201
|
Coulibaly-N'Golo D, Allali B, Kouassi SK, Fichet-Calvet E, Becker-Ziaja B, Rieger T, Ölschläger S, Dosso H, Denys C, ter Meulen J, Akoua-Koffi C, Günther S. Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: implications for evolution of arenaviruses in Africa. PLoS One 2011; 6:e20893. [PMID: 21695269 PMCID: PMC3111462 DOI: 10.1371/journal.pone.0020893] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/12/2011] [Indexed: 11/18/2022] Open
Abstract
This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events.
Collapse
Affiliation(s)
- David Coulibaly-N'Golo
- Laboratoire des Arbovirus/Entérovirus, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Bernard Allali
- Laboratoire des Arbovirus/Entérovirus, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Stéphane K. Kouassi
- Laboratoire des Arbovirus/Entérovirus, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Beate Becker-Ziaja
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Toni Rieger
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Ölschläger
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Hernri Dosso
- Centre de Recherche en Ecologie, Universite d'Abobo-Adjame, Abidjan, Côte d'Ivoire
| | - Christiane Denys
- Département Systématique et Evolution, Museum National d'Histoire Naturelle, Paris, France
| | - Jan ter Meulen
- Institute of Virology, Philipps University, Marburg, Germany
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Chantal Akoua-Koffi
- Laboratoire des Arbovirus/Entérovirus, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
202
|
van der Kuyl AC. Characterization of a full-length endogenous beta-retrovirus, EqERV-beta1, in the genome of the horse (Equus caballus). Viruses 2011; 3:620-8. [PMID: 21994749 PMCID: PMC3185775 DOI: 10.3390/v3060620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/16/2022] Open
Abstract
Information on endogenous retroviruses fixed in the horse (Equus caballus) genome is scarce. The recent availability of a draft sequence of the horse genome enables the detection of such integrated viruses by similarity search. Using translated nucleotide fragments from gamma-, beta-, and delta-retroviral genera for initial searches, a full-length beta-retrovirus genome was retrieved from a horse chromosome 5 contig. The provirus, tentatively named EqERV-beta1 (for the first equine endogenous beta-retrovirus), was 10434 nucleotide (nt) in length with the usual retroviral genome structure of 5'LTR-gag-pro-pol-env-3'LTR. The LTRs were 1361 nt long, and differed approximately 1% from each other, suggestive of a relatively recent integration. Coding sequences for gag, pro and pol were present in three different reading-frames, as common for beta-retroviruses, and the reading frames were completely open, except that the env gene was interrupted by a single stopcodon. No reading frame was apparent downstream of the env gene, suggesting that EqERV-beta1 does not encode a superantigen like mouse mammary tumor virus (MMTV). A second proviral genome of EqERV-beta1, with no stopcodon in env, is additionally integrated on chromosome 5 downstream of the first virus. Single EqERV-beta1 LTRs were abundantly present on all chromosomes except chromosome 24. Phylogenetically, EqERV-beta1 most closely resembles an unclassified retroviral sequence from cattle (Bos taurus), and the murine beta-retrovirus MMTV.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam, Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
203
|
Abstract
An estimated 3% of the world's population is chronically infected with hepatitis C virus (HCV). Although HCV was discovered more than 20 y ago, its origin remains obscure largely because no closely related animal virus homolog has been identified; furthermore, efforts to understand HCV pathogenesis have been hampered by the absence of animal models other than chimpanzees for human disease. Here we report the identification in domestic dogs of a nonprimate hepacivirus. Comparative phylogenetic analysis of the canine hepacivirus (CHV) confirmed it to be the most genetically similar animal virus homolog of HCV. Bayesian Markov chains Monte Carlo and associated time to most recent common ancestor analyses suggest a mean recent divergence time of CHV and HCV clades within the past 500-1,000 y, well after the domestication of canines. The discovery of CHV may provide new insights into the origin and evolution of HCV and a tractable model system with which to probe the pathogenesis, prevention, and treatment of diseases caused by hepacivirus infection.
Collapse
|
204
|
Bekal S, Domier LL, Niblack TL, Lambert KN. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. J Gen Virol 2011; 92:1870-1879. [PMID: 21490246 DOI: 10.1099/vir.0.030585-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nematodes are the most abundant multicellular animals on earth, yet little is known about their natural viral pathogens. To date, only two nematode virus genomes have been reported. Consequently, nematode viruses have been overlooked as important biotic factors in the study of nematode ecology. Here, we show that one plant parasitic nematode species, Heterodera glycines, the soybean cyst nematode (SCN), harbours four different RNA viruses. The nematode virus genomes were discovered in the SCN transcriptome after high-throughput sequencing and assembly. All four viruses have negative-sense RNA genomes, and are distantly related to nyaviruses and bornaviruses, rhabdoviruses, bunyaviruses and tenuiviruses. Some members of these families replicate in and are vectored by insects, and can cause significant diseases in animals and plants. The novel viral sequences were detected in both eggs and the second juvenile stage of SCN, suggesting that these viruses are transmitted vertically. While there was no evidence of integration of viral sequences into the nematode genome, we indeed detected transcripts from these viruses by using quantitative PCR. These data are the first finding of virus genomes in parasitic nematodes. This discovery highlights the need for further exploration for nematode viruses in all tropic groups of these diverse and abundant animals, to determine how the presence of these viruses affects the fitness of the nematode, strategies of viral transmission and mechanisms of viral pathogenesis.
Collapse
Affiliation(s)
- Sadia Bekal
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Leslie L Domier
- United States Department of Agriculture, Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Terry L Niblack
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| |
Collapse
|
205
|
Schwemmle M, Heimrich B. Viral interference with neuronal integrity: what can we learn from the Borna disease virus? Cell Tissue Res 2011; 344:13-6. [DOI: 10.1007/s00441-011-1141-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/27/2011] [Indexed: 11/30/2022]
|
206
|
Kapoor A, Simmonds P, Lipkin WI. Discovery and characterization of mammalian endogenous parvoviruses. J Virol 2010; 84:12628-35. [PMID: 20943964 PMCID: PMC3004312 DOI: 10.1128/jvi.01732-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/05/2010] [Indexed: 01/26/2023] Open
Abstract
Public databases of nucleotide sequences contain exponentially increasing amounts of sequence data from mammalian genomes. Through the use of large-scale bioinformatic screening for sequences homologous to exogenous mammalian viruses, we found several sequences related to human and animal parvoviruses (PVs) in the Parvovirus and Dependovirus genera within genomes of several mammals, including rats, wallabies, opossums, guinea pigs, hedgehogs, African elephants, and European rabbits. However, phylogenetic analysis of these endogenous parvovirus (EnPV) sequences demonstrated substantial genetic divergence from exogenous mammalian PVs characterized to date. Entire nonstructural and capsid gene sequences of a novel EnPV were amplified and genetically characterized from rat (Rattus norvegicus) genomic DNA. Rat EnPV sequences were most closely related to members of the genus Parvovirus, with >70% and 65% amino acid identities to nonstructural and capsid proteins of canine parvovirus, respectively. Integration of EnPV into chromosome 5 of rats was confirmed by PCR cloning and sequence analysis of the viral and chromosomal junctions. Using inverse PCR, we determined that the rat genome contains a single copy of rat EnPV. Considering mammalian phylogeny, we estimate that EnPV integrated into the rat genome less than 30 million years ago. Comparative phylogenetic analysis done using all known representative exogenous parvovirus (ExPV) and EnPV sequences showed two major genetic groups of EnPVs, one genetically more similar to genus Parvovirus and the other genetically more similar to the genus Dependovirus. The full extent of the genetic diversity of parvoviruses that have undergone endogenization during evolution of mammals and other vertebrates will be recognized only once complete genomic sequences from a wider range of classes, orders, and species of animals become available.
Collapse
Affiliation(s)
- Amit Kapoor
- Center for Infection and Immunity, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
207
|
Affiliation(s)
- Welkin E Johnson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA, USA.
| |
Collapse
|
208
|
Gilbert C, Feschotte C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 2010; 8:e1000495. [PMID: 20927357 PMCID: PMC2946954 DOI: 10.1371/journal.pbio.1000495] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/16/2010] [Indexed: 11/18/2022] Open
Abstract
Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale.
Collapse
Affiliation(s)
- Clément Gilbert
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| | - Cédric Feschotte
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| |
Collapse
|
209
|
Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the parvoviridae and circoviridae are more than 40 to 50 million years old. J Virol 2010; 84:12458-62. [PMID: 20861255 DOI: 10.1128/jvi.01789-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate genomic assemblies were analyzed for endogenous sequences related to any known viruses with single-stranded DNA genomes. Numerous high-confidence examples related to the Circoviridae and two genera in the family Parvoviridae, the parvoviruses and dependoviruses, were found and were broadly distributed among 31 of the 49 vertebrate species tested. Our analyses indicate that the ages of both virus families may exceed 40 to 50 million years. Shared features of the replication strategies of these viruses may explain the high incidence of the integrations.
Collapse
|