201
|
Xie R, Carrano AC, Sander M. A systems view of epigenetic networks regulating pancreas development and β-cell function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:1-11. [PMID: 25644779 DOI: 10.1002/wsbm.1287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
The development of the pancreas and determination of endocrine cell fate are controlled by a highly complex interplay of signaling events and transcriptional networks. It is now known that an interconnected epigenetic program is also required to drive these processes. Recent studies using genome-wide approaches have implicated epigenetic regulators, such as DNA and histone-modifying enzymes and noncoding RNAs, to play critical roles in pancreas development and the maintenance of cell identity and function. Furthermore, genome-wide analyses have implicated epigenetic changes as a casual factor in the pathogenesis of diabetes. In the future, genomic approaches to further our understanding of the role of epigenetics in endocrine cell development and function will be useful for devising strategies to produce or manipulate β-cells for therapies of diabetes.
Collapse
Affiliation(s)
- Ruiyu Xie
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California - San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
202
|
Lu J, Jaafer R, Bonnavion R, Bertolino P, Zhang CX. Transdifferentiation of pancreatic α-cells into insulin-secreting cells: From experimental models to underlying mechanisms. World J Diabetes 2014; 5:847-853. [PMID: 25512786 PMCID: PMC4265870 DOI: 10.4239/wjd.v5.i6.847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/10/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Pancreatic insulin-secreting β-cells are essential regulators of glucose metabolism. New strategies are currently being investigated to create insulin-producing β cells to replace deficient β cells, including the differentiation of either stem or progenitor cells, and the newly uncovered transdifferentiation of mature non-β islet cell types. However, in order to correctly drive any cell to adopt a new β-cell fate, a better understanding of the in vivo mechanisms involved in the plasticity and biology of islet cells is urgently required. Here, we review the recent studies reporting the phenomenon of transdifferentiation of α cells into β cells by focusing on the major candidates and contexts revealed to be involved in adult β-cell regeneration through this process. The possible underlying mechanisms of transdifferentiation and the interactions between several key factors involved in the process are also addressed. We propose that it is of importance to further study the molecular and cellular mechanisms underlying α- to β-cell transdifferentiation, in order to make β-cell regeneration from α cells a relevant and realizable strategy for developing cell-replacement therapy.
Collapse
|
203
|
Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 2014; 16:18-31. [PMID: 25465113 DOI: 10.1016/j.stem.2014.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandra E Folias
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
204
|
Kone M, Pullen TJ, Sun G, Ibberson M, Martinez-Sanchez A, Sayers S, Nguyen-Tu MS, Kantor C, Swisa A, Dor Y, Gorman T, Ferrer J, Thorens B, Reimann F, Gribble F, McGinty JA, Chen L, French PM, Birzele F, Hildebrandt T, Uphues I, Rutter GA. LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J 2014; 28:4972-85. [PMID: 25070369 PMCID: PMC4377859 DOI: 10.1096/fj.14-257667] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Fully differentiated pancreatic β cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in β-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly β-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated β-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E < 0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P = 1.3 × 10(-33)) and hypoxia-regulated (HIF1; P = 2.5 × 10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain β-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining β-cell function in some forms of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avital Swisa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tracy Gorman
- AstraZeneca Diabetes and Obesity Drug Discovery, Alderley Edge, UK
| | - Jorge Ferrer
- Section of β-Cell Development, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK and
| | - Fiona Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK and
| | - James A McGinty
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Paul M French
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | | | | | - Ingo Uphues
- Boehringer Ingelheim Pharma, Ingelheim, Germany
| | | |
Collapse
|
205
|
An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development. PLoS Genet 2014; 10:e1004645. [PMID: 25330008 PMCID: PMC4199491 DOI: 10.1371/journal.pgen.1004645] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/02/2014] [Indexed: 12/15/2022] Open
Abstract
The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. Discovery of specific pancreas developmental regulators has accelerated in recent years. In contrast, the global regulatory programs controlling pancreas development are poorly understood compared to other organs or tissues like heart or blood. Decoding this regulatory logic may accelerate development of replacement organs from renewable sources like stem cells, but this goal requires identification of regulators and assessment of their functions on a global scale. To address this important challenge for pancreas biology, we combined purification of normal and mutant cells with genome-scale methods to generate and analyze expression profiles from developing pancreas cells. Our work revealed regulatory gene sets governing development of pancreas progenitor cells and their progeny. Our integrative approach nominated multiple pancreas developmental regulators, including suspected risk genes for human diabetes, which we validated by phenotyping mutant mice on a scale not previously reported. Selection of these candidate regulators was unbiased; thus it is remarkable that all were essential for pancreatic islet development. Thus, our studies provide a new heuristic resource for identifying genetic functions underlying pancreas development and diseases like diabetes mellitus.
Collapse
|
206
|
Téllez N, Montanya E. Gastrin induces ductal cell dedifferentiation and β-cell neogenesis after 90% pancreatectomy. J Endocrinol 2014; 223:67-78. [PMID: 25122000 DOI: 10.1530/joe-14-0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Induction of β-cell mass regeneration is a potentially curative treatment for diabetes. We have recently found that long-term gastrin treatment results in improved metabolic control and β-cell mass expansion in 95% pancreatectomised (Px) rats. In this study, we investigated the underlying mechanisms of gastrin-induced β-cell mass expansion after Px. After 90%-Px, rats were treated with gastrin (Px+G) or vehicle (Px+V), pancreatic remnants were harvested on days 1, 3, 5, 7, and 14 and used for gene expression, protein immunolocalisation and morphometric analyses. Gastrin- and vehicle-treated Px rats showed similar blood glucose levels throughout the study. Initially, after Px, focal areas of regeneration, showing mesenchymal cells surrounding ductal structures that expressed the cholecystokinin B receptor, were identified. These focal areas of regeneration were similar in size and cell composition in the Px+G and Px+V groups. However, in the Px+G group, the ductal structures showed lower levels of keratin 20 and β-catenin (indicative of duct dedifferentiation) and higher levels of expression of neurogenin 3 and NKX6-1 (indicative of endocrine progenitor phenotype), as compared with Px+V rats. In Px+G rats, β-cell mass and the number of scattered β-cells were significantly increased compared with Px+V rats, whereas β-cell replication and apoptosis were similar in the two groups. These results indicate that gastrin treatment-enhanced dedifferentiation and reprogramming of regenerative ductal cells in Px rats, increased β-cell neogenesis and fostered β-cell mass expansion.
Collapse
Affiliation(s)
- Noèlia Téllez
- CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduard Montanya
- CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
207
|
Conrad E, Stein R, Hunter CS. Revealing transcription factors during human pancreatic β cell development. Trends Endocrinol Metab 2014; 25:407-14. [PMID: 24831984 PMCID: PMC4167784 DOI: 10.1016/j.tem.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Developing cell-based diabetes therapies requires examining transcriptional mechanisms underlying human β cell development. However, increased knowledge is hampered by low availability of fetal pancreatic tissue and gene targeting strategies. Rodent models have elucidated transcription factor roles during islet organogenesis and maturation, but differences between mouse and human islets have been identified. The past 5 years have seen strides toward generating human β cell lines, the examination of human transcription factor expression, and studies utilizing induced pluripotent stem cells (iPS cells) and human embryonic stem (hES) cells to generate β-like cells. Nevertheless, much remains to be resolved. We present current knowledge of developing human β cell transcription factor expression, as compared to rodents. We also discuss recent studies employing transcription factor or epigenetic modulation to generate β cells.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
208
|
Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IMP, Rudge MVC. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:819065. [PMID: 24977161 PMCID: PMC4058231 DOI: 10.1155/2014/819065] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Glucose homeostasis is controlled by endocrine pancreatic cells, and any pancreatic disturbance can result in diabetes. Because 8% to 12% of diabetic pregnant women present with malformed fetuses, there is great interest in understanding the etiology, pathophysiological mechanisms, and treatment of gestational diabetes. Hyperglycemia enhances the production of reactive oxygen species, leading to oxidative stress, which is involved in diabetic teratogenesis. It has also been suggested that maternal diabetes alters embryonic gene expression, which might cause malformations. Due to ethical issues involving human studies that sometimes have invasive aspects and the multiplicity of uncontrolled variables that can alter the uterine environment during clinical studies, it is necessary to use animal models to better understand diabetic pathophysiology. This review aimed to gather information about pathophysiological mechanisms and fetal outcomes in streptozotocin-induced diabetic rats. To understand the pathophysiological mechanisms and factors involved in diabetes, the use of pancreatic regeneration studies is increasing in an attempt to understand the behavior of pancreatic beta cells. In addition, these studies suggest a new preventive concept as a treatment basis for diabetes, introducing therapeutic efforts to minimize or prevent diabetes-induced oxidative stress, DNA damage, and teratogenesis.
Collapse
Affiliation(s)
- D. C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
- Department of Gynecology and Obstetrics, Botucatu Medical School, UNESP-Univsidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. O. Netto
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. L. Iessi
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - F. Q. Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - S. B. Corvino
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - B. Dallaqua
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - Y. K. Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. Bueno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. M. P. Calderon
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - M. V. C. Rudge
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| |
Collapse
|