FC)-based gradient approach to evaluate the principal functional gradient in individuals with cognitive vulnerability to depression (CVD) and healthy controls (HC). We further examined the associations between CVD-related alterations in the principal connectome gradient with multiple cognitive behavioral variables. RESULTS Individuals with CVD showed significantly lower functional gradient scores in the left ventral insular gyrus than HC. The left ventral insular gyrus gradient score was positively correlated with the total attentional control scale as well as the dimension of attentional control. The left ventral insular gyrus gradient score was negatively correlated with the total BHS scale, the dimension of expectations, the total RRS scale, and the depression-related dimension. CONCLUSIONS The preliminary results indicate that alterations in the principal functional gradient in individuals with CVD might be a biomarker of cognitive vulnerability to MDD, and the alterations may exist prior to the onset of depression.
Collapse
Affiliation(s)
- Junyi Wang
- Beijing Key Laboratory of Learning and Cognition and Department of Psychology, Capital Normal University, Beijing, China
| | - Yinglu Zhou
- Department of Biostatistics & Bioinformatics, School of Medicine, Duke University, Durham, NC, 27705, USA
| | - Jinhong Ding
- Beijing Key Laboratory of Learning and Cognition and Department of Psychology, Capital Normal University, Beijing, China.
| | - Jing Xiao
- Beijing Key Laboratory of Learning and Cognition and Department of Psychology, Capital Normal University, Beijing, China.
| |
Collapse
|
222
|
Kong X, Kong R, Orban C, Wang P, Zhang S, Anderson K, Holmes A, Murray JD, Deco G, van den Heuvel M, Yeo BTT. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nat Commun 2021; 12:6373. [PMID: 34737302 PMCID: PMC8568904 DOI: 10.1038/s41467-021-26704-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Large-scale biophysical circuit models provide mechanistic insights into the micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. We developed a spatially heterogeneous large-scale dynamical circuit model that allowed for variation in local synaptic properties across the human cortex. Here we show that parameterizing local circuit properties with both anatomical and functional gradients generates more realistic static and dynamic resting-state functional connectivity (FC). Furthermore, empirical and simulated FC dynamics demonstrates remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. Time-varying regional fMRI amplitude may track multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggests that sensory-motor regions are a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matches the principal gradient of gene expression that encompasses certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics.
Collapse
Affiliation(s)
- Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Ru Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Csaba Orban
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Peng Wang
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Shaoshi Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Kevin Anderson
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Avram Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John D Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona, Spain
| | - Martijn van den Heuvel
- Department of Complex Trait Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
223
|
Bijsterbosch JD, Valk SL, Wang D, Glasser MF. Recent developments in representations of the connectome. Neuroimage 2021; 243:118533. [PMID: 34469814 PMCID: PMC8842504 DOI: 10.1016/j.neuroimage.2021.118533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/16/2021] [Accepted: 08/28/2021] [Indexed: 02/03/2023] Open
Abstract
Research into the human connectome (i.e., all connections in the human brain) with the use of resting state functional MRI has rapidly increased in popularity in recent years, especially with the growing availability of large-scale neuroimaging datasets. The goal of this review article is to describe innovations in functional connectome representations that have come about in the past 8 years, since the 2013 NeuroImage special issue on 'Mapping the Connectome'. In the period, research has shifted from group-level brain parcellations towards the characterization of the individualized connectome and of relationships between individual connectomic differences and behavioral/clinical variation. Achieving subject-specific accuracy in parcel boundaries while retaining cross-subject correspondence is challenging, and a variety of different approaches are being developed to meet this challenge, including improved alignment, improved noise reduction, and robust group-to-subject mapping approaches. Beyond the interest in the individualized connectome, new representations of the data are being studied to complement the traditional parcellated connectome representation (i.e., pairwise connections between distinct brain regions), such as methods that capture overlapping and smoothly varying patterns of connectivity ('gradients'). These different connectome representations offer complimentary insights into the inherent functional organization of the brain, but challenges for functional connectome research remain. Interpretability will be improved by future research towards gaining insights into the neural mechanisms underlying connectome observations obtained from functional MRI. Validation studies comparing different connectome representations are also needed to build consensus and confidence to proceed with clinical trials that may produce meaningful clinical translation of connectome insights.
Collapse
Affiliation(s)
- Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; INM-7, Forschungszentrum Jülich, Jülich, Germany
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
224
|
Tokariev A, Breakspear M, Videman M, Stjerna S, Scholtens LH, van den Heuvel MP, Cocchi L, Vanhatalo S. Impact of In Utero Exposure to Antiepileptic Drugs on Neonatal Brain Function. Cereb Cortex 2021; 32:2385-2397. [PMID: 34585721 PMCID: PMC9157298 DOI: 10.1093/cercor/bhab338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
In utero brain development underpins brain health across the lifespan but is vulnerable to physiological and pharmacological perturbation. Here, we show that antiepileptic medication during pregnancy impacts on cortical activity during neonatal sleep, a potent indicator of newborn brain health. These effects are evident in frequency-specific functional brain networks and carry prognostic information for later neurodevelopment. Notably, such effects differ between different antiepileptic drugs that suggest neurodevelopmental adversity from exposure to antiepileptic drugs and not maternal epilepsy per se. This work provides translatable bedside metrics of brain health that are sensitive to the effects of antiepileptic drugs on postnatal neurodevelopment and carry direct prognostic value.
Collapse
Affiliation(s)
- Anton Tokariev
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mari Videman
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Susanna Stjerna
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Cocchi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sampsa Vanhatalo
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
225
|
Wei W, Yin Y, Zhang Y, Li X, Li M, Guo W, Wang Q, Deng W, Ma X, Zhao L, Palaniyappan L, Li T. Structural Covariance of Depth-Dependent Intracortical Myelination in the Human Brain and Its Application to Drug-Naïve Schizophrenia: A T1w/T2w MRI Study. Cereb Cortex 2021; 32:2373-2384. [PMID: 34581399 DOI: 10.1093/cercor/bhab337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrations in intracortical myelination are increasingly being considered as a cardinal feature in the pathophysiology of schizophrenia. We investigated the network-level distribution of intracortical myelination across various cortex depths. We enrolled 126 healthy subjects and 106 first-episode drug-naïve schizophrenia patients. We used T1w/T2w ratio as a proxy of intracortical myelination, parcellated cortex into several equivolumetric surfaces based on cortical depths and mapped T1w/T2w ratios to each surface. Non-negative matrix factorization was used to generate depth-dependent structural covariance networks (dSCNs) of intracortical myelination from 2 healthy controls datasets-one from our study and another from 100-unrelated dataset of the Human Connectome Project. For patient versus control comparisons, partial least squares approach was used; we also related myelination to clinical features of schizophrenia. We found that dSCNs were highly reproducible in 2 independent samples. Network-level myelination was reduced in prefrontal and cingulate cortex and increased in perisylvian cortex in schizophrenia. The abnormal network-level myelination had a canonical correlation with symptom burden in schizophrenia. Moreover, myelination of prefrontal cortex correlated with duration of untreated psychosis. In conclusion, we offer a feasible and sensitive framework to study depth-dependent myelination and its relationship with clinical features.
Collapse
Affiliation(s)
- Wei Wei
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yubing Yin
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Xiaojing Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Wanjun Guo
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Wei Deng
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, Ontario N6A 3K7, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China.,Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
226
|
Benkarim O, Paquola C, Park BY, Hong SJ, Royer J, Vos de Wael R, Lariviere S, Valk S, Bzdok D, Mottron L, C Bernhardt B. Connectivity alterations in autism reflect functional idiosyncrasy. Commun Biol 2021; 4:1078. [PMID: 34526654 PMCID: PMC8443598 DOI: 10.1038/s42003-021-02572-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks, yet case-control analyses against typically-developing controls (TD) have yielded inconsistent results. Here, we devised a novel approach to profile the inter-individual variability in functional network organization and tested whether such idiosyncrasy contributes to connectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode, somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-related cortical thickness alterations, they co-localized with the expression patterns of ASD risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD closely overlapped with connectivity alterations that are measurable with conventional case-control designs and may, thus, be a principal driver of inconsistency in the autism connectomics literature. These findings support important interactions between inter-individual heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to study atypical brain development and may consolidate prior research findings on the variable nature of connectome level anomalies in autism.
Collapse
Affiliation(s)
- Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Laurent Mottron
- Centre de recherche du CIUSSSNIM et Département de Psychiatrie, Université de Montréal, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
227
|
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, Mackey AP, Milham MP, Pines A, Roalf DR, Seidlitz J, Xu T, Raznahan A, Satterthwaite TD. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021; 109:2820-2846. [PMID: 34270921 PMCID: PMC8448958 DOI: 10.1016/j.neuron.2021.06.016] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The human brain undergoes a prolonged period of cortical development that spans multiple decades. During childhood and adolescence, cortical development progresses from lower-order, primary and unimodal cortices with sensory and motor functions to higher-order, transmodal association cortices subserving executive, socioemotional, and mentalizing functions. The spatiotemporal patterning of cortical maturation thus proceeds in a hierarchical manner, conforming to an evolutionarily rooted, sensorimotor-to-association axis of cortical organization. This developmental program has been characterized by data derived from multimodal human neuroimaging and is linked to the hierarchical unfolding of plasticity-related neurobiological events. Critically, this developmental program serves to enhance feature variation between lower-order and higher-order regions, thus endowing the brain's association cortices with unique functional properties. However, accumulating evidence suggests that protracted plasticity within late-maturing association cortices, which represents a defining feature of the human developmental program, also confers risk for diverse developmental psychopathologies.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, NIMH Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
228
|
Fadaie F, Lee HM, Caldairou B, Gill RS, Sziklas V, Crane J, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy. Epilepsia 2021; 62:2589-2603. [PMID: 34490890 DOI: 10.1111/epi.17032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Drug-resistant temporal lobe epilepsy (TLE) is typically associated with hippocampal pathology. However, widespread network alterations are increasingly recognized and suggested to perturb cognitive function in multiple domains. Here we tested (1) whether TLE shows atypical cortical hierarchical organization, differentiating sensory and higher order systems; and (2) whether atypical hierarchy predicts cognitive impairment. METHODS We studied 72 well-characterized drug-resistant TLE patients and 41 healthy controls, statistically matched for age and sex, using multimodal magnetic resonance imaging analysis and cognitive testing. To model cortical hierarchical organization in vivo, we used a bidirectional stepwise functional connectivity analysis tapping into the differentiation between sensory/unimodal and paralimbic/transmodal cortices. Linear models compared patients to controls. Finally, we assessed associations of functional anomalies to cortical atrophy and microstructural anomalies, as well as clinical and cognitive parameters. RESULTS Compared to controls, TLE presented with bidirectional disruptions of sensory-paralimbic functional organization. Stepwise connectivity remained segregated within paralimbic and salience networks at the top of the hierarchy, and sensorimotor and dorsal attention at the bottom. Whereas paralimbic segregation was associated with atypical cortical myeloarchitecture and hippocampal atrophy, dysconnectivity of sensorimotor cortices reflected diffuse cortical thinning. The degree of abnormal hierarchical organization in sensory-petal streams covaried, with broad cognitive impairments spanning sensorimotor, attention, fluency, and visuoconstructional ability and memory, and was more marked in patients with longer disease duration and Engel I outcome. SIGNIFICANCE Our findings show atypical functional integration between paralimbic/transmodal and sensory/unimodal systems in TLE. Differential associations with paralimbic microstructure and sensorimotor atrophy suggest that system-level imbalance likely reflects complementary structural processes, but ultimately accounts for a broad spectrum of cognitive impairments. Hierarchical contextualization of cognitive deficits promises to open new avenues for personalized counseling in TLE.
Collapse
Affiliation(s)
- Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hyo M Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Medical Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
229
|
Bazinet V, Vos de Wael R, Hagmann P, Bernhardt BC, Misic B. Multiscale communication in cortico-cortical networks. Neuroimage 2021; 243:118546. [PMID: 34478823 DOI: 10.1016/j.neuroimage.2021.118546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks mediate localized and global communication by parametrically tuning the range at which signals are transmitted on the white matter connectome. We show that brain regions vary in their preferred communication scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales, we naturally reveal their functional diversity: unimodal regions show preference for local communication and multimodal regions show preferences for global communication. We show that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences in structure-function coupling.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV-UNIL), Lausanne, Switzerland
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
230
|
Hansen JY, Markello RD, Vogel JW, Seidlitz J, Bzdok D, Misic B. Mapping gene transcription and neurocognition across human neocortex. Nat Hum Behav 2021; 5:1240-1250. [PMID: 33767429 DOI: 10.1038/s41562-021-01082-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal activity. The resulting coordinated activity among neuronal populations supports complex psychological processes, yet how gene expression shapes cognition and emotion remains unknown. Here, we directly bridge the microscale and macroscale by mapping gene expression patterns to functional activation patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that separate affective and perceptual domains. This topographic molecular-psychological signature reflects the hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitecture, laminar differentiation and intrinsic network affiliation. In addition, this molecular-psychological signature strengthens over neurodevelopment and can be replicated in two independent repositories. Collectively, our results reveal spatially covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mechanisms exert on psychological processes.
Collapse
Affiliation(s)
- Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jacob W Vogel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada.,Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
231
|
Paquola C, Royer J, Lewis LB, Lepage C, Glatard T, Wagstyl K, DeKraker J, Toussaint PJ, Valk SL, Collins L, Khan AR, Amunts K, Evans AC, Dickscheid T, Bernhardt B. The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. eLife 2021; 10:e70119. [PMID: 34431476 PMCID: PMC8445620 DOI: 10.7554/elife.70119] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Lindsay B Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Claude Lepage
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia UniversityMontrealCanada
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Brain and Mind Institute, University of Western OntarioOntarioCanada
| | - Paule-J Toussaint
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7), Forschungszentrum JülichJülichGermany
| | - Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| |
Collapse
|
232
|
Yang S, Wagstyl K, Meng Y, Zhao X, Li J, Zhong P, Li B, Fan YS, Chen H, Liao W. Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Rep 2021; 36:109582. [PMID: 34433023 DOI: 10.1016/j.celrep.2021.109582] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which reveal systematic variations of brain structure and function. However, the hierarchical organization of macroscopic brain morphology and how it constrains cortical function along the organizing axes remains unclear. We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features conceptualized as a "fingerprint" of an individual's brain. The principal MS gradient is anchored by motor and sensory cortices at two extreme ends, which are reliable and reproducible. Notably, divergences between motor and sensory hierarchies are consistent with the laminar histological thickness gradient but contrary to the canonical functional connectivity (FC) gradient. Moreover, the MS dissociates with FC gradients in the higher-order association cortices. The MS gradient recapitulates fundamental properties of cortical organization, from gene expression and cyto- and myeloarchitecture to evolutionary expansion. Collectively, our findings provide a heuristic hierarchical organization of cortical morphological neuromarkers.
Collapse
Affiliation(s)
- Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| |
Collapse
|
233
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Profiling Transcription Initiation in Peripheral Leukocytes Reveals Severity-Associated Cis-Regulatory Elements in Critical COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.24.457187. [PMID: 34462742 DOI: 10.1101/2021.10.28.466336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Sascha H Duttke
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Mazen F Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Hiep D Le
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Emily A Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Celina T Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Max W Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, UC San Diego, CA, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| | - Anna S Warden
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Jennifer M Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Robert K Abbott
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development (CHVAD), The Scripps Research Institute, La Jolla, CA, USA
| | - Shane Crotty
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Christopher W Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| |
Collapse
|
234
|
Arnatkeviciute A, Fulcher BD, Oldham S, Tiego J, Paquola C, Gerring Z, Aquino K, Hawi Z, Johnson B, Ball G, Klein M, Deco G, Franke B, Bellgrove MA, Fornito A. Genetic influences on hub connectivity of the human connectome. Nat Commun 2021; 12:4237. [PMID: 34244483 PMCID: PMC8271018 DOI: 10.1038/s41467-021-24306-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
| | - Ben D Fulcher
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart Oldham
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Zachary Gerring
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kevin Aquino
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ziarih Hawi
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Beth Johnson
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gustavo Deco
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mark A Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
235
|
Rhoads SA, Cutler J, Marsh AA. A Feature-Based Network Analysis and fMRI Meta-Analysis Reveal Three Distinct Types of Prosocial Decisions. Soc Cogn Affect Neurosci 2021; 16:1214-1233. [PMID: 34160604 PMCID: PMC8717062 DOI: 10.1093/scan/nsab079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Tasks that measure correlates of prosocial decision-making share one common feature: agents can make choices that increase the welfare of a beneficiary. However, prosocial decisions vary widely as a function of other task features. The diverse ways that prosociality is defined and the heterogeneity of prosocial decisions have created challenges for interpreting findings across studies and identifying their neural correlates. To overcome these challenges, we aimed to organize the prosocial decision-making task space of neuroimaging studies. We conducted a systematic search for studies in which participants made decisions to increase the welfare of others during functional magnetic resonance imaging. We identified shared and distinct features of these tasks and employed an unsupervised graph-based approach to assess how various forms of prosocial decision-making are related in terms of their low-level components (e.g. task features like potential cost to the agent or potential for reciprocity). Analyses uncovered three clusters of prosocial decisions, which we labeled as cooperation, equity and altruism. This feature-based representation of the task structure was supported by results of a neuroimaging meta-analysis that each type of prosocial decisions recruited diverging neural systems. Results clarify some of the existing heterogeneity in how prosociality is conceptualized and generate insight for future research and task paradigm development.
Collapse
Affiliation(s)
- Shawn A Rhoads
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Jo Cutler
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Abigail A Marsh
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
236
|
Vos de Wael R, Royer J, Tavakol S, Wang Y, Paquola C, Benkarim O, Eichert N, Larivière S, Xu T, Misic B, Smallwood J, Valk SL, Bernhardt BC. Structural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution. Cereb Cortex 2021; 31:5151-5164. [PMID: 34148082 PMCID: PMC8491677 DOI: 10.1093/cercor/bhab149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
Collapse
Affiliation(s)
- Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Yezhou Wang
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, NY 10022, USA
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Boris C Bernhardt
- Address correspondence to Boris C. Bernhardt, McConnell Brain Imaging Centre, Montreal Neurological Institute (NW-256), McGill University, 3801 Rue University, Montréal, QC H3A2B4, Canada.
| |
Collapse
|
237
|
Inter-individual body mass variations relate to fractionated functional brain hierarchies. Commun Biol 2021; 4:735. [PMID: 34127795 PMCID: PMC8203627 DOI: 10.1038/s42003-021-02268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Variations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet connectome-level substrates of BMI and their neurobiological underpinnings remain unclear. Studying 325 healthy young adults, we examined associations between functional connectivity and inter-individual BMI variations. We utilized non-linear connectome manifold learning techniques to represent macroscale functional organization along continuous hierarchical axes that dissociate low level and higher order brain systems. We observed an increased differentiation between unimodal and heteromodal association networks in individuals with higher BMI, indicative of a disrupted modular architecture and hierarchy of the brain. Transcriptomic decoding and gene enrichment analyses identified genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and cerebellar cell types. These findings illustrate functional connectome substrates of BMI variations in healthy young adults and point to potential molecular associations.
Collapse
|
238
|
Leming MJ, Baron-Cohen S, Suckling J. Single-participant structural similarity matrices lead to greater accuracy in classification of participants than function in autism in MRI. Mol Autism 2021; 12:34. [PMID: 33971956 PMCID: PMC8112019 DOI: 10.1186/s13229-021-00439-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Autism has previously been characterized by both structural and functional differences in brain connectivity. However, while the literature on single-subject derivations of functional connectivity is extensively developed, similar methods of structural connectivity or similarity derivation from T1 MRI are less studied. METHODS We introduce a technique of deriving symmetric similarity matrices from regional histograms of grey matter volumes estimated from T1-weighted MRIs. We then validated the technique by inputting the similarity matrices into a convolutional neural network (CNN) to classify between participants with autism and age-, motion-, and intracranial-volume-matched controls from six different databases (29,288 total connectomes, mean age = 30.72, range 0.42-78.00, including 1555 subjects with autism). We compared this method to similar classifications of the same participants using fMRI connectivity matrices as well as univariate estimates of grey matter volumes. We further applied graph-theoretical metrics on output class activation maps to identify areas of the matrices that the CNN preferentially used to make the classification, focusing particularly on hubs. LIMITATIONS While this study used a large sample size, the majority of data was from a young age group; furthermore, to make a viable machine learning study, we treated autism, a highly heterogeneous condition, as a binary label. Thus, these results are not necessarily generalizable to all subtypes and age groups in autism. RESULTS Our models gave AUROCs of 0.7298 (69.71% accuracy) when classifying by only structural similarity, 0.6964 (67.72% accuracy) when classifying by only functional connectivity, and 0.7037 (66.43% accuracy) when classifying by univariate grey matter volumes. Combining structural similarity and functional connectivity gave an AUROC of 0.7354 (69.40% accuracy). Analysis of classification performance across age revealed the greatest accuracy in adolescents, in which most data were present. Graph analysis of class activation maps revealed no distinguishable network patterns for functional inputs, but did reveal localized differences between groups in bilateral Heschl's gyrus and upper vermis for structural similarity. CONCLUSION This study provides a simple means of feature extraction for inputting large numbers of structural MRIs into machine learning models. Our methods revealed a unique emphasis of the deep learning model on the structure of the bilateral Heschl's gyrus when characterizing autism.
Collapse
Affiliation(s)
- Matthew J Leming
- Department of Psychiatry, University of Cambridge, Robinson Way, Cambridge, Cambridgeshire, CB2 0SZ, UK.
- Center for Systems Biology, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA.
| | - Simon Baron-Cohen
- Department of Psychiatry, University of Cambridge, Robinson Way, Cambridge, Cambridgeshire, CB2 0SZ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Robinson Way, Cambridge, Cambridgeshire, CB2 0SZ, UK
| |
Collapse
|
239
|
Ohashi H, Ostry DJ. Neural Development of Speech Sensorimotor Learning. J Neurosci 2021; 41:4023-4035. [PMID: 33758018 PMCID: PMC8176761 DOI: 10.1523/jneurosci.2884-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
The development of the human brain continues through to early adulthood. It has been suggested that cortical plasticity during this protracted period of development shapes circuits in associative transmodal regions of the brain. Here we considered how cortical plasticity during development might contribute to the coordinated brain activity required for speech motor learning. Specifically, we examined patterns of brain functional connectivity (FC), whose strength covaried with the capacity for speech audio-motor adaptation in children ages 5-12 and in young adults of both sexes. Children and adults showed distinct patterns of the encoding of learning in the brain. Adult performance was associated with connectivity in transmodal regions that integrate auditory and somatosensory information, whereas children rely on basic somatosensory and motor circuits. A progressive reliance on transmodal regions is consistent with human cortical development and suggests that human speech motor adaptation abilities are built on cortical remodeling, which is observable in late childhood and is stabilized in adults.SIGNIFICANCE STATEMENT A protracted period of neuro plasticity during human development is associated with extensive reorganization of associative cortex. We examined how the relationship between FC and speech motor learning capacity are reconfigured in conjunction with this cortical reorganization. Young adults and children aged 5-12 years showed distinctly different patterns. Mature brain networks related to learning included associative cortex, which integrates auditory and somatosensory feedback in speech, whereas the immature networks in children included motor regions of the brain. These patterns are consistent with the cortical reorganization that is initiated in late childhood. The result provides insights into the human biology of speech as well as to the mature neural mechanisms for multisensory integration in motor learning.
Collapse
Affiliation(s)
- Hiroki Ohashi
- Department of Psychology, McGill University, Montréal, Québec H3A 1G1, Canada
- Haskins Laboratories, New Haven, Connecticut 06511
| | - David J Ostry
- Department of Psychology, McGill University, Montréal, Québec H3A 1G1, Canada
- Haskins Laboratories, New Haven, Connecticut 06511
| |
Collapse
|
240
|
Vandewouw MM, Hunt BAE, Ziolkowski J, Taylor MJ. The developing relations between networks of cortical myelin and neurophysiological connectivity. Neuroimage 2021; 237:118142. [PMID: 33951516 DOI: 10.1016/j.neuroimage.2021.118142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Recent work identified that patterns of distributed brain regions sharing similar myeloarchitecture are related to underlying functional connectivity, demonstrating cortical myelin's plasticity to changes in functional demand. However, the changing relations between functional and structural architecture throughout child and adulthood are poorly understood. We show that structural covariance connectivity (T1-weighted/T2-weighted ratio) and functional connectivity (magnetoencephalography) exhibit nonlinear developmental changes. We then show significant relations between structural and functional connectivity, which have shared and distinct characteristics dependent on the neural oscillatory frequency. Increases in structure-function coupling are visible during the protracted myelination observed throughout childhood and adolescence and are followed by decreases near the onset of adulthood. Our work lays the foundation for understanding the mechanisms by which myeloarchitecture supports brain function, enabling future investigations into how clinical populations may deviate from normative patterns.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada.
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Justine Ziolkowski
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Psychology, University of Toronto, Toronto M5G 0A4 Canada; Department of Medical Imaging, University of Toronto, Toronto M5G 0A4, Canada
| |
Collapse
|
241
|
Lioi G, Gripon V, Brahim A, Rousseau F, Farrugia N. Gradients of connectivity as graph Fourier bases of brain activity. Netw Neurosci 2021; 5:322-336. [PMID: 34189367 PMCID: PMC8233110 DOI: 10.1162/netn_a_00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The application of graph theory to model the complex structure and function of the brain has shed new light on its organization, prompting the emergence of network neuroscience. Despite the tremendous progress that has been achieved in this field, still relatively few methods exploit the topology of brain networks to analyze brain activity. Recent attempts in this direction have leveraged on the one hand graph spectral analysis (to decompose brain connectivity into eigenmodes or gradients) and the other graph signal processing (to decompose brain activity "coupled to" an underlying network in graph Fourier modes). These studies have used a variety of imaging techniques (e.g., fMRI, electroencephalography, diffusion-weighted and myelin-sensitive imaging) and connectivity estimators to model brain networks. Results are promising in terms of interpretability and functional relevance, but methodologies and terminology are variable. The goals of this paper are twofold. First, we summarize recent contributions related to connectivity gradients and graph signal processing, and attempt a clarification of the terminology and methods used in the field, while pointing out current methodological limitations. Second, we discuss the perspective that the functional relevance of connectivity gradients could be fruitfully exploited by considering them as graph Fourier bases of brain activity.
Collapse
Affiliation(s)
| | | | - Abdelbasset Brahim
- INSERM, Laboratoire Traitement du Signal et de l’Image (LTSI) U1099, University of Rennes, Rennes, France
| | | | | |
Collapse
|
242
|
Park BY, Hong SJ, Valk SL, Paquola C, Benkarim O, Bethlehem RAI, Di Martino A, Milham MP, Gozzi A, Yeo BTT, Smallwood J, Bernhardt BC. Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism. Nat Commun 2021; 12:2225. [PMID: 33850128 PMCID: PMC8044226 DOI: 10.1038/s41467-021-21732-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/05/2021] [Indexed: 01/14/2023] Open
Abstract
The pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
- Department of Data Science, Inha University, Incheon, South Korea.
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sofie L Valk
- Forschungszentrum, Julich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Adriana Di Martino
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, York, UK
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
243
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
244
|
Li Q, Tavakol S, Royer J, Larivière S, Vos De Wael R, Park BY, Paquola C, Zeng D, Caldairou B, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Smallwood J, Caciagli L, Li S, Bernhardt BC. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain 2021; 144:2486-2498. [PMID: 33730163 DOI: 10.1093/brain/awab121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Episodic memory is the ability to accurately remember events from our past. The process of pattern separation is hypothesized to underpin this ability and is defined as the ability to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and the neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy (TLE) who present with hippocampal structural anomalies. In all participants, we measured neural activity using functional magnetic resonance imaging (fMRI) while they retrieved memorized items compared to lure items which share features with the target. Behaviorally, TLE patients were less able to exclude lures than controls, and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and the neocortex, we identified topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and identified the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded pattern of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In TLE patients, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person specific measures of concordance between task-related activity and connectivity gradients in patients and controls related to inter-individual differences in behavioral measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients captures the functional underpinnings of episodic memory processes in manner that is sensitive to their reorganization in pathology.
Collapse
Affiliation(s)
- Qiongling Li
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Debin Zeng
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
245
|
Multiscale modeling of cortical gradients: The role of mesoscale circuits for linking macro- and microscale gradients of cortical organization and hierarchical information processing. Neuroimage 2021; 232:117846. [PMID: 33636345 DOI: 10.1016/j.neuroimage.2021.117846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
The gradient concept in neuroscience describes systematic and continuous progressions of features of cortical organization across the entire cortex. Recent multimodal studies revealed a macroscale gradient from primary sensory to transmodal association areas which is linked to increasing representational abstraction along the cortical hierarchy, and which is paralleled by microscale gradients of cytoarchitecture and gene expression profiles. Convergent or divergent evidence from these multimodal studies is then used to support inferences about the existence of one common or multiple scale-specific gradients of hierarchical information processing. This paper evaluates the validity of such inferences within the framework of multiscale modeling. In branches of physics and biology where multiscale modeling techniques are used, the simple averaging of microscale details can introduce errors in macroscale modeling if it ignores structures at the intermediate mesoscales of organization which affect system behavior. Conversely, information about mesoscale structures can be used to determine which microscale details are actually relevant to macroscale behavior. In this paper, I similarly argue that multiscale modeling of cortical gradients needs to take organization of mesoscale circuits into account if it affects the structure-function relation that the models describe. Information about these circuits provides crucial evidence for evaluating inferences from micro- and macroscale data to the role of cortical gradients in hierarchical information processing. My application of the multiscale modeling framework reveals that the gradient concept tracks multiple overlapping progressions of cortical properties, rather than one overall gradient of hierarchical information processing. I support this argument by proposing a mesoscale gradient of connectivity which describes architectural differences between granular and agranular circuits, and which helps us better understand the relation between neural connectivity and hierarchical information processing.
Collapse
|
246
|
Meng Y, Yang S, Chen H, Li J, Xu Q, Zhang Q, Lu G, Zhang Z, Liao W. Systematically disrupted functional gradient of the cortical connectome in generalized epilepsy: Initial discovery and independent sample replication. Neuroimage 2021; 230:117831. [PMID: 33549757 DOI: 10.1016/j.neuroimage.2021.117831] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Genetic generalized epilepsy is a network disorder typically involving distributed areas identified by classical neuroanatomy. However, the finer topological relationships in terms of continuous spatial arrangement between these systems are still ambiguous. Connectome gradients provide the topological representations of human macroscale hierarchy in an abstract low-dimensional space by embedding the functional connectome into a set of axes. Leveraging connectome gradients, we systematically scrutinized abnormalities of functional connectome gradient in patients with genetic generalized epilepsy with tonic-clonic seizure (GGE-GTCS, n = 78) compared to healthy controls (HC, n = 85), and further examined the reproducibility across multiple processing configurations and in an independent validation sample (patients with GGE-GTCS, n = 28; HC, n = 31). Our findings demonstrated an extended principal gradient at different spatial scales, network-level and vertex-level, in patients with GGE-GTCS. We found consistent results across processing parameters and in validation sample. The extended principal gradient revealed the excessive functional segregation between unimodal and transmodal systems associated with duration of epilepsy and age at seizure onset in patients. Furthermore, the connectivity profile of regions with abnormal principal gradients verified the disrupted functional hierarchy revealed by gradients. Together, our findings provided a novel view of functional system hierarchy alterations, which facilitated a continuous spatial arrangement of macroscale networks, to increase our understanding of the functional connectome hierarchy in generalized epilepsy.
Collapse
Affiliation(s)
- Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P R China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P R China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P R China.
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P R China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P R China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P R China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P R China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P R China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P R China.
| |
Collapse
|
247
|
Abstract
Comparative neuroscience is entering the era of big data. New high-throughput methods and data-sharing initiatives have resulted in the availability of large, digital data sets containing many types of data from ever more species. Here, we present a framework for exploiting the new possibilities offered. The multimodality of the data allows vertical translations, which are comparisons of different aspects of brain organization within a single species and across scales. Horizontal translations compare particular aspects of brain organization across species, often by building abstract feature spaces. Combining vertical and horizontal translations allows for more sophisticated comparisons, including relating principles of brain organization across species by contrasting horizontal translations, and for making formal predictions of unobtainable data based on observed results in a model species.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; .,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
248
|
Jolly E, Chang LJ. Multivariate spatial feature selection in fMRI. Soc Cogn Affect Neurosci 2021; 16:795-806. [PMID: 33501987 PMCID: PMC8343556 DOI: 10.1093/scan/nsab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Multivariate neuroimaging analyses constitute a powerful class of techniques to identify psychological representations. However, not all psychological processes are represented at the same spatial scale throughout the brain. This heterogeneity is apparent when comparing hierarchically organized local representations of perceptual processes to flexible transmodal representations of more abstract cognitive processes such as social and affective operations. An open question is how the spatial scale of analytic approaches interacts with the spatial scale of the representations under investigation. In this article, we describe how multivariate analyses can be viewed as existing on a spatial spectrum, anchored by searchlights used to identify locally distributed patterns of information on one end, whole brain approach used to identify diffuse neural representations at the other and region-based approaches in between. We describe how these distinctions are an important and often overlooked analytic consideration and provide heuristics to compare these different techniques to choose based on the analyst’s inferential goals.
Collapse
Affiliation(s)
- E Jolly
- Computational Social Affective Neuroscience Laboratory, Department of Psychological and Brain Science, Dartmouth College, Hanover, NH 03755, USA
| | - L J Chang
- Computational Social Affective Neuroscience Laboratory, Department of Psychological and Brain Science, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
249
|
Overlooked Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional Properties of Human Lateral Prefrontal Cortex. J Neurosci 2021; 41:2229-2244. [PMID: 33478989 DOI: 10.1523/jneurosci.2362-20.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multimodal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting-state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared with superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.SIGNIFICANCE STATEMENT Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared with other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.
Collapse
|
250
|
Snyder K, Whitehead EP, Theodore WH, Zaghloul KA, Inati SJ, Inati SK. Distinguishing type II focal cortical dysplasias from normal cortex: A novel normative modeling approach. NEUROIMAGE-CLINICAL 2021; 30:102565. [PMID: 33556791 PMCID: PMC7887437 DOI: 10.1016/j.nicl.2021.102565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are a common cause of apparently non-lesional drug-resistant focal epilepsy. Visual detection of subtle FCDs on MRI is clinically important and often challenging. In this study, we implement a set of 3D local image filters adapted from computer vision applications to characterize the appearance of normal cortex surrounding the gray-white junction. We create a normative model to serve as the basis for a novel multivariate constrained outlier approach to automated FCD detection. METHODS Standardized MPRAGE, T2 and FLAIR MR images were obtained in 15 patients with radiologically or histologically diagnosed FCDs and 30 healthy volunteers. Multiscale 3D local image filters were computed for each MR contrast then sampled onto the gray-white junction surface. Using an iterative Gaussianization procedure, we created a normative model of cortical variability in healthy volunteers, allowing for identification of outlier regions and estimates of similarity in normal cortex and FCD lesions. We used a constrained outlier approach following local normalization to automatically detect FCD lesions based on projection onto the mean FCD feature vector. RESULTS FCDs as well as some normal cortical regions such as primary sensorimotor and paralimbic regions appear as outliers. Regions such as the paralimbic regions and the anterior insula have similar features to FCDs. Our constrained outlier approach allows for automated FCD detection with 80% sensitivity and 70% specificity. SIGNIFICANCE A normative model using multiscale local image filters can be used to describe the normal cortical variability. Although FCDs appear similar to some cortical regions such as the anterior insula and paralimbic cortices, they can be identified using a constrained outlier detection approach. Our method for detecting outliers and estimating similarity is generic and could be extended to identification of other types of lesions or atypical cortical areas.
Collapse
Affiliation(s)
- Kathryn Snyder
- EEG Section, Office of the Clinical Director, NINDS, National Institutes of Health, United States
| | | | - William H Theodore
- Clinical Epilepsy Section, NINDS, National Institutes of Health, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, United States
| | - Souheil J Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, United States
| | - Sara K Inati
- EEG Section, Office of the Clinical Director, NINDS, National Institutes of Health, United States.
| |
Collapse
|