201
|
Abstract
INTRODUCTION Effective biomarkers for early diagnosis of lung cancer are needed. A recent study demonstrated that urinary GM2-activator protein (GM2AP) level was increased in lung cancer patients. This study aims to validate the potential application of GM2AP as a biomarker for diagnosis of lung cancer. METHODS Serum and urine samples were obtained from 189 participants (133 patients for treatment naive lung cancer, 26 healthy volunteers for urine, and 30 healthy volunteers for serum). GM2AP level was detected by Western blotting and quantified using enzyme-linked immunosorbent assay (ELISA). The GM2AP expression in tumors and nontumor parts of lung tissues from 143 nonsmall cell lung cancers was detected by immunohistochemical stains. RESULTS There was an 8.11 ± 1.36 folds increase in urine and a 5.41 ± 0.73 folds increase in serum level of GM2AP in lung cancer patients compared with healthy volunteers (p < 0.0001), achieving a 0.89 AUC value in urine and 0.90 AUC value in serum for the receiver-operating characteristic curves. Both serum and urine levels of GM2AP correlated significantly with pathology stages (urine, p = 0.009; serum, p < 0.0001). Using immunohistochemical, positive expression of GM2AP was found at 83.9% of nonsmall cell lung cancers patients and none in normal tissue. The GM2AP expression was significantly correlated with pathology stage (p = 0.0001). Patients with higher GM2AP expression had shorter overall survival (p = 0.045) and disease-free survival (p = 0.049) than lower GM2AP expression. Moreover, the multivariate analysis suggested GM2AP as an independent predictors of disease-free survival and overall survival. CONCLUSIONS Our study demonstrates that GM2AP might serve as potential diagnostic and prognostic biomarkers in patients with lung cancer.
Collapse
|
202
|
Vlaeminck-Guillem V. When Prostate Cancer Circulates in the Bloodstream. Diagnostics (Basel) 2015; 5:428-74. [PMID: 26854164 PMCID: PMC4728468 DOI: 10.3390/diagnostics5040428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine), reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites) at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion) or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes), nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Léon Bérard Centre, Lyon I University, 28 rue Laennec, Lyon 69008, France.
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, University Hospital of Lyon-Sud, Hospices Civils of Lyon, Lyon 69008, France.
| |
Collapse
|
203
|
Yokoi A, Yoshioka Y, Ochiya T. Towards the realization of clinical extracellular vesicle diagnostics: challenges and opportunities. Expert Rev Mol Diagn 2015; 15:1555-66. [DOI: 10.1586/14737159.2015.1104249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
204
|
Stobiecka M, Chalupa A, Dworakowska B. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies. Biosens Bioelectron 2015; 84:37-43. [PMID: 26507667 DOI: 10.1016/j.bios.2015.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Abstract
The anti-apoptotic protein survivin (Sur) plays an important role in the regulation of cell division and inducing the chemotherapeutic drug resistance. The Sur protein and its mRNA have recently been studied as cancer biomarkers and potential targets for cancer therapy. In this work, we have focused on the design of immunosensors for the detection of Sur based on buried positive-potential barrier layer structure and anti-survivin antibody. The modification of solid AuQC piezoelectrodes was monitored by recording the resonance frequency shift and electrochemical measurements during each step of the sensor preparation. Our results indicate that the immunosensor with covalently bound monoclonal anti-survivin antibody can detect Sur with the limit of detection, LOD=1.7nM (S/N=3σ). The immunosensor applicability for the analysis of real samples was assessed by testing samples of cell lysate solutions obtained from human astrocytoma (glioblastoma) U-87MG cell line, with the experiments performed using the standard addition method. The good linearity of the calibration curves for PBS and lysate solutions at low Sur concentrations confirm the high specificity of the proposed biosensor and good discrimination against nonspecific interactions with lysate components. The calculations indicate that there is still room to increase the Sur capture capacity for Sur while miniaturizing the sensor. The important advantage of the sensor is that it can be reused by a simple regeneration procedure.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences, SGGW, 02-776 Warsaw, Poland.
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers, 11010 Barczewo, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences, SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
205
|
Park BS, Jo HW, Park C, Huh Y, Jung J, Jeong NY. A novel effect of ethyl pyruvate in Schwann cell de-differentiation and proliferation during Wallerian degeneration. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1053520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
206
|
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol 2015; 8:83. [PMID: 26156517 PMCID: PMC4496882 DOI: 10.1186/s13045-015-0181-x] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Lijun Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
207
|
Khan S, Ferguson Bennit H, Asuncion Valenzuela MM, Turay D, Diaz Osterman CJ, Moyron RB, Esebanmen GE, Ashok A, Wall NR. Localization and upregulation of survivin in cancer health disparities: a clinical perspective. Biologics 2015; 9:57-67. [PMID: 26185415 PMCID: PMC4501680 DOI: 10.2147/btt.s83864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Malyn May Asuncion Valenzuela
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David Turay
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ron B Moyron
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grace E Esebanmen
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arjun Ashok
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
208
|
Tompkins AJ, Chatterjee D, Maddox M, Wang J, Arciero E, Camussi G, Quesenberry PJ, Renzulli JF. The emergence of extracellular vesicles in urology: fertility, cancer, biomarkers and targeted pharmacotherapy. J Extracell Vesicles 2015; 4:23815. [PMID: 26134460 PMCID: PMC4488336 DOI: 10.3402/jev.v4.23815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/29/2015] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EV) are small membrane-bound vesicles enriched in a selective repertoire of mRNA, miRNA, proteins and cell surface receptors from parental cells and are actively involved in the transmission of inter and intracellular signals. Cancer cells produce EV that contain cargo including DNA, mRNA, miRNA and proteins that allow EV to create epigenetic changes in target cells both locally and systemically. Cancer-derived EV play critical roles in tumorigenesis, cancer cell migration, metastasis, evasion of host immune defense, chemoresistance, and they promote a premetastatic niche favourable to micrometastatic seeding. Their unique molecular profiles acquired from originator cells and their presence in numerous body fluids, including blood and urine, make them promising candidates as biomarkers for prostate, renal and bladder cancers. EV may ultimately serve as targets for therapy and as platforms for personalized medicine in urology. As urologic malignancy comprises 28% of new solid tumour diagnoses and 15% of cancer-related deaths, EV-related research is rapidly emerging and providing unique insights into disease progression. In this report, we review the current literature on EV in the setting of genitourinary fertility and malignancy.
Collapse
Affiliation(s)
- Andrew J Tompkins
- Division of Urology, Department of Surgery, The Miriam Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Devasis Chatterjee
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA;
| | - Michael Maddox
- Division of Urology, Department of Surgery, The Miriam Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Justin Wang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Emily Arciero
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Giovanni Camussi
- Department of Internal Medicine, Faculty of Medicine and School of Biotechnology, University of Torino, Torino, Italy
| | - Peter J Quesenberry
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Joseph F Renzulli
- Division of Urology, Department of Surgery, The Miriam Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
209
|
An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 2015; 4:27522. [PMID: 26095380 PMCID: PMC4475684 DOI: 10.3402/jev.v4.27522] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.
Collapse
Affiliation(s)
- Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sihua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yueting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK;
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China;
| |
Collapse
|
210
|
Miller IV, Grunewald TGP. Tumour-derived exosomes: Tiny envelopes for big stories. Biol Cell 2015; 107:287-305. [PMID: 25923825 DOI: 10.1111/boc.201400095] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
The discovery of exosomes, which are small, 30-100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor-cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune-modulatory and anti-tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.
Collapse
Affiliation(s)
- Isabella V Miller
- Department of Medicine II, Würzburg University Medical Centre, Würzburg, 97080, Germany
| | - Thomas G P Grunewald
- Laboratory for Paediatric Sarcoma Biology, Institute for Pathology of the LMU Munich, Munich, 80337, Germany
| |
Collapse
|
211
|
17-DMCHAG, a new geldanamycin derivative, inhibits prostate cancer cells through Hsp90 inhibition and survivin downregulation. Cancer Lett 2015; 362:83-96. [DOI: 10.1016/j.canlet.2015.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
|
212
|
Extracellular vesicles such as prostate cancer cell fragments as a fluid biopsy for prostate cancer. Prostate Cancer Prostatic Dis 2015; 18:213-20. [DOI: 10.1038/pcan.2015.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/27/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
|
213
|
Guo L, Guo N. Exosomes: Potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol 2015; 95:346-58. [PMID: 25982702 DOI: 10.1016/j.critrevonc.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023] Open
Abstract
Multiple lines of evidence indicate that exosomes, as efficient messengers in cell-to-cell communication, play pleiotropic roles in regulating tumor malignancy. The cargos (proteins, mRNAs, and miRNAs) carried by exosomes can be functionally delivered between different types of cells and even transferred to distant locations, influencing the biological activities of tumor and non-tumor cells and promoting tumor growth, invasion, metastasis, angiogenesis, and drug resistance. Tumor-associated exosomes have been identified in biological (plasma, urine, saliva) and pathological (malignant effusions, pleural effusions, ascites) fluids from cancer patients. The contents of exosomes may vary depending on tumor types and status. Detection of exosomes in biofluids of cancer patients may represent a promising strategy to gain pathogenic information and to select specific biomarkers for the diagnosis and prognosis of cancer. Utilization of exosomes as delivery vehicles for siRNAs and therapeutic drugs brings out new concepts such as biomimetics in cancer treatment. In this review, we will mainly discuss emerging roles of exosomes in tumor invasion, metastasis, angiogenesis, and drug resistance and potential clinical application of exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Ning Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China.
| |
Collapse
|
214
|
Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ. Integrated systems for exosome investigation. Methods 2015; 87:31-45. [PMID: 25916618 DOI: 10.1016/j.ymeth.2015.04.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles, including exosomes, are currently being investigated to better understand their biogenesis and biological functions. There is also a rapidly growing interest in utilizing exosomes present in patient biofluids for molecular diagnostics in the clinic. Exosomes are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. Here, we describe the methods for using the latest tools and technologies to study exosomes to better understand their roles in cell-to-cell communication, for discovery of clinical biomarkers and to engineer exosomes for therapeutic applications.
Collapse
Affiliation(s)
- Maureen F Peterson
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Nicole Otoc
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Jasmine K Sethi
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Archana Gupta
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Travis J Antes
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA.
| |
Collapse
|
215
|
Verma M, Lam TK, Hebert E, Divi RL. Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 2015; 15:6. [PMID: 25883534 PMCID: PMC4399158 DOI: 10.1186/s12907-015-0005-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Collapse
Affiliation(s)
- Mukesh Verma
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Tram Kim Lam
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Elizabeth Hebert
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Rao L Divi
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
216
|
Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 2015; 4:e1008347. [PMID: 26155415 DOI: 10.1080/2162402x.2015.1008347] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/12/2022] Open
Abstract
Exosomes in plasma of glioma patients hold promise as biomarkers of prognosis. We aimed to determine whether changes in total exosomal protein and mRNA expression levels could serve as surrogate markers of immunological and clinical responses in glioma patients receiving antitumor vaccines. Exosomes were isolated from pre/post-vaccine plasma specimens in 20/22 patients enrolled in a phase I/II trial with the antitumor vaccine. Exosomal protein content was analyzed and mRNA expression levels for 24 genes were simultaneously assessed by qRT-PCR. Pre- to post-vaccination changes in exosomal protein and ΔCt values were correlated with immunological and clinical responses and survival using Spearman rank statistics and hazard ratios (HR). Exosomal protein levels positively correlated (p < 0.0043) with the WHO tumor grade at diagnosis. Protein levels were lower in post- vs. pre-vaccination exosome fractions. Post-therapy increases in tumor size were associated with elevations in exosome proteins in glioblastoma but not always in anaplastic astrocytoma (AA). Only exosomal ΔCt values for IL-8, TIMP-1, TGF-β and ZAP70 were significant (p < 0.04 to p < 0.001). The ΔCt for IL-8 and TGF-β mRNA positively correlated with post-vaccine immunologic responses to glioma antigens, while ΔCt for TIMP-1 mRNA was negatively correlated to ΔCt for IL-8 and TGF-β. Only ΔCt for IL-8 weakly correlated with OS and time to progression (TTP). In post-vaccine exosomes of the longest surviving patient with AA, mRNA for PD-1 was persistently elevated. Protein and mRNA expression levels for immune-related genes in plasma exosomes were useful in evaluating glioma patients' response to vaccination therapy.
Collapse
Key Words
- AA, anaplastic astrocytoma
- AO, anaplastic oligodendroglioma
- ATP, adenosine triphosphates
- EV, extracellular vesicles
- GAA, glioma associated antigens
- GBM, glioblastoma multiforme
- MRI, magnetic resonance imaging
- NC, normal controls
- OS, overall survival
- PD-1, programmed death-1
- PD-L1, programmed death ligand 1
- TEM, transmission electron microscopy
- TEX, tumor-derived exosomes
- TTP, time to progression
- glioma
- mRNA
- plasma-derived exosomes
- survival
- vaccination
Collapse
Affiliation(s)
- Laurent Muller
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Department of Otolaryngology and Head & Neck Surgery; University Hospital Basel ; Basel, Switzerland
| | | | | | - William Gooding
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA
| | - Hideho Okada
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Departments of Neurological Surgery; Surgery and Immunology; University of Pittsburgh School of Medicine ; Pittsburgh, PA, USA
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Departments of Pathology; Immunology and Otolaryngology; University of Pittsburgh School of Medicine ; Pittsburgh, PA, USA
| |
Collapse
|
217
|
Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, Rödel F. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 2015; 6:597-610. [PMID: 24896628 DOI: 10.2217/imt.14.38] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.
Collapse
Affiliation(s)
- Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|
218
|
Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015; 2015:657086. [PMID: 25695100 PMCID: PMC4322857 DOI: 10.1155/2015/657086] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are 30–120 nm endocytic membrane-derived vesicles that participate in cell-to-cell communication and protein and RNA delivery. Exosomes harbor a variety of proteins, nucleic acids, and lipids and are present in many and perhaps all bodily fluids. A significant body of literature has demonstrated that molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), hold great promise as novel biomarkers for clinical diagnosis. In this minireview, we summarize recent advances in the research of exosomal biomarkers and their potential application in clinical diagnostics. We also provide a brief overview of the formation, function, and isolation of exosomes.
Collapse
|
219
|
de Souza PS, Cruz ALS, Viola JPB, Maia RC. Microparticles induce multifactorial resistance through oncogenic pathways independently of cancer cell type. Cancer Sci 2014; 106:60-8. [PMID: 25457412 PMCID: PMC4317771 DOI: 10.1111/cas.12566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) is considered a multifactorial event that favors cancer cells becoming resistant to several chemotherapeutic agents. Numerous mechanisms contribute to MDR, such as P-glycoprotein (Pgp/ABCB1) activity that promotes drug efflux, overexpression of inhibitors of apoptosis proteins (IAP) that contribute to evasion of apoptosis, and oncogenic pathway activation that favors cancer cell survival. MDR molecules have been identified in membrane microparticles (MP) and can be transferred to sensitive cancer cells. By co-culturing MP derived from MDR-positive cells with recipient cells, we showed that sensitive cells accumulated Pgp, IAP proteins and mRNA. In addition, MP promoted microRNA transfer and NFκB and Yb-1 activation. Therefore, our results indicate that MP can induce a multifactorial phenotype in sensitive cancer cells.
Collapse
Affiliation(s)
- Paloma Silva de Souza
- Program of Hemato-Oncology Molecular, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
220
|
Abstract
It is rapidly becoming evident that the formation of tumor-promoting pre-metastatic niches in secondary organs adds a previously unrecognized degree of complexity to the challenge of curing metastatic disease. Primary tumor cells orchestrate pre-metastatic niche formation through secretion of a variety of cytokines and growth factors that promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites. Hypoxia within the primary tumor, and secretion of specific microvesicles termed exosomes, are emerging as important processes and vehicles for tumor-derived factors to modulate pre-metastatic sites. It has also come to light that reduced immune surveillance is a novel mechanism through which primary tumors create favorable niches in secondary organs. This review provides an overview of our current understanding of underlying mechanisms of pre-metastatic niche formation and highlights the common links as well as discrepancies between independent studies. Furthermore, the possible clinical implications, links to metastatic persistence and dormancy, and novel approaches for treatment of metastatic disease through reversal of pre-metastatic niche formation are identified and explored.
Collapse
|
221
|
Nawaz M, Camussi G, Valadi H, Nazarenko I, Ekström K, Wang X, Principe S, Shah N, Ashraf NM, Fatima F, Neder L, Kislinger T. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Rev Urol 2014; 11:688-701. [PMID: 25403245 DOI: 10.1038/nrurol.2014.301] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The knowledge gained from comprehensive profiling projects that aim to define the complex genomic alterations present within cancers will undoubtedly improve our ability to detect and treat those diseases, but the influence of these resources on our understanding of basic cancer biology is still to be demonstrated. Extracellular vesicles have gained considerable attention in past years, both as mediators of intercellular signalling and as potential sources for the discovery of novel cancer biomarkers. In general, research on extracellular vesicles investigates either the basic mechanism of vesicle formation and cargo incorporation, or the isolation of vesicles from available body fluids for biomarker discovery. A deeper understanding of the cargo molecules present in extracellular vesicles obtained from patients with urogenital cancers, through high-throughput proteomics or genomics approaches, will aid in the identification of novel diagnostic and prognostic biomarkers, and can potentially lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Hadi Valadi
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | | | - Karin Ekström
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | - Xiaoqin Wang
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | - Simona Principe
- Princess Margaret Cancer Center, 101 College Street, TMDT 9-807, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | - Thomas Kislinger
- Princess Margaret Cancer Center, 101 College Street, TMDT 9-807, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
222
|
Lässer C. Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 2014; 15:103-17. [DOI: 10.1517/14712598.2015.977250] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
223
|
Morhayim J, Baroncelli M, van Leeuwen JP. Extracellular vesicles: Specialized bone messengers. Arch Biochem Biophys 2014; 561:38-45. [DOI: 10.1016/j.abb.2014.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/22/2022]
|
224
|
Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 2014; 14:412-25. [PMID: 24339442 DOI: 10.1002/pmic.201300389] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022]
Abstract
Recent important progress in cancer biology was the identification of the significant roles played by extracellular vesicles (EVs). EVs are secreted by a variety of mammalian cell types and have been revealed to play important roles in intercellular communications. EVs serve as unique communication vehicles in many ways. First, unlike cytokine signaling, EVs enable transportation not only of proteins, but also of nucleic acids, including mRNAs and microRNAs. Recent reports showing the functionality of these nucleic acids in the recipient cells have opened up a new avenue of cell-to-cell communication research. Second, EVs have been revealed to transport membrane components including receptors, such as epithelial growth factor receptor. These findings have provided significant insights into understanding the molecular mechanisms of cancer development. Third, EVs protect their contents from clearance by degrading enzymes present in the extracellular space, which allows for remote transportation of the contents, even between organs. This concept is highlighted by recent reports that suggest the deep involvement of cancer cell derived EVs in metastasis. From these points of view, we will summarize recent studies on the relevance of EVs in cancer biology. We will also highlight the possibility of novel diagnostic technologies using circulating EVs in body fluid.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
225
|
Zocco D, Ferruzzi P, Cappello F, Kuo WP, Fais S. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Front Oncol 2014; 4:267. [PMID: 25340037 PMCID: PMC4189328 DOI: 10.3389/fonc.2014.00267] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EV) include vesicles released by either normal or tumor cells. EV may exceed the nanometric scale (microvesicles), or to be within the nanoscale, also called exosomes. Thus, it appears that only exosomes and larger vesicles may have the size for potential applications in nanomedicine, in either disease diagnosis or therapy. This is of particular interest for research in cancer, also because the vast majority of existing data on EV are coming from pre-clinical and clinical oncology. We know that the microenvironmental features of cancer may favor cell-to-cell paracrine communication through EV, but EV have been purified, characterized, and quantified from plasma of tumor patients as well, thus suggesting that EV may have a role in promoting and maintaining cancer dissemination and progression. These observations are prompting research efforts to evaluate the use of nanovesicles as tumor biomarkers. Moreover, EVs are emerging as natural delivery systems and in particular, exosomes may represent the ideal natural nanoshuttles for new and old anti-tumor drugs. However, much is yet to be understood about the role of EV in oncology and this article aims to discuss the future of EV in cancer on the basis of current knowledge.
Collapse
Affiliation(s)
| | | | - Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, Palermo and Euro-Mediterranean Institute of Science and Technology, University of Palermo , Palermo , Italy
| | | | - Stefano Fais
- Anti-Tumour Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health , Rome , Italy
| |
Collapse
|
226
|
Nigam J, Chandra A, Kazmi HR, Singh A, Gupta V, Parmar D, Srivastava MK. Expression of serum survivin protein in diagnosis and prognosis of gallbladder cancer: a comparative study. Med Oncol 2014; 31:167. [PMID: 25129311 DOI: 10.1007/s12032-014-0167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 08/08/2014] [Indexed: 01/05/2023]
Abstract
The role of survivin in gallbladder cancer (GBC) has not been evaluated. We investigated survivin protein expression in serum of patients with gallbladder diseases (cholelithiasis, n = 30; GBC, n = 39) and compared with healthy controls (n = 25). Clinicopathological parameters, diagnosis and prognosis of patients with GBC were correlated with the expression of serum survivin by enzyme-linked immunosorbent assay. Significantly higher (P < 0.0001) expression of survivin protein was observed in GBC as compared to cholelithiasis and control. Increased survivin expression was significantly associated with higher tumor stage (stage III vs. stage II; P < 0.0001) and cellular differentiation (poor and moderate vs. well differentiated; P < 0.0001) in GBC. No significant correlation was observed with any of the other clinico-pathological parameters studied. The cutoff value of survivin protein of 79 pg/ml with sensitivity of 81.16 % and specificity of 80 % differentiated the diseased group (cholelithiasis or GBC) from control group were as the cutoff value of 109 pg/ml differentiated GBC from cholelithiasis with a sensitivity of 82.05 % and specificity of 93.33 %. Though not significant, increased expression of survivin was associated with median overall survival (12 vs. 18 months; P = 0.05) in GBC patients. Our study suggests that survivin protein in serum could be both a useful diagnostic marker and an important prognostic factor for GBC.
Collapse
Affiliation(s)
- Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
227
|
Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep 2014; 4:6232. [PMID: 25167841 PMCID: PMC4148700 DOI: 10.1038/srep06232] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023] Open
Abstract
Exosome-mediated signal transportation plays a variety of critical roles in cancer progression and metastasis. From the aspect of cancer diagnosis, circulating exosomes are ideal resources of biomarkers because molecular features of tumor cells are transcribed on them. However, isolating pure exosomes from body fluids is time-consuming and still major challenge to be addressed for comprehensive profiling of exosomal proteins and miRNAs. Here we constructed anti-CD9 antibody-coupled highly porous monolithic silica microtips which allowed automated rapid and reproducible exosome extraction from multiple clinical samples. We applied these tips to explore lung cancer biomarker proteins on exosomes by analyzing 46 serum samples. The mass spectrometric quantification of 1,369 exosomal proteins identified CD91 as a lung adenocarcinoma specific antigen on exosomes, which was further validated with CD9-CD91 exosome sandwich ELISA measuring 212 samples. Our simple device can promote not only biomarker discovery studies but also wide range of omics researches about exosomes.
Collapse
Affiliation(s)
- Koji Ueda
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayako Tatsuguchi
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Naomi Saichi
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Risa Fujii
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| |
Collapse
|
228
|
Kma L, Sharan RN. Dimethylnitrosamine-Induced Reduction in the Level of Poly-ADP-Ribosylation of Histone Proteins of Blood Lymphocytes - a Sensitive and Reliable Biomarker for Early Detection of Cancer. Asian Pac J Cancer Prev 2014; 15:6429-36. [DOI: 10.7314/apjcp.2014.15.15.6429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
229
|
Khan S, Bennit HF, Wall NR. The emerging role of exosomes in survivin secretion. Histol Histopathol 2014; 30:43-50. [PMID: 25020159 DOI: 10.14670/hh-30.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Factors released by tumor cells themselves contribute in creating an environment mostly favorable but sometimes detrimental to the tumor. Survivin, one of the key members of the inhibitor of apoptosis (IAP) family of proteins, has been shown in the cytoplasm, mitochondria, nucleus, and most recently in the extracellular space, transported via small membrane bound vesicles called exosomes. Exosomes are secreted from hematopoietic, non-hematopoietic, tumor, and non-tumor cells, shuttling essential molecules such as proteins, RNAs, and microRNAs, all believed to be important for cell-cell and cell-extracellular communication. In this review, we discuss exosomal Survivin and its role in modifying the tumor microenvironment.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
230
|
van Balkom BWM, van Doorn J, Verhoeven-Duif NM, Verhaar MC. The potential of exosomes in diagnosis and treatment of inborn errors of metabolism. J Inherit Metab Dis 2014; 37:497-504. [PMID: 24509975 DOI: 10.1007/s10545-014-9681-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles, in particular exosomes, have gained much attention as potent mediators of intercellular signaling. Exosomes are 50-130 nm intraluminal vesicles of multivesicular bodies (MVB) that are secreted into the extracellular environment upon fusion of MVB with the plasma membrane. Current research on exosomes focuses on their biogenesis, including specific sorting mechanisms, their potential to transfer proteins and RNA from their cells of origin to target cells, specific methods of vesicle isolation, and their possible application as diagnostic and therapeutic devices. Exosomes are vesicles of endocytic origin that contain a portion of the cytoplasm. Their molecular components represent the composition and thereby the physiological state of the cells from which they originate. In this review, we recapitulate the discovery of exosomes and the subsequent expansion of exosome research into a variety of different areas of interest, with a specific focus on how exosomes could prove to be invaluable for both diagnostic and therapeutic applications within the research field of inborn errors of metabolism.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands,
| | | | | | | |
Collapse
|
231
|
Abstract
Survivin, a member of the inhibitor of apoptosis protein family, is one of the most cancer-specific proteins identified to date. Survivin expression is low or undetectable in most adult tissues, but, alternatively, is overexpressed in a large number of tumors. This multifunctional protein is recognized as a key regulator in apoptosis, proliferation and angiogenesis in the tumor environment. Several studies have shown a correlation between survivin upregulation and poor cancer prognosis, and, as expected, its downregulation or inactivation leads to inhibition of tumor growth. Therefore, survivin has attracted increasing attention both as a potential cancer biomarker and as a new target for anticancer therapies. This review summarizes and discusses survivin expression and its potential as a prognostic and diagnostic biomarker in different types of tumors, as well as provides an overview of the current therapeutic challenges of targeting survivin as a treatment strategy.
Collapse
|
232
|
Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. LAB ON A CHIP 2014; 14:1891-900. [PMID: 24722878 PMCID: PMC4134440 DOI: 10.1039/c4lc00136b] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane bound vesicles, including microvesicles and exosomes, are secreted by both normal and cancerous cells into the extracellular space and in blood circulation. These circulating extracellular vesicles (cirEVs) and exosomes in particular are recognized as a potential source of disease biomarkers. However, to exploit the use of circulatory exosomes as a biomarker, a rapid, high-throughput and reproducible method is required for their isolation and molecular analysis. We have developed a simple, low cost microfluidic-based platform to isolate cirEVs enriched in exosomes directly from blood serum allowing simultaneous capture and quantification of exosomes in a single device. To capture specific exosomes, we employed "ExoChip", a microfluidic device fabricated in polydimethylsiloxane (PDMS) and functionalized with antibodies against CD63, an antigen commonly overexpressed in exosomes. Subsequent staining with a fluorescent carbocyanine dye (DiO) that specifically labels the exosomes, we quantitated exosomes using a standard plate-reader. Ten independent ExoChip experiments performed using serum obtained from five pancreatic cancer patients and five healthy individuals revealed a statistically significant increase (2.34 ± 0.31 fold, p < 0.001) in exosomes captured in cancer patients when compared to healthy individuals. Exosomal origins of ExoChip immobilized vesicles were further confirmed using immuno-electron-microscopy and Western blotting. In addition, we demonstrate the ability of ExoChip to recover exosomes with intact RNA enabling profiling of exosomal-microRNAs through openarray analysis, which has potential applications in biomarker discovery. Based on our findings, ExoChip is a well suited platform to be used as an exosome-based diagnostic and research tool for molecular screening of human cancers.
Collapse
Affiliation(s)
- Shailender Singh Kanwar
- Department of Chemical Engineering, College of Engineering University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan-48109, USA.
| | | | | | | |
Collapse
|
233
|
Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 2014; 28:14-23. [PMID: 24783980 DOI: 10.1016/j.semcancer.2014.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/24/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
Different types of RNAs identified thus far represent a diverse group of macromolecules that are involved in the regulation of different biological processes. RNA is generally thought to be localized primarily in the nucleus and cytoplasm; however, some types of RNA have been detected in the extracellular milieu. These extracellular RNA (exRNA) molecules are protected from degradation and it is now widely accepted that extracellular vesicles and ribonucleoprotein particles serve as transport vehicles for exRNA among cells. The functional consequence of this transfer of genetic information probably encompasses a broad range of normal developmental and physiologic processes in many organisms. This review will focus on the role of exRNA communication in cancer. We will focus on different types of RNA species identified and characterized within tumor-derived extracellular vesicles. Further, we will describe the role of exRNAs in cancer progression, as well as their potential for use as diagnostic biomarkers and therapeutic tools for monitoring and treating cancer, respectively.
Collapse
|
234
|
Khan S, Bennit HF, Turay D, Perez M, Mirshahidi S, Yuan Y, Wall NR. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014. [PMID: 24620748 DOI: 10.1186/1471‐2407‐14‐176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. METHODS We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. RESULTS Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. CONCLUSION In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients' sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a "liquid biopsy" if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this prominent antiapoptotic pathway could lead to the development of potential therapeutics for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
235
|
Khan S, Bennit HF, Turay D, Perez M, Mirshahidi S, Yuan Y, Wall NR. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014; 14:176. [PMID: 24620748 PMCID: PMC3995700 DOI: 10.1186/1471-2407-14-176] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. Methods We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. Results Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. Conclusion In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients’ sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a “liquid biopsy” if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this prominent antiapoptotic pathway could lead to the development of potential therapeutics for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
236
|
Nikitina IG, Sabirova EY, Solopova ON, Surzhikov SA, Grineva EN, Karpov VL, Lisitsyn NA, Beresten SF. A new immuno-PCR format for serological diagnosis of colon cancer. Mol Biol 2014. [DOI: 10.1134/s0026893313060095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
237
|
Abstract
Exosomes and other microvesicles are emerging as rich reservoirs of tumor-specific proteins and biomarkers for cancer detection and progression. For prostate cancer, exosomes secreted by the prostate can be isolated from prostatic secretions, seminal fluid, tissue, urine or blood for further proteomic analysis. Structurally, prostate-derived exosomes are distinct in size, membrane composition and specific prostate protein content, potentially providing a novel and easily isolatable source of biomarkers from clinical biofluids. The key to these isolation strategies will be the targeting of specific prostatic proteins expressed in these exosomes, thus requiring detailed proteomic characterizations. A summary of ongoing efforts to characterize the proteome of these unique prostate cancer-associated exosomes and their potential applications for use in biomarker assays is presented.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, MUSC Proteomics Center, Medical University of South Carolina , Charleston, SC , USA
| | | |
Collapse
|
238
|
Extracellular vesicles in prostate cancer: new future clinical strategies? BIOMED RESEARCH INTERNATIONAL 2014; 2014:561571. [PMID: 24707491 PMCID: PMC3950949 DOI: 10.1155/2014/561571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most common cancer—excluding skin tumors—in men older than 50 years of age. Over time, the ability to diagnose PCa has improved considerably, mainly due to the introduction of prostate-specific antigen (PSA) in the clinical routine. However, it is important to take into account that although PSA is a highly organ-specific marker, it is not cancer-specific. This shortcoming suggests the need to find new and more specific molecular markers. Several emerging PCa biomarkers have been evaluated or are being assessed for their potential use. There is increasing interest in the prospective use of extracellular vesicles as specific markers; it is well known that the content of vesicles is dependent on their cellular origin and is strongly related to the stimulus that triggers the release of the vesicles. Consequently, the identification of a disease-specific molecule (protein, lipid or RNA) associated with vesicles could facilitate their use as novel biological markers. The present review describes several in vitro studies that demonstrate the role of vesicles in PCa progression and several in vivo studies that highlight the potential use of vesicles as PCa biomarkers.
Collapse
|
239
|
Aspe JR, Diaz Osterman CJ, Jutzy JMS, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles 2014; 3:23244. [PMID: 24624263 PMCID: PMC3929070 DOI: 10.3402/jev.v3.23244] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Background Current therapeutic options for advanced pancreatic cancer have been largely disappointing with modest results at best, and though adjuvant therapy remains controversial, most remain in agreement that Gemcitabine should stand as part of any combination study. The inhibitor of apoptosis (IAP) protein Survivin is a key factor in maintaining apoptosis resistance, and its dominant-negative mutant (Survivin-T34A) has been shown to block Survivin, inducing caspase activation and apoptosis. Methods In this study, exosomes, collected from a melanoma cell line built to harbor a tetracycline-regulated Survivin-T34A, were plated on the pancreatic adenocarcinoma (MIA PaCa-2) cell line. Evaluation of the presence of Survivin-T34A in these exosomes followed by their ability to induce Gemcitabine-potentiative cell killing was the objective of this work. Results Here we show that exosomes collected in the absence of tetracycline (tet-off) from the engineered melanoma cell do contain Survivin-T34A and when used alone or in combination with Gemcitabine, induced a significant increase in apoptotic cell death when compared to Gemcitabine alone on a variety of pancreatic cancer cell lines. Conclusion This exosomes/Survivin-T34A study shows that a new delivery method for anticancer proteins within the cancer microenvironment may prove useful in targeting cancers of the pancreas.
Collapse
Affiliation(s)
- Jonathan R Aspe
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jessica M S Jutzy
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Simone Deshields
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sonia Whang
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
240
|
Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 2014; 35:1792-800. [PMID: 24650793 DOI: 10.1016/j.neurobiolaging.2014.02.012] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
We present evidence here that exosomes stimulate aggregation of amyloid beta (Aβ)1-42 in vitro and in vivo and interfere with uptake of Aβ by primary cultured astrocytes and microglia in vitro. Exosome secretion is prevented by the inhibition of neutral sphingomyelinase 2 (nSMase2), a key regulatory enzyme generating ceramide from sphingomyelin, with GW4869. Using the 5XFAD mouse, we show that intraperitoneal injection of GW4869 reduces the levels of brain and serum exosomes, brain ceramide, and Aβ1-42 plaque load. Reduction of total Aβ1-42 as well as number of plaques in brain sections was significantly greater (40% reduction) in male than female mice. Our results suggest that GW4869 reduces amyloid plaque formation in vivo by preventing exosome secretion and identifies nSMase2 as a potential drug target in AD by interfering with exosome secretion.
Collapse
Affiliation(s)
- Michael B Dinkins
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Guanghu Wang
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Gu Zhu
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
241
|
Mimeault M, Batra SK. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev 2014; 23:234-54. [PMID: 24273063 PMCID: PMC3977531 DOI: 10.1158/1055-9965.epi-13-0785] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell-like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial-mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3' kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell-like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Authors' Affiliation: Department of Biochemistry and Molecular Biology, Fred & Pamela Buffet Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|
242
|
Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 2014; 1165:147-73. [PMID: 24839024 DOI: 10.1007/978-1-4939-0856-1_11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery that cancer cells generate large membrane-enclosed packets of epigenetic information, known as microvesicles (MVs), that can be transferred to other cells and influence their behavior (Antonyak et al., Small GTPases 3:219-224, 2012; Cocucci et al., Trends Cell Biol 19:43-51, 2009; Rak, Semin Thromb Hemost 36:888-906, 2010; Skog et al., Nat Cell Biol 10:1470-1476, 2008) has added a unique perspective to the classical paracrine signaling paradigm. This is largely because, in addition to growth factors and cytokines, MVs contain a variety of components that are not usually thought to be released into the extracellular environment by viable cells including plasma membrane-associated proteins, cytosolic- and nuclear-localized proteins, as well as nucleic acids, particularly RNA transcripts and micro-RNAs (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008; Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Balaj et al., Nat Commun 2:180, 2011; Choi et al., J Proteome Res 6:4646-4655, 2007; Del Conde et al., Blood 106:1604-1611, 2005; Gallo et al., PLoS One 7:e30679, 2012; Graner et al., FASEB J 23:1541-1557, 2009; Grange et al., Cancer Res 71:5346-5356, 2011; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Noerholm et al., BMC Cancer 12:22, 2012; Zhuang et al., EMBO J 31:3513-3523, 2012). When transferred between cancer cells, MVs have been shown to stimulate signaling events that promote cell growth and survival (Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008). Cancer cell-derived MVs can also be taken up by normal cell types that surround the tumor, an outcome that helps shape the tumor microenvironment, trigger tumor vascularization, and even confer upon normal recipient cells the transformed characteristics of a cancer cell (Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Martins et al., Curr Opin Oncol 25:66-75, 2013; Al-Nedawi et al., Proc Natl Acad Sci U S A 106:3794-3799, 2009; Ge et al., Cancer Microenviron 5:323-332, 2012). Thus, the production of MVs by cancer cells plays crucial roles in driving the expansion of the primary tumor. However, it is now becoming increasingly clear that MVs are also stable in the circulation of cancer patients, where they can mediate long-range effects and contribute to the formation of the pre-metastatic niche, an essential step in metastasis (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Noerholm et al., BMC Cancer 12:22, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; van der Vos et al., Cell Mol Neurobiol 31:949-959, 2011). These findings, when taken together with the fact that MVs are being aggressively pursued as diagnostic markers, as well as being considered as potential targets for intervention against cancer (Antonyak et al., Small GTPases 3:219-224, 2012; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Ge et al., Cancer Microenviron 5:323-332, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; Al-Nedawi et al., Cell Cycle 8:2014-2018, 2009; Cocucci and Meldolesi, Curr Biol 21:R940-R941, 2011; D'Souza-Schorey and Clancy, Genes Dev 26:1287-1299, 2012; Shao et al., Nat Med 18:1835-1840, 2012), point to critically important roles for MVs in human cancer progression that can potentially be exploited to develop new targeted approaches for treating this disease.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
243
|
Wang H, Zhang X, Wang L, Zheng G, Du L, Yang Y, Dong Z, Liu Y, Qu A, Wang C. Investigation of cell free BIRC5 mRNA as a serum diagnostic and prognostic biomarker for colorectal cancer. J Surg Oncol 2013; 109:574-9. [PMID: 24338523 DOI: 10.1002/jso.23526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Haiyan Wang
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Xin Zhang
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Lili Wang
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Guixi Zheng
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Lutao Du
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Yongmei Yang
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Zhaogang Dong
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Yimin Liu
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Ailin Qu
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| | - Chuanxin Wang
- Department of Clinical Laboratory; Qilu Hospital, Shandong University; Jinan China
| |
Collapse
|
244
|
Zöller M. Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 2013; 4:74-90. [PMID: 24340225 PMCID: PMC3858795 DOI: 10.4291/wjgp.v4.i4.74] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/01/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic adenocarcinoma (PaCa) have a dismal prognosis. This is in part due to late diagnosis prohibiting surgical intervention, which provides the only curative option as PaCa are mostly chemo- and radiation resistance. Hope is raised on a reliable non-invasive/minimally invasive diagnosis that is still missing. Recently two diagnostic options are discussed, serum MicroRNA (miRNA) and serum exosomes. Serum miRNA can be free or vesicle-, particularly, exosomes-enclosed. This review will provide an overview on the current state of the diagnostic trials on free serum miRNA and proceed with an introduction of exosomes that use as a diagnostic tool in serum and other body fluids has not received sufficient attention, although serum exosome miRNA in combination with protein marker expression likely will increase the diagnostic and prognostic power. By their crosstalk with host cells, which includes binding-initiated signal transduction, as well as reprogramming target cells via the transfer of proteins, mRNA and miRNA exosomes are suggested to become a most powerful therapeutics. I will discuss which hurdles have still to be taken as well as the different modalities, which can be envisaged to make therapeutic use of exosomes. PaCa are known to most intensely crosstalk with the host as apparent by desmoplasia and frequent paraneoplastic syndromes. Thus, there is hope that the therapeutic application of exosomes brings about a major breakthrough.
Collapse
|
245
|
Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One 2013; 8:e75054. [PMID: 24069378 PMCID: PMC3777909 DOI: 10.1371/journal.pone.0075054] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs) of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133), basigin (CD147) and B7-H3 (CD276). Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.
Collapse
Affiliation(s)
- Danilo Marimpietri
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
- * E-mail:
| | - Andrea Petretto
- Core Facilities, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Annalisa Pezzolo
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Gagliani
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Giovanni Melioli
- Clinical Pathology Laboratories, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
246
|
|
247
|
Song K, Shankar E, Yang J, Bane KL, Wahdan-Alaswad R, Danielpour D. Critical role of a survivin/TGF-β/mTORC1 axis in IGF-I-mediated growth of prostate epithelial cells. PLoS One 2013; 8:e61896. [PMID: 23658701 PMCID: PMC3641055 DOI: 10.1371/journal.pone.0061896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Survivin is a unique member of the inhibitor of apoptosis (IAP) proteins that is overexpressed in numerous cancers through poorly defined mechanisms. One such mechanism may be through constitutive activation of the insulin-like growth factor-I (IGF-I) signaling pathway, implicated in the development and progression of prostate cancer. Using the pre-neoplastic NRP-152 rat prostate cell line as a model, we showed that IGF-I induces Survivin expression, and that silencing Survivin by lentiviral-mediated small hairpin RNA (shRNA) represses IGF-I-stimulated cell growth, implicating Survivin as a mediator of this growth response. Moreover, our data support that the induction of Survivin by IGF-I occurs through a transcriptional mechanism that is mediated in part by the PI3K/Akt/mTORC1 pathway. Use of various Survivin promoter-luciferase constructs revealed that the CDE and CHR response elements in the proximal region of the Survivin promoter are involved in this IGF-I response. Transforming growth factor (TGF-β) signaling antagonists similarly activated the Surivin promoter and rendered cells refractory to further promoter activation by IGF-I. IGF-I suppressed levels of phospho-Smads 2 and 3 with kinetics similar to that of Survivin induction. Suppression of TGF-β signaling, either by TGF-β receptor kinase inhibitors or by silencing Smads 2 and 3, induced Survivin expression and promoted cell growth similar to that induced by IGF-I. TGF-β receptor antagonists also rescued cells from down-regulation of Survivin expression and growth suppression by pharmacological inhibitors of PI3K, Akt, MEK and mTOR. Sh-RNA gene silencing studies suggest that mTORC1 induces while mTORC2 represses the expression of Survivin by IGF-I. Taken together, these results suggest that IGF-I signaling through a PI3K/Akt/mTORC1 mechanism elevates expression of Survivin and promotes growth of prostate epithelial cells by suppressing Smad-dependent autocrine TGF-β signaling.
Collapse
Affiliation(s)
- Kyung Song
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Eswar Shankar
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiayi Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kara L. Bane
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Reema Wahdan-Alaswad
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
248
|
Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F. Silencing of human papillomavirus (HPV)E6/E7oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 2013; 133:1631-42. [DOI: 10.1002/ijc.28164] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| |
Collapse
|
249
|
Kim J, Lee GH, Jung W, Hah SS. Selective and quantitative cell detection based both on aptamers and the conventional cell-staining methods. Biosens Bioelectron 2013; 43:362-5. [PMID: 23357002 DOI: 10.1016/j.bios.2012.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/08/2012] [Accepted: 12/21/2012] [Indexed: 11/16/2022]
Abstract
Aptamer-based biochips for selective cell detection and quantitation in combination of the recent biochip technology and the conventional cell staining methods are described. Using a model system comprising HER2- or PSMA-positive cells as the analytes and single-stranded RNA aptamers specific for HER2 or PSMA as immobilized ligands on chips, we could demonstrate that aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity, respectively. In particular, our PSMA-specific sensor was found to have the characteristics of good stability, reproducibility and reusability, with detection limit as low as 10(3) LNCaP cells. In conclusion, we could show the suitability of nucleic acid aptamers as low molecular weight receptors on biochips for sensitive and specific cell detection and quantitation for future diagnostics development.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
250
|
Szajnik M, Derbis M, Lach M, Patalas P, Michalak M, Drzewiecka H, Szpurek D, Nowakowski A, Spaczynski M, Baranowski W, Whiteside TL. Exosomes in Plasma of Patients with Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to Therapy. ACTA ACUST UNITED AC 2012; Suppl 4:3. [PMID: 24466501 DOI: 10.4172/2161-0932.s4-003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND In patients with Ovarian Cancer (OvCa) exosomes released by tumor cells are present in the plasma and could be involved in tumor progression. This study examines the association between the exosome presence/protein content in plasma of OvCa patients and disease outcome, response to standard therapy and/or tumorresistance to therapies in patients studied at diagnosis and also serially during and after therapy. DESIGN AND METHODS Exosomes were purified from OvCa patients' plasma (n=22), patients with benign tumors (n=10) or (n=10) healthy controls (NC) using ultracentrifugation. Exosomes were visualized by scanning electron microscopy. Their protein content was measured. The presence of MAGE 3/6 and TGF-β1 in exosomes was evaluated in Western blots. RESULTS The OvCa patients' plasma contained higher levels of exosomal proteins (p<0.05) compared to those isolated from plasma of patients with benign tumors or NC. Exosomes isolated from OvCa patients's plasma carried TGF-β1 and MAGE3/6, which distinguished OvCa patients from those with benign tumors and NC. High protein levels of exosomes were seen in newly diagnosed patients; however in advanced stages of OvCa patients the protein content of isolated exosomes was significantly higher than that of early stages. The exosome levels variably changed during/after chemotherapy, and correlations between the changes in exosomal protein levels and clinical data suggested that the protein content of exosomes might be useful in predicting responses to therapy and prognosis in OvCa patients. CONCLUSION Analysis of plasma exosomes levels offers a novel approach to diagnosis and monitoring response to therapies in OvCa patients.
Collapse
Affiliation(s)
- Marta Szajnik
- Departments of Gynecology Oncology, Military Institute of Medicine, Warsaw, Poland ; Department of Gynecology and Gynecologic Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Magdalena Derbis
- Department of Clinical Immunology Military Institute of Medicine, Warsaw, Poland
| | - Michal Lach
- Department of Clinical Immunology Military Institute of Medicine, Warsaw, Poland
| | - Paulina Patalas
- Department of Clinical Immunology Military Institute of Medicine, Warsaw, Poland
| | - Marcin Michalak
- Departments of Gynecology Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Military Institute of Medicine, Warsaw, Poland
| | - Dariusz Szpurek
- Division of Gynecology Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Andrzej Nowakowski
- Department of Gynecology and Gynecologic Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Marek Spaczynski
- Departments of Gynecology Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Włodzimierz Baranowski
- Department of Gynecology and Gynecologic Oncology, Military Institute of Medicine, Warsaw, Poland
| | | |
Collapse
|