201
|
Tripathi S, Batra J, Lal SK. Interplay between influenza A virus and host factors: targets for antiviral intervention. Arch Virol 2015; 160:1877-91. [PMID: 26016443 DOI: 10.1007/s00705-015-2452-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Influenza A viruses (IAVs) pose a major public health threat worldwide. Recent experience with the 2013 H7N9 outbreak in China and the 2009 "swine flu" pandemic have shown that antiviral vaccines and drugs fall short of controlling the spread of disease in a timely and effective manner. Major problems include rapid emergence of drug-resistant influenza virus strains and the slow process of vaccine production. With the threat of a highly pathogenic H5N1 bird-flu pandemic looming large, it is crucial to develop novel ways of combating influenza A viruses. Targeting the host factors critical for influenza A virus replication has shown promise as a strategy to develop novel antiviral molecules with broad-spectrum protection. In this review, we summarize the role of currently identified host factors that play a critical role in the influenza A virus life cycle and discuss the most promising candidates for anti-influenza therapeutics.
Collapse
Affiliation(s)
- Shashank Tripathi
- Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | |
Collapse
|
202
|
Walther V, Hiley CT, Shibata D, Swanton C, Turner PE, Maley CC. Can oncology recapitulate paleontology? Lessons from species extinctions. Nat Rev Clin Oncol 2015; 12:273-85. [PMID: 25687908 PMCID: PMC4569005 DOI: 10.1038/nrclinonc.2015.12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although we can treat cancers with cytotoxic chemotherapies, target them with molecules that inhibit oncogenic drivers, and induce substantial cell death with radiation, local and metastatic tumours recur, resulting in extensive morbidity and mortality. Indeed, driving a tumour to extinction is difficult. Geographically dispersed species of organisms are perhaps equally resistant to extinction, but >99.9% of species that have ever existed on this planet have become extinct. By contrast, we are nowhere near that level of success in cancer therapy. The phenomena are broadly analogous--in both cases, a genetically diverse population mutates and evolves through natural selection. The goal of cancer therapy is to cause cancer cell population extinction, or at least to limit any further increase in population size, to prevent the tumour burden from overwhelming the patient. However, despite available treatments, complete responses are rare, and partial responses are limited in duration. Many patients eventually relapse with tumours that evolve from cells that survive therapy. Similarly, species are remarkably resilient to environmental change. Paleontology can show us the conditions that lead to extinction and the characteristics of species that make them resistant to extinction. These lessons could be translated to improve cancer therapy and prognosis.
Collapse
Affiliation(s)
- Viola Walther
- Evolution and Cancer Laboratory, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Crispin T Hiley
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Darryl Shibata
- Department of Pathology, USC Keck School of Medicine, Hoffman Medical Research Center 211, 2011 Zonal Avenue, Los Angeles, CA 90089-9092, USA
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Carlo C Maley
- Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| |
Collapse
|
203
|
A Functional Role of Fibroblast Growth Factor Receptor 1 (FGFR1) in the Suppression of Influenza A Virus Replication. PLoS One 2015; 10:e0124651. [PMID: 25909503 PMCID: PMC4409105 DOI: 10.1371/journal.pone.0124651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus causes annual epidemics and occasional pandemics in humans. Here, we investigated four members of the fibroblast growth factor receptor (FGFR) family; FGFR1 to 4, and examined their expression patterns in human lung epithelial cells A549 with influenza A virus infection. We identified a functional role of FGFR1 in influenza A/Puerto Rico/8/1934 (PR8) and A/Anhui/01/2005 (H5N1) virus replication. Our results showed that FGFR1 silencing by siRNA interference promoted influenza A/PR8 and H5N1 virus replication in A549 cells, while lentivirus-mediated exogenous FGFR1 expression significantly suppressed influenza A virus replication; however, FGFR4 did not have the same effects. Moreover, FGFR1 phosphorylation levels were downregulated in A549 cells by influenza A virus infection, while the repression of FGFR1 kinase using PD173074, a potent and selective FGFR1 inhibitor, could enhance virus replication. Furthermore, we found that FGFR1 inhibits influenza virus internalization, but not binding, during viral entry. These results suggested that FGFR1 specifically antagonizes influenza A virus replication, probably by blocking viral entry.
Collapse
|
204
|
Whole inactivated avian Influenza H9N2 viruses induce nasal submucosal dendritic cells to sample luminal viruses via transepithelial dendrites and trigger subsequent DC maturation. Vaccine 2015; 33:1382-92. [PMID: 25613720 DOI: 10.1016/j.vaccine.2015.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Nasal mucosal barrier is a key impediment for the absorption of influenza whole inactivated virus (WIV) intranasal vaccine. Yet it is still unclear how WIV cross the epithelial cells (ECs) in nasal cavity. Here, in vitro, a coculture system was well established, consisting of surrogate nasal ECs (Calu-3) and dendritic cells (DCs). After adding H9N2 WIV on the apical side of ECs, we found that submucosal DCs extended their transepithelial dendrites (TEDs) and sampled luminal viruses. However, ECs were not involved in the transepithelial transport of viruses. Subsequently, the phenotypic and functional maturation of DCs were also enhanced, whereas they were attenuated after blocking of TED formation by anti-JAM1 antibody. In vivo, we confirmed that H9N2 WIV were capable of inducing nasal submucosal DCs to sample luminal viruses via TEDs in the nasal passage but not nasal-associated lymphoid tissue (NALT). CD103(+) and CD103(-) DC subsets participated in this process. Of note, chemokine CCL20, released from the H9N2 WIV-induced ECs, played a vital role in DC recruitment and TED formation. Taken together, our findings indicated that TEDs played a critical role in facilitating viral transport across the epithelial barrier, which may guide the design of novel nasal mucosal vaccine strategies.
Collapse
|
205
|
Abstract
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.
Collapse
Affiliation(s)
- Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; INSERM U604, Paris F-75015, France; and INRA, USC2020, Paris F-75015, France
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
206
|
Prolidase is required for early trafficking events during influenza A virus entry. J Virol 2014; 88:11271-83. [PMID: 25031340 DOI: 10.1128/jvi.00800-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) entry is a multistep process that requires the interaction of the virus with numerous host factors. In this study, we demonstrate that prolidase (PEPD) is a cellular factor required by IAV for successful entry into target cells. PEPD was selected as a candidate during an entry screen performed on nonvalidated primary hits from previously published genome-wide small interfering RNA (siRNA) screens. siRNA-mediated depletion of PEPD resulted in the decreased growth of IAV during mono- and multicycle growth. This growth defect was independent of cell type or virus strain. Furthermore, IAV restriction was apparent as early as 3 h postinfection, and experiments in the absence of protein biosynthesis revealed that the nuclear import of viral ribonucleoprotein complexes (vRNPs) was already blocked in the absence of PEPD. These results led us to investigate which step during entry was affected. Receptor expression, IAV attachment, or IAV internalization was not dependent on the presence of PEPD. However, when looking at the distribution of incoming IAV particles in PEPD-knockdown cells, we found a localization pattern that differed from that in control cells: IAV mostly localized to the cell periphery, and consequently, viral particles displayed reduced colocalization with early and late endosome markers and fusion between viral and endosomal membranes was strongly reduced. Finally, experiments using a competitive inhibitor of PEPD catalytic activity suggested that the enzymatic function of the dipeptidase is required for its proviral effect on IAV entry. In sum, this study establishes PEPD as a novel entry factor required for early endosomal trafficking of IAV. IMPORTANCE Influenza A virus (IAV) continues to be a constant threat to public health. As IAV relies on its host cell for replication, the identification of host factors required by the virus is of importance. First, such studies often reveal novel functions of cellular factors and can extend our knowledge of cellular processes. Second, we can further our understanding of processes that are required for the entry of IAV into target cells. Third, the identification of host factors that contribute to IAV entry will increase the number of potential targets for the development of novel antiviral drugs that are of urgent need. Our study identifies prolidase (PEPD) to be a novel entry factor required by IAV for correct routing within the endosomal compartment following virus internalization. Thereby, we link PEPD, which has been shown to play a role during collagen recycling and growth factor signaling, to early events of viral infection.
Collapse
|
207
|
Zheng K, Kitazato K, Wang Y. Viruses exploit the function of epidermal growth factor receptor. Rev Med Virol 2014; 24:274-86. [PMID: 24888553 DOI: 10.1002/rmv.1796] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates cellular homeostatic processes. Following ligand binding, EGFR activates different downstream signalling cascades that promote cell survival, proliferation, motility, and angiogenesis and induces F-actin-dependent EGFR endocytosis, which relocalises the activated receptors for degradation or recycling. The responses that are induced by ligand binding to EGFR, including cell signalling activation, protein kinase phosphorylation and cytoskeletal network rearrangement, resemble those induced by virus infection. Increasing evidence demonstrates that many viruses usurp EGFR endocytosis or EGFR-mediated signalling for entry, replication, inflammation, and viral antagonism to the host antiviral system. In addition, viruses have acquired sophisticated mechanisms to regulate EGFR functions by interrupting the EGFR-recycling process and modulating EGFR expression. In this review, we provide an overview of the mechanisms by which viruses alter EGFR signalling in favour of their continued survival.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering, Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | |
Collapse
|
208
|
Kalinowski A, Ueki I, Min-Oo G, Ballon-Landa E, Knoff D, Galen B, Lanier LL, Nadel JA, Koff JL. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production. Am J Physiol Lung Cell Mol Physiol 2014; 307:L186-96. [PMID: 24838750 DOI: 10.1152/ajplung.00368.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.
Collapse
Affiliation(s)
| | - Iris Ueki
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Gundula Min-Oo
- Department of Microbiology and Immunology, and Cancer Research Institute, University of California, San Francisco, California; and
| | | | - David Knoff
- Department of Medicine, Yale University, New Haven, Connecticut
| | - Benjamin Galen
- Department of Medicine, Yale University, New Haven, Connecticut
| | - Lewis L Lanier
- Department of Microbiology and Immunology, and Cancer Research Institute, University of California, San Francisco, California; and
| | - Jay A Nadel
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, Connecticut;
| |
Collapse
|
209
|
Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J Virol 2014; 88:6714-28. [PMID: 24696469 DOI: 10.1128/jvi.00530-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Viruses modulate cellular signaling pathways at almost every step of the infection cycle. Cellular signaling pathways activated at later times of influenza infection have previously been investigated; however, early influenza virus-host cell interactions remain understudied. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates phosphatidylinositol 3-kinase (PI3K) activation and actin reorganization, two critical processes during influenza A virus (IAV) infection in most cell types. Using 6 influenza A virus strains (A/Puerto Rico/8/1934, A/Aichi/2/1968 × A/Puerto Rico/8/1934 reassortant [X-31], A/California/04/2009, mouse-adapted A/California/04/2009, A/WSN/1933, and A/New Caledonia/20/1999), we examined the role of FAK during IAV entry. We found that influenza virus attachment induced PI3K-dependent FAK-Y397 phosphorylation. Pharmacological FAK inhibition or expression of a kinase-dead mutant of FAK led to disruption of the actin meshwork that resulted in sequestration of IAV at the cell periphery and reduced virion localization to early endosomes. Additionally, FAK inhibition impeded viral RNA replication at later times of infection and ultimately resulted in significantly reduced viral titers in both A549 and differentiated normal human bronchial epithelial (NHBE) cells. Although not all tested strains activated FAK, all of them exhibited a reduction in viral replication in response to inhibition of FAK signaling. These findings highlight novel biphasic roles of FAK activation during IAV infection and indicate that FAK serves as a central link between receptor-mediated PI3K activation and actin reorganization during IAV infection. IMPORTANCE We found that FAK links early activation of PI3K and actin reorganization, thereby regulating influenza virus entry. Surprisingly, we also found that FAK can regulate viral RNA replication independently of its role in entry. Our study addresses a knowledge gap in the understanding of signaling events triggered by influenza virus that mediate its internalization and initiation of the infection cycle. Understanding of these fundamental molecular events will be necessary to identify novel host targets, such as FAK, and development of future anti-influenza virus therapeutics.
Collapse
|
210
|
Application perspectives of localization microscopy in virology. Histochem Cell Biol 2014; 142:43-59. [DOI: 10.1007/s00418-014-1203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 01/07/2023]
|
211
|
Abstract
Influenza A and B viruses are highly contagious respiratory pathogens with a considerable medical and socioeconomical burden and known pandemic potential. Current influenza vaccines require annual updating and provide only partial protection in some risk groups. Due to the global spread of viruses with resistance to the M2 proton channel inhibitor amantadine or the neuraminidase inhibitor oseltamivir, novel antiviral agents with an original mode of action are urgently needed. We here focus on emerging options to interfere with the influenza virus entry process, which consists of the following steps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating, low pH-induced membrane fusion, and, finally, import of the viral ribonucleoprotein into the nucleus. We review the current functional and structural insights in the viral and cellular components of this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that at least some of these innovative concepts to block influenza virus entry will proceed from the proof of concept to a more advanced stage. Special attention is therefore given to the challenging issues of influenza virus (sub)type-dependent activity or potential drug resistance.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| |
Collapse
|
212
|
Stanley SA, Barczak AK, Silvis MR, Luo SS, Sogi K, Vokes M, Bray MA, Carpenter AE, Moore CB, Siddiqi N, Rubin EJ, Hung DT. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog 2014; 10:e1003946. [PMID: 24586159 PMCID: PMC3930586 DOI: 10.1371/journal.ppat.1003946] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/01/2014] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited. Infection with the bacterial pathogen Mycobacterium tuberculosis causes the disease tuberculosis (TB) that imposes significant worldwide morbidity and mortality. Approximately 2 billion people are infected with M. tuberculosis, and almost 1.5 million people die annually from TB. With increasing drug resistance and few novel drug candidates, our inability to effectively treat all infected individuals necessitates a deeper understanding of the host-pathogen interface to facilitate new approaches to treatment. In addition, the current anti-tuberculosis regimen requires months of strict compliance to clear infection; targeting host immune function could play a strategic role in reducing the duration and complexity of treatment while effectively treating drug-resistant strains. Here we use a microscopy-based screen to identify molecules that target host pathways and inhibit the growth of M. tuberculosis in macrophages. We identified several host pathways not previously implicated in tuberculosis. The identified inhibitors prevent growth either by blocking host pathways exploited by M. tuberculosis for virulence, or by activating immune responses that target intracellular bacteria. Fluoxetine, used clinically for treating depression, induces autophagy and enhances production of TNF-α. Similarly, gefitinib, used clinically for treating cancer, inhibits M. tuberculosis growth in macrophages. Importantly, gefitinib treatment reduces bacterial replication in the lungs of M. tuberculosis-infected mice.
Collapse
Affiliation(s)
- Sarah A Stanley
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America ; Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Amy K Barczak
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America ; Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Melanie R Silvis
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Samantha S Luo
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kimberly Sogi
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Martha Vokes
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark-Anthony Bray
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Anne E Carpenter
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christopher B Moore
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Noman Siddiqi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America ; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
213
|
Abstract
ABSTRACT: The elucidation of the mechanisms by which HCV infects hepatocytes and replicates has been paramount for identifying therapeutic targets and developing the highly efficacious antiviral drugs from which we benefit today. The earliest stage of HCV infection is viral entry, a process in which a complex interplay is thought to occur between host molecules (including glycosaminoglycans, low-density lipoprotein receptor, CD81, SR-B1, CLDN1, OCLN, EGF receptor, ephrin type A receptor 2 and transferrin receptor 1) and envelope viral glycoproteins E1 and E2. The wealth of experimental data produced in the field of HCV entry is summarized in a proposed mechanism, updated to include the most recently published data on the topic. Compounds with putative entry-blocking and/or entry-inhibiting activity in vitro and in vivo are also briefly reviewed.
Collapse
Affiliation(s)
- Andrea Magri
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Bocchetta
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Michela Emma Burlone
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
214
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
215
|
Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials 2014; 35:601-10. [DOI: 10.1016/j.biomaterials.2013.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 01/22/2023]
|
216
|
Role of epidermal growth factor receptor signaling in the interaction of Neisseria meningitidis with endothelial cells. Infect Immun 2013; 82:1243-55. [PMID: 24379285 DOI: 10.1128/iai.01346-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neisseria meningitidis, the causative agent of meningitis and septicemia, attaches to and invades various cell types. Both steps induce and/or require tyrosine phosphorylation of host cell proteins. Here, we used a phospho array platform to identify active receptor tyrosine kinases (RTKs) and key signaling nodes in N. meningitidis-infected brain endothelial cells to decipher RTK-dependent signaling pathways necessary for bacterial uptake. We detected several activated RTKs, including the ErbB family receptors epidermal growth factor receptor (EGFR), ErbB2, and ErbB4. We found that pharmacological inhibition and genetic ablation of ErbB receptor tyrosine phosphorylation and expression resulted in decreased bacterial uptake and heterologous expression of EGFR, ErbB2, or ErbB4 in Chinese ovary hamster (CHO-K1) cells, which do not express of EGFR and ErbB4; the decrease caused a significant increase in meningococcal invasion. Activation of EGFR and ErbB4 was mediated by transactivation via the common ligand HB-EGF (heparin-binding EGF-like ligand), which was significantly elevated in infected cell culture supernatants. We furthermore determined that N. meningitidis induced phosphorylation of EGFR at Tyr845 independent of ligand binding, which required c-Src activation and was involved in mediating uptake of N. meningitidis into eukaryotic cells. Increased uptake was repressed by expression of EGFR Y845F, which harbored a point mutation in the kinase domain. In addition, activation of ErbB4 at its autophosphorylation site, Tyr1284, and phosphorylation of ErbB2 Thr686 were observed. Altogether, our results provide evidence that EGFR, ErbB2, and ErbB4 are activated in response to N. meningitidis infection and shed new light on the role of ErbB signaling in meningococcal infection biology.
Collapse
|
217
|
Muniz-Feliciano L, Van Grol J, Portillo JAC, Liew L, Liu B, Carlin CR, Carruthers VB, Matthews S, Subauste CS. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog 2013; 9:e1003809. [PMID: 24367261 PMCID: PMC3868508 DOI: 10.1371/journal.ppat.1003809] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/19/2013] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.
Collapse
Affiliation(s)
- Luis Muniz-Feliciano
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jennifer Van Grol
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lloyd Liew
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Bing Liu
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephen Matthews
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
218
|
Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 2013; 5:3192-212. [PMID: 24351799 PMCID: PMC3967167 DOI: 10.3390/v5123192] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/04/2023] Open
Abstract
As viruses do not possess genes encoding for proteins required for translation, energy metabolism or membrane biosynthesis, they are classified as obligatory intracellular parasites that depend on a host cell to replicate. This genome limitation forces them to gain control over cellular processes to ensure their successful propagation. A diverse spectrum of virally encoded proteins tackling a broad spectrum of cellular pathways during most steps of the viral life cycle ranging from the host cell entry to viral protein translation has evolved. Since the host cell PI3K/Akt signaling pathway plays a critical regulatory role in many cellular processes including RNA processing, translation, autophagy and apoptosis, many viruses, in widely varying ways, target it. This review focuses on a number of remarkable examples of viral strategies, which exploit the PI3K/Akt signaling pathway for effective viral replication.
Collapse
Affiliation(s)
| | - Heiner Schaal
- Universitätsklinikum Düsseldorf, Institut für Virologie, Universitätsstraße 1, Düsseldorf 40225, Germany.
| |
Collapse
|
219
|
Abstract
The cell signaling plays a pivotal role in regulating cellular processes and is often manipulated by viruses as they rely on the functions offered by cells for their propagation. The first stage of their host life is to pass the genetic materials into the cell. Although some viruses can directly penetrate into cytosol, in fact, most virus entry into their host cells is through endocytosis. This machinery initiates with cell type specific cellular signaling pathways, and the signaling compounds can be proteins, lipids, and carbohydrates. The activation can be triggered in a very short time after virus binds on target cells, such as receptors. The signaling pathways involved in regulation of viral entry are wide diversity that often cross-talk between different endocytosis results. Furthermore, some viruses have the ability to use the multiple internalization pathways which leads to the regulation being even more complex. In this paper, we discuss some recent advances in our understanding of cellular pathways for virus entry, molecular signaling during virus entry, formation of endocytic vesicles, and the traffic.
Collapse
Affiliation(s)
- Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
220
|
Novel inflammatory markers, clinical risk factors and virus type associated with severe respiratory syncytial virus infection. Pediatr Infect Dis J 2013; 32:e437-42. [PMID: 23804121 PMCID: PMC3883981 DOI: 10.1097/inf.0b013e3182a14407] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Virus-induced inflammation contributes to respiratory syncytial virus (RSV) pathogenesis. We sought to determine the specific mediators that are associated with more severe illness in young children. METHODS Children ≤ 5 years of age seen in our emergency department for respiratory symptoms from September 1998 to May 2008 were eligible for enrollment. Nasopharyngeal wash samples were collected from all eligible patients, and clinical data were recorded. Individuals were included in this study if nasopharyngeal wash samples were positive for RSV only. Patients enrolled in the study were stratified by disease severity, defined as mild (not hospitalized), moderate (hospitalized) or severe (requiring intensive care unit stay). Concentrations of individual inflammatory biomarkers in nasopharyngeal wash fluids were determined using the Luminex human 30-plex assay. RESULTS Eight hundred fifty-one patients met study criteria: 268 (31.5%) with mild, 503 (59.1%) with moderate and 80 (9.4%) with severe illness. As expected, illness severity was directly associated with young age, prematurity, heart or lung disease, infection with RSV group A and elevated concentrations of interleukin (IL)-2R, IL-6, CXCL8, tumor necrosis factor-α, interferon-α, CCL3, CCL4 and CCL2. In addition, we report several novel and mechanistically important inflammatory biomarkers of severe RSV disease, including IL-1β, IL1-RA, IL-7, epidermal growth factor and hepatocyte growth factor. CONCLUSIONS In a large, longitudinal study (10 years, 851 enrolled patients) limited to RSV infection only, in which well-known risk factors are confirmed, we identified 5 novel biomarkers specifically of severe disease. These markers may ultimately serve to elucidate disease mechanisms.
Collapse
|
221
|
Elmer JJ, Christensen MD, Rege K. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Control Release 2013; 172:246-257. [PMID: 23994344 PMCID: PMC4258102 DOI: 10.1016/j.jconrel.2013.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022]
Abstract
Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Collapse
Affiliation(s)
- Jacob J Elmer
- Department of Chemical Engineering, Villanova University, Villanova 19085, USA.
| | | | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe 85287-6106, USA.
| |
Collapse
|
222
|
The macrophage galactose-type lectin can function as an attachment and entry receptor for influenza virus. J Virol 2013; 88:1659-72. [PMID: 24257596 DOI: 10.1128/jvi.02014-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca(2+)-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca(2+)-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV.
Collapse
|
223
|
Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 2013; 95:263-277. [PMID: 24225499 DOI: 10.1099/vir.0.059477-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus is a major human pathogen that causes annual epidemics and occasional pandemics. Moreover, the virus causes outbreaks in poultry and other animals, such as pigs, requiring costly and laborious countermeasures. Therefore, influenza virus has a substantial impact on health and the global economy. Here, we review entry of this important pathogen into target cells, an essential process by which viral genomes are delivered from extracellular virions to sites of transcription/replication in the cell nucleus. We summarize current knowledge on the interaction of influenza viruses with their receptor, sialic acid, and highlight the ongoing search for additional receptors. We describe receptor-mediated endocytosis and the recently discovered macropinocytosis as alternative virus uptake pathways, and illustrate the subsequent endosomal trafficking of the virus with advanced live microscopy techniques. Release of virus from the endosome and import of the viral ribonucleoproteins into the host cell nucleus are also outlined. Although a focus has been on viral protein function during entry, recent studies have revealed exciting information on cellular factors required for influenza virus entry. We highlight these, and discuss established entry inhibitors targeting viral and host factors, as well as the latest prospects for designing novel 'anti-entry' compounds. New entry inhibitors are of particular importance for current efforts to develop the next generation of anti-influenza drugs - entry is the first essential step of virus replication and is an ideal target to block infection efficiently.
Collapse
Affiliation(s)
- Thomas O Edinger
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
224
|
Abstract
Influenza is caused by influenza A virus (IAV), an enveloped, negative-stranded RNA virus that derives its envelope lipids from the host cell plasma membrane. Here, we examined the functional role of cellular cholesterol in the IAV infection cycle. We show that shifting of cellular cholesterol pools via the Ca2+-regulated membrane-binding protein annexin A6 (AnxA6) affects the infectivity of progeny virus particles. Elevated levels of cellular AnxA6, which decrease plasma membrane and increase late endosomal cholesterol levels, impaired IAV replication and propagation, whereas RNA interference-mediated AnxA6 ablation increased viral progeny titers. Pharmacological accumulation of late endosomal cholesterol also diminished IAV virus propagation. Decreased IAV replication caused by upregulated AnxA6 expression could be restored either by exogenous replenishment of host cell cholesterol or by ectopic expression of the late endosomal cholesterol transporter Niemann-Pick C1 (NPC1). Virus released from AnxA6-overexpressing cells displayed significantly reduced cholesterol levels. Our results show that IAV replication depends on maintenance of the cellular cholesterol balance and identify AnxA6 as a critical factor in linking IAV to cellular cholesterol homeostasis. Influenza A virus (IAV) is a major public health concern, and yet, major host-pathogen interactions regulating IAV replication still remain poorly understood. It is known that host cell cholesterol is a critical factor in the influenza virus life cycle. The viral envelope is derived from the host cell membrane during the process of budding and, hence, equips the virus with a special lipid-protein mixture which is high in cholesterol. However, the influence of host cell cholesterol homeostasis on IAV infection is largely unknown. We show that IAV infection success critically depends on host cell cholesterol distribution. Cholesterol sequestration in the endosomal compartment impairs progeny titer and infectivity and is associated with reduced cholesterol content in the viral envelope.
Collapse
|
225
|
Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1153-68. [PMID: 24161712 DOI: 10.1016/j.bbamem.2013.10.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus. Adaptation to different hosts in vitro was shown to require mutations within HA altering the receptor binding and/or fusion behavior of the respective virus strain. Human adapted influenza virus strains (H1N1, H3N2, H2N2) as well as recent avian influenza virus strains (H5, H7 and H9 subtypes) which gained the ability to infect humans mostly contained mutations in the receptor binding site (RBS) of HA enabling increased binding affinity of these viruses to human type (α-2,6 linked sialic acid) receptors. Thus, the receptor binding specificity seems to be the major requirement for successful adaptation to the human host; however, the RBS is not the only determinant of host specificity. Increased binding to a certain cell type does not always correlate with infection efficiency. Furthermore, viruses carrying mutations in the RBS often resulted in reduced viral fitness and were still unable to transmit between mammals. Recently, the pH stability of HA was reported to affect the transmissibility of influenza viruses. This review summarizes recent findings on the adaptation of influenza A viruses to the human host and related amino acid substitutions resulting in altered receptor binding specificity and/or modulated fusion pH of HA. Furthermore, the role of these properties (receptor specificity and pH stability of HA) for adaptation to and transmissibility in the human host is discussed. This article is part of a Special Issue entitled: Viral Membrane Proteins -- Channels for Cellular Networking.
Collapse
Affiliation(s)
- Caroline M Mair
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Kai Ludwig
- Research center of Electron Microscopy, Institute of Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Andreas Herrmann
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| | - Christian Sieben
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
226
|
PLC-γ1 signaling plays a subtype-specific role in postbinding cell entry of influenza A virus. J Virol 2013; 88:417-24. [PMID: 24155396 DOI: 10.1128/jvi.02591-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Host signaling pathways and cellular proteins play important roles in the influenza viral life cycle and can serve as antiviral targets. In this study, we report the engagement of host phosphoinositide-specific phospholipase γ1 (PLC-γ1) in mediating cell entry of influenza virus H1N1 but not H3N2 subtype. Both PLC-γ1-specific inhibitor and short hairpin RNA (shRNA) strongly suppress the replication of H1N1 but not H3N2 viruses in cell culture, suggesting that PLC-γ1 plays an important subtype-specific role in the influenza viral life cycle. Further analyses demonstrate that PLC-γ1 activation is required for viral postbinding cell entry. In addition, H1N1, but not H3N2, infection leads to the phosphorylation of PLC-γ1 at Ser 1248 immediately after infection and independent of viral replication. We have further shown that H1N1-induced PLC-γ1 activation is downstream of epidermal growth factor receptor (EGFR) signaling. Interestingly, both H1N1 and H3N2 infections activate EGFR, but only H1N1 infection leads to PLC-γ1 activation. Taking our findings together, we have identified for the first time the subtype-specific interplay of host PLC-γ1 signaling and H1N1 virus that is critical for viral uptake early in the infection. Our study provides novel insights into how virus interacts with the cellular signaling network by demonstrating that viral determinants can regulate how the host signaling pathways function in virally infected cells.
Collapse
|
227
|
Paquette SG, Banner D, Chi LTB, Leόn AJ, Xu L, Ran L, Huang SSH, Farooqui A, Kelvin DJ, Kelvin AA. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion. Virology 2013; 448:91-103. [PMID: 24314640 DOI: 10.1016/j.virol.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.
Collapse
Affiliation(s)
- Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 2013; 503:406-9. [PMID: 24141948 PMCID: PMC3863936 DOI: 10.1038/nature12637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.
Collapse
|
229
|
Hutchinson EC, Fodor E. Transport of the influenza virus genome from nucleus to nucleus. Viruses 2013; 5:2424-46. [PMID: 24104053 PMCID: PMC3814596 DOI: 10.3390/v5102424] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022] Open
Abstract
The segmented genome of an influenza virus is encapsidated into ribonucleoprotein complexes (RNPs). Unusually among RNA viruses, influenza viruses replicate in the nucleus of an infected cell, and their RNPs must therefore recruit host factors to ensure transport across a number of cellular compartments during the course of an infection. Recent studies have shed new light on many of these processes, including the regulation of nuclear export, genome packaging, mechanisms of virion assembly and viral entry and, in particular, the identification of Rab11 on recycling endosomes as a key mediator of RNP transport and genome assembly. This review uses these recent gains in understanding to describe in detail the journey of an influenza A virus RNP from its synthesis in the nucleus through to its entry into the nucleus of a new host cell.
Collapse
Affiliation(s)
- Edward C Hutchinson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
230
|
Schoggins JW. Regulating interferon antiviral activity: a role for epidermal growth factor receptor. Hepatology 2013; 58:1200-2. [PMID: 23703779 DOI: 10.1002/hep.26486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/16/2023]
Affiliation(s)
- John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
231
|
Ueki IF, Min-Oo G, Kalinowski A, Ballon-Landa E, Lanier LL, Nadel JA, Koff JL. Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium. ACTA ACUST UNITED AC 2013; 210:1929-36. [PMID: 23999497 PMCID: PMC3782052 DOI: 10.1084/jem.20121401] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of epidermal growth factor receptor during viral infection augments IRF1-dependent IFN-λ production and decreases viral titers. Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus– and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1–induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.
Collapse
Affiliation(s)
- Iris F Ueki
- Department of Medicine, 2 Cardiovascular Research Institute, 3 Department of Microbiology and Immunology, and 4 Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94122
| | | | | | | | | | | | | |
Collapse
|
232
|
Habibzay M, Weiss G, Hussell T. Bacterial superinfection following lung inflammatory disorders. Future Microbiol 2013; 8:247-56. [PMID: 23374129 DOI: 10.2217/fmb.12.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lung environment is designed to prevent innate responses to harmless commensal microorganisms and environmental antigens. Features of an intact respiratory epithelium are critical to this process. A damaged or altered lung epithelial surface will therefore remove or alter the suppressive signals delivered to local innate immune cells, and inflammation ensues. Timely resolution of inflammation is important to prevent bystander tissue damage. However, if resolving pathways themselves are prolonged or repeated, they too can cause undesirable consequences, including bacterial superinfections, which we discuss here.
Collapse
Affiliation(s)
- Maryam Habibzay
- Imperial College London, Leukocyte Biology Section, National Heart & Lung Institute, London, UK
| | | | | |
Collapse
|
233
|
Song H, Wang Q, Guo Y, Liu S, Song R, Gao X, Dai L, Li B, Zhang D, Cheng J. Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013; 13:257. [PMID: 23731466 PMCID: PMC3679792 DOI: 10.1186/1471-2334-13-257] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With concerns about the disastrous health and economic consequences caused by the influenza pandemic, comprehensively understanding the global host response to influenza virus infection is urgent. The role of microRNA (miRNA) has recently been highlighted in pathogen-host interactions. However, the precise role of miRNAs in the pathogenesis of influenza virus infection in humans, especially in critically ill patients is still unclear. METHODS We identified cellular miRNAs involved in the host response to influenza virus infection by performing comprehensive miRNA profiling in peripheral blood mononuclear cells (PBMCs) from critically ill patients with swine-origin influenza pandemic H1N1 (2009) virus infection via miRNA microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays. Receiver operator characteristic (ROC) curve analysis was conducted and area under the ROC curve (AUC) was calculated to evaluate the diagnostic accuracy of severe H1N1 influenza virus infection. Furthermore, an integrative network of miRNA-mediated host-influenza virus protein interactions was constructed by integrating the predicted and validated miRNA-gene interaction data with influenza virus and host-protein-protein interaction information using Cytoscape software. Moreover, several hub genes in the network were selected and validated by qRT-PCR. RESULTS Forty-one significantly differentially expressed miRNAs were found by miRNA microarray; nine were selected and validated by qRT-PCR. QRT-PCR assay and ROC curve analyses revealed that miR-31, miR-29a and miR-148a all had significant potential diagnostic value for critically ill patients infected with H1N1 influenza virus, which yielded AUC of 0.9510, 0.8951 and 0.8811, respectively. We subsequently constructed an integrative network of miRNA-mediated host-influenza virus protein interactions, wherein we found that miRNAs are involved in regulating important pathways, such as mitogen-activated protein kinase signaling pathway, epidermal growth factor receptor signaling pathway, and Toll-like receptor signaling pathway, during influenza virus infection. Some of differentially expressed miRNAs via in silico analysis targeted mRNAs of several key genes in these pathways. The mRNA expression level of tumor protein T53 and transforming growth factor beta receptor 1 were found significantly reduced in critically ill patients, whereas the expression of Janus kinase 2, caspase 3 apoptosis-related cysteine peptidase, interleukin 10, and myxovirus resistance 1 were extremely increased in critically ill patients. CONCLUSIONS Our data suggest that the dysregulation of miRNAs in the PBMCs of H1N1 critically ill patients can regulate a number of key genes in the major signaling pathways associated with influenza virus infection. These differentially expressed miRNAs could be potential therapeutic targets or biomarkers for severe influenza virus infection.
Collapse
Affiliation(s)
- Hao Song
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yang Guo
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Dai
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Baoshun Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Deli Zhang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|
234
|
Ehrhardt C, Dudek SE, Holzberg M, Urban S, Hrincius ER, Haasbach E, Seyer R, Lapuse J, Planz O, Ludwig S. A plant extract of Ribes nigrum folium possesses anti-influenza virus activity in vitro and in vivo by preventing virus entry to host cells. PLoS One 2013; 8:e63657. [PMID: 23717460 PMCID: PMC3662772 DOI: 10.1371/journal.pone.0063657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority. Here we introduce LADANIA067 from the leaves of the wild black currant (Ribes nigrum folium) as a potent compound against IAV infections in vitro and in vivo. LADANIA067 treatment resulted in a reduction of progeny virus titers in cell cultures infected with prototype avian and human influenza virus strains of different subtypes. At the effective dose of 100 µg/ml the extract did not exhibit apparent harming effects on cell viability, metabolism or proliferation. Further, viruses showed no tendency to develop resistance to LADANIA067 when compared to amantadine that resulted in the generation of resistant variants after only a few passages. On a molecular basis the protective effect of LADANIA067 appears to be mainly due to interference with virus internalisation. In the mouse infection model LADANIA067 treatment reduces progeny virus titers in the lung upon intranasal application. In conclusion, an extract from the leaves of the wild black currant might be a promising source for the development of new antiviral compounds to fight IAV infections.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Sabine Eva Dudek
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Magdalena Holzberg
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Sabine Urban
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Eike Roman Hrincius
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Emanuel Haasbach
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Roman Seyer
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Julia Lapuse
- Dr. Pandalis NatUrprodukte GmbH, Glandorf, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
235
|
The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry. PLoS Pathog 2013; 9:e1003325. [PMID: 23633955 PMCID: PMC3635982 DOI: 10.1371/journal.ppat.1003325] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Infection of mammalian cells by the strictly intracellular pathogens Chlamydiae requires adhesion and internalization of the infectious Elementary Bodies (EBs). The components of the latter step were unknown. Here, we identify Chlamydia pneumoniae Pmp21 as an invasin and EGFR as its receptor. Modulation of EGFR surface expression evokes correlated changes in EB adhesion, internalization and infectivity. Ectopic expression of EGFR in EGFR-negative hamster cells leads to binding of Pmp21 beads and EBs, thus boosting the infection. EB/Pmp21 binding and invasion of epithelial cells results in activation of EGFR, recruitment of adaptors Grb2 and c-Cbl and activation of ERK1/2, while inhibition of EGFR or MEK kinase activity abrogates EB entry, but not attachment. Binding of Grb2 and c-Cbl by EGFR is essential for infection. This is the first report of an invasin-receptor interaction involved in host-cell invasion by any chlamydial species.
Collapse
|
236
|
|
237
|
Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013; 332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately.
Collapse
Affiliation(s)
- Lisa N Murillo
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
238
|
Lépinoux-Chambaud C, Eyer J. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis. Int J Pharm 2013; 454:738-47. [PMID: 23603097 DOI: 10.1016/j.ijpharm.2013.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Glioblastoma are the most frequent and aggressive tumour of the nervous system despite surgical resection associated with chemotherapy and radiotherapy. Recently, we showed that the NFL-TBS.40-63 peptide corresponding to the sequence of a tubulin-binding site of neurofilaments, enters selectively in glioblastoma cells where it blocks microtubule polymerization, inhibits their proliferation, and reduces tumour development in rats bearing glioblastoma (Bocquet et al., 2009; Berges et al., 2012a). Here, we characterized the molecular mechanism responsible for the uptake of NFL-TBS.40-63 peptide by glioblastoma cells. Unlike other cell penetrating peptides (CPPs), which use a balance between endocytosis and direct translocation, the NFL-TBS.40-63 peptide is unable to translocate directly through the membrane when incubated with giant plasma membrane vesicles. Then, using a panel of markers and inhibitors, flow cytometry and confocal microscopy investigations showed that the uptake occurs mainly through endocytosis. Moreover, glycosaminoglycans and αVβ3 integrins are not involved in the NFL-TBS.40-63 peptide recognition and internalization by glioblastoma cells. Finally, the signalling of tyrosine kinase receptors is involved in the peptide uptake, especially via EGFR overexpressed in tumour cells, indicating that the uptake of NFL-TBS.40-63 peptide by glioblastoma cells is related to their abnormally high proliferative activity.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie & Transgenese, LUNAM, UPRES EA-3143, Université d'Angers, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, 49033 Angers, France
| | | |
Collapse
|
239
|
Abstract
Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans.
Collapse
Affiliation(s)
- Irene Ramos
- Authors to whom correspondence should be addressed; (A.F.S.); (I.R.); Tel. +1-212-241-5182 (A.F.S.); +1-212 241-0994 (I.R.); Fax: +1-212-534-1684 (A.F.S.); +1-212-534-1684 (I.R.)
| | - Ana Fernandez-Sesma
- Authors to whom correspondence should be addressed; (A.F.S.); (I.R.); Tel. +1-212-241-5182 (A.F.S.); +1-212 241-0994 (I.R.); Fax: +1-212-534-1684 (A.F.S.); +1-212-534-1684 (I.R.)
| |
Collapse
|
240
|
Vascular endothelial growth factor A promotes vaccinia virus entry into host cells via activation of the Akt pathway. J Virol 2012; 87:2781-90. [PMID: 23269798 DOI: 10.1128/jvi.00854-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia virus (VV) is an enveloped DNA virus from the poxvirus family and has played a crucial role in the eradication of smallpox. It continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer. However, the mechanisms of poxvirus entry, the host factors that affect viral virulence, and the reasons for its natural tropism for tumor cells are incompletely understood. By studying the effect of hypoxia on VV infection, we found that vascular endothelial growth factor A (VEGF-A) augments oncolytic VV cytotoxicity. VEGF derived from tumor cells acts to increase VV internalization, resulting in increased replication and cytotoxicity in an AKT-dependent manner in both tumor cells and normal respiratory epithelial cells. Overexpression of VEGF also enhances VV infection within tumor tissue in vivo after systemic delivery. These results highlight the importance of VEGF expression in VV infection and have potential implications for the design of new strategies to prevent poxvirus infection and the development of future generations of oncolytic VV in combination with conventional or biological therapies.
Collapse
|
241
|
Madrahimov A, Helikar T, Kowal B, Lu G, Rogers J. Dynamics of influenza virus and human host interactions during infection and replication cycle. Bull Math Biol 2012; 75:988-1011. [PMID: 23081726 DOI: 10.1007/s11538-012-9777-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/26/2012] [Indexed: 11/26/2022]
Abstract
The replication and life cycle of the influenza virus is governed by an intricate network of intracellular regulatory events during infection, including interactions with an even more complex system of biochemical interactions of the host cell. Computational modeling and systems biology have been successfully employed to further the understanding of various biological systems, however, computational studies of the complexity of intracellular interactions during influenza infection is lacking. In this work, we present the first large-scale dynamical model of the infection and replication cycle of influenza, as well as some of its interactions with the host's signaling machinery. Specifically, we focus on and visualize the dynamics of the internalization and endocytosis of the virus, replication and translation of its genomic components, as well as the assembly of progeny virions. Simulations and analyses of the models dynamics qualitatively reproduced numerous biological phenomena discovered in the laboratory. Finally, comparisons of the dynamics of existing and proposed drugs, our results suggest that a drug targeting PB1:PA would be more efficient than existing Amantadin/Rimantaine or Zanamivir/Oseltamivir.
Collapse
Affiliation(s)
- Alex Madrahimov
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | | | | | | | |
Collapse
|
242
|
EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A 2012; 109:14194-9. [PMID: 22891338 DOI: 10.1073/pnas.1117676109] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The fungus Candida albicans is the major cause of oropharyngeal candidiasis (OPC). A key feature of this disease is fungal invasion of oral epithelial cells, a process that can occur by active penetration and fungal-induced endocytosis. Two invasins, Als3 and Ssa1, induce epithelial cell endocytosis of C. albicans, in part by binding to E-cadherin. However, inhibition of E-cadherin function only partially reduces C. albicans endocytosis, suggesting that there are additional epithelial cell receptors for this organism. Here, we show that the EGF receptor (EGFR) and HER2 function cooperatively to induce the endocytosis of C. albicans hyphae. EGFR and HER2 interact with C. albicans in an Als3- and Ssa1-dependent manner, and this interaction induces receptor autophosphorylation. Signaling through both EGFR and HER2 is required for maximal epithelial cell endocytosis of C. albicans in vitro. Importantly, oral infection with C. albicans stimulates the phosphorylation of EGFR and HER2 in the oral mucosa of mice, and treatment with a dual EGFR and HER2 kinase inhibitor significantly decreases this phosphorylation and reduces the severity of OPC. These results show the importance of EGFR and HER2 signaling in the pathogenesis of OPC and indicate the feasibility of treating candidal infections by targeting the host cell receptors with which the fungus interacts.
Collapse
|
243
|
Abstract
Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes.
Collapse
|
244
|
Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol 2012; 86:10935-49. [PMID: 22855500 DOI: 10.1128/jvi.00750-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.
Collapse
|
245
|
Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 2012; 4:1144-68. [PMID: 22852045 PMCID: PMC3407899 DOI: 10.3390/v4071144] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/15/2022] Open
Abstract
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future.
Collapse
Affiliation(s)
- Brian S. Hamilton
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
246
|
Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15:490-9. [PMID: 22749376 DOI: 10.1016/j.mib.2012.05.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
Macropinocytosis has emerged as a major endocytic mechanism in the cell entry of animal viruses. The process differs fundamentally from other endocytic mechanisms involved in virus internalization. By activating growth factor receptors or other signaling molecules, plasma membrane-bound viruses trigger the activation of a signaling pathway. When amplified, this causes a transient, global change in cell behavior. The consequences of this change include the actin-dependent formation of membrane protrusions, the elevation of non-specific uptake of fluid, and the internalization of membrane together with surface-bound ligands and particles including viruses. Recent studies show that this strategy is used by a variety of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zürich, Institute of Biochemistry, Zürich, Switzerland.
| | | |
Collapse
|
247
|
The C11R gene, which encodes the vaccinia virus growth factor, is partially responsible for MVA-induced NF-κB and ERK2 activation. J Virol 2012; 86:9629-39. [PMID: 22740414 DOI: 10.1128/jvi.06279-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MVA is an attenuated strain of vaccinia virus (VACV) that is a popular vaccine vector. MVA infection activates NF-κB. For 293T cells, it is known that MVA early gene expression activates extracellular signal-regulated kinase 2 (ERK2), resulting in NF-κB activation. However, other viral and cellular mechanisms responsible for this event are ill defined. The data presented here show that the epidermal growth factor receptor (EGFR) is at least one apical trigger in this pathway: ERK2 and NF-κB activation was diminished when MVA infections occurred in cells devoid of the EGFR (CHO K1 cells) or in the presence of a drug that inhibits EGFR activation (AG1478) in 293T cells. The expression of dominant negative Ras or Raf proteins still permitted NF-κB activation, suggesting that a nonclassical EGFR-based signal transduction pathway triggered ERK2-NF-κB activation. C11R is an early gene present in MVA and other orthopoxviruses. It encodes the soluble, secreted vaccinia virus growth factor (VGF), a protein that binds to and stimulates the EGFR. Here it was observed that NF-κB was activated in 293T cells transfected with a plasmid encoding the C11R gene. Silencing by small interfering RNA (siRNA) or deletion of the C11R gene (MVAΔC11R) reduced both MVA-induced ERK2 and NF-κB activation in 293T cells or the keratinocyte line Hacat, suggesting that this mechanism of MVA-induced NF-κB activation may be common for several cell types.
Collapse
|
248
|
Abstract
Influenza A virus (IAV) enters host cells after attachment of its hemagglutinin (HA) to surface-exposed sialic acid. Sialylated N-linked glycans have been reported to be essential for IAV entry [Chu VC, Whittaker GR (2004) Proc Natl Acad Sci USA 102:18153-18158], thereby implicating the requirement for proteinaceous receptors in IAV entry. Here we show, using different N-acetylglucosaminyl transferase 1 (GnT1)-deficient cells, that N-linked sialosides can mediate, but are not required for, entry of IAV. Entry into GnT1-deficient cells was fully dependent on sialic acid. Although macropinocytic entry appeared to be affected by the absence of sialylated N-glycans, dynamin-dependent entry was not affected at all. However, binding of HA to GnT1-deficient cells and subsequent entry of IAV were reduced by the presence of serum, which could be reversed by back-transfection of a GnT1-encoding plasmid. The inhibitory effect of serum was significantly increased by inhibition of the viral receptor-destroying enzyme neuraminidase (NA). Our results indicate that decoy receptors on soluble serum factors compete with cell surface receptors for binding to HA in the absence of sialylated N-glycans at the cell surface. This competition is particularly disturbed by the additional presence of NA inhibitors, resulting in strongly reduced IAV entry. Our results indicate that the balance between HA and NA is important not only for virion release, but also for entry into cells.
Collapse
|
249
|
Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 2012; 8:e1002657. [PMID: 22536154 PMCID: PMC3334892 DOI: 10.1371/journal.ppat.1002657] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022] Open
Abstract
Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH. Human papillomavirus type 16 is the main etiological agent of cervical cancer. Despite advances in our understanding of transformation and cancer progression, as well as preventative vaccination strategies, the early events in papillomavirus infections are incompletely understood. Here, we investigated which strategies and cellular mechanisms the virus uses to enter epithelial cells. Entry was slow and asynchronous likely due to several structural alterations, which needed to occur on the cell exterior. Interestingly, the virus hijacked a potentially novel pathway of endocytosis for entry, which was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC requirements. This cellular mechanism may also be used by other viruses such as influenza A virus, echo virus 1, and choriomeningitis virus.
Collapse
|
250
|
Meliopoulos VA, Andersen LE, Birrer KF, Simpson KJ, Lowenthal JW, Bean AGD, Stambas J, Stewart CR, Tompkins SM, van Beusechem VW, Fraser I, Mhlanga M, Barichievy S, Smith Q, Leake D, Karpilow J, Buck A, Jona G, Tripp RA. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J 2012; 26:1372-86. [PMID: 22247330 PMCID: PMC3316894 DOI: 10.1096/fj.11-193466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/19/2011] [Indexed: 01/23/2023]
Abstract
Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.
Collapse
Affiliation(s)
| | | | - Katherine F. Birrer
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Department of PathologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - John W. Lowenthal
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Andrew G. D. Bean
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - John Stambas
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Cameron R. Stewart
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - S. Mark Tompkins
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Iain Fraser
- Laboratory of Systems BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Musa Mhlanga
- Gene Expression and Biophysics GroupSynthetic Biology‐Emerging Research Area, Council for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Samantha Barichievy
- Gene Expression and Biophysics GroupSynthetic Biology‐Emerging Research Area, Council for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Queta Smith
- Thermo Fisher ScientificLafayetteColoradoUSA
| | - Devin Leake
- Thermo Fisher ScientificLafayetteColoradoUSA
| | | | - Amy Buck
- Centre for Immunity, Infection, and EvolutionUniversity of EdinburghEdinburghUK
| | - Ghil Jona
- Department of Biological ServicesWeizmann Institute of ScienceRehovotIsrael
| | - Ralph A. Tripp
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|