201
|
Hwang D, Ramsey JD, Makita N, Sachse C, Jordan R, Sokolsky-Papkov M, Kabanov AV. Novel poly(2-oxazoline) block copolymer with aromatic heterocyclic side chains as a drug delivery platform. J Control Release 2019; 307:261-271. [PMID: 31260756 PMCID: PMC7482421 DOI: 10.1016/j.jconrel.2019.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Here we report a novel poly(2-oxazoline)-based block copolymer with the aromatic heterocyclic side chains in one block, poly(2-methyl-2-oxazoline)-b-poly(2-N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl-2-oxazoline) (PMeOx-PcBOx), and demonstrate its potential application as a drug delivery platform. The copolymer was synthesized via the condensation of N,N-dimethylbiguanide with the methyl ester side chain in poly(2-methoxycarboxyethyl-2-oxazoline) block (PMestOx) of the PMeOx-PMestOx diblock copolymer. We confirmed the N,N-dimethylbiguanide condensation with PMestOx and the complete conversion of the side chain to the N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl moiety by NMR spectroscopy, MALDI-TOF mass spectroscopy, UV-Vis spectroscopy, and titration analysis. The PMeOx-PcBOx copolymer self-assemble into polymeric micelles in aqueous solution. Successful encapsulation into these micelles has been demonstrated for 1) several poorly soluble drugs, such as bruceantin and LY2109761, and 2) dichloro(1,2-diaminocyclohexane)platinum(II) (DachPt). The first class of drugs is incorporated possibly via hydrogen bonding and pi-pi interactions with the PcBOx side groups, while the second one is likely forms coordination bonds with the same side groups. The capability of this new copolymer to solubilize a uniquely diverse set of active pharmaceutical ingredients suggests potential applications in drug delivery.
Collapse
Affiliation(s)
- Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Naoki Makita
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Clemens Sachse
- Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
202
|
Co-delivery of paclitaxel and gemcitabine by methoxy poly(ethylene glycol)-poly(lactide-coglycolide)-polypeptide nanoparticles for effective breast cancer therapy. Anticancer Drugs 2019; 29:637-645. [PMID: 29846247 DOI: 10.1097/cad.0000000000000631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional chemotherapeutic drugs have shown limited clinical curative effects in antitumor therapy. The application of multidrug combination and adjuvant-drug carriers is a feasible strategy to overcome the limitations while minimizing the dosage of single drug and acquiring the synergistic effects in tumor therapy. However, the systemic toxicity, drug resistance, and tumor recurrence are still unavoidable. Here we develop core-shell nanoparticles (NPs) to encapsulate paclitaxel (PTX) and gemcitabine (GEM) for breast cancer therapy. We find that the NPs could encapsulate PTX and GEM, with an encapsulation efficiency of 96.3 and 95.13%, respectively. Moreover, the drug loading of these NPs is 2.71% (PTX) and 2.64% (GEM). Notably, the co-delivery of GEM and PTX performs enhanced anticancer effect compared with the PTX alone or GEM alone therapy at the same concentration, which indicates a synergistic effect. Moreover, encapsulation of PTX and GEM by methoxy poly(ethylene glycol)-poly(lactide-coglycolide) also shows enhanced anticancer effects (81.5% tumor inhibition) and reduced systemic toxicity in vivo compared with free drugs (65% tumor inhibition). Together with those results, co-delivery of PTX and GEM by methoxy poly(ethylene glycol)-poly(lactide-coglycolide) might have important potencies in clinical applications for breast cancer therapy.
Collapse
|
203
|
Padmakumar S, Parayath NN, Nair SV, Menon D, Amiji MM. Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release 2019; 305:29-40. [PMID: 31103675 PMCID: PMC6602817 DOI: 10.1016/j.jconrel.2019.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The objective of this study was to evaluate intraperitoneal (IP) metronomic chemotherapy using sustained release paclitaxel (PTX) delivery from electrospun biodegradable polymeric yarns woven into suturable nanotextiles. Following confirmation of in vitro PTX efficacy in ID8-VEGF epithelial ovarian cancer cells, in vivo studies were performed upon surgical peritoneal implantation of nanotextile implants in orthotopic, syngeneic ID8-VEGF tumor-bearing C57BL/6 mice. In comparison to the clinical PTX-solution, there was a significant enhancement of anti-tumor efficacy and safety with PTX-nanotextiles. After 35-days, the peritoneum of tumor-bearing mice with PTX-nanotextiles was completely devoid of tumor nodules and ascitic fluid. Additionally, VEGF levels measured in peritoneal lavage fluid were 300-fold lower compared to PTX-solution and 600-fold lower as compared to untreated tumor-bearing animals. PTX-solution treated group also developed severe metastatic lesions and progressive ascitic fluid buildup. More importantly, no signs of systemic/ organ toxicity were observed in PTX-nanotextile implanted mice, unlike the systemic toxic effects induced by PTX-solution. Collectively, our results show the therapeutic and safety advantages offered by combining clinically translatable metronomic low-dose chemotherapy and IP pharmacokinetics using biodegradable nanotextile implants in addressing the challenges of late-stage ovarian cancer.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
204
|
Sousa DP, Pojo M, Pinto AT, Leite V, Serra AT, Cavaco BM. Nobiletin Alone or in Combination with Cisplatin Decreases the Viability of Anaplastic Thyroid Cancer Cell Lines. Nutr Cancer 2019; 72:352-363. [DOI: 10.1080/01635581.2019.1634745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diana P. Sousa
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana T. Pinto
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| |
Collapse
|
205
|
Zhan Y, DU YT, Yang ZZ, Zhang CL, Qi XR. [Preparation and characterization of paclitaxel microspheres in situ gel and its antitumor efficacy by local injection]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:477-486. [PMID: 31209419 DOI: 10.19723/j.issn.1671-167x.2019.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The current difficulties in the treatment of tumor include repeated administration and high recurrence rate after tumor resection. In order to reduce the number of doses, avoid side effects of chemotherapeutic drugs, suppress tumor growth and delay tumor recurrence after surgery, a temperature-sensitive in situ gel with paclitaxel microspheres (PTX/M gel) was prepared. PTX/M gel was administered by intratumoral injection once a month. METHODS First of all, paclitaxel microspheres (PTX/M) were prepared by emulsion solvent evaporation method. A laser particle size distribution analyzer was used to investigate the size, distribution, specific surface area of microspheres. Paclitaxel content was determined by high performance liquid chromatography (HPLC). Then encapsulation efficiency of paclitaxel was calculated and in vitro release characteristics were studied. Secondly, PTX/M gel was prepared by cold dissolution method. The phase transition temperature, elastic modulus, dissolution curve, correlation between dissolution and release were measured. Finally, U87 MG and 4T1 subcutaneous tumor models were established respectively to study the efficacy of PTX/M gel in suppressing tumor growth and delaying tumor recurrence after surgery. RESULTS The median diameter of the selected PTX/M was (32.24±1.09) μm, the specific surface area was (206.61±10.23) m2/kg, the encapsulation efficiency was 85.29%±1.34%, and the cumulative release percentage of paclitaxel from PTX/M was 33.56%±3.33% in one month. Phase transition temperature of PTX/M gel was 33 °C. The elastic modulus of PTX/M gel at 25 °C and 37 °C were 4.2×103 Pa and 18×103 Pa, respectively. The gel could stay in the body for up to 48 hours. It could be seen from the results of animal experiments that were compared with the saline group and the Taxol group, and the tumor-bearing mice of the PTX/M gel group had the slowest tumor growth (P<0.05). Similarly, in the tumor recurrence experiments, the mice of PTX/M gel group had the latest tumor recurrence after surgery. CONCLUSION As a local sustained-release preparation, PTX/M gel can effectively suppress tumor growth and delay postoperative recurrence of tumors. It has potential advantages in tumor treatment.
Collapse
Affiliation(s)
- Y Zhan
- Department of Pharmaceutics, Peking University School of Pharmaceutical Sciences & Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Beijing 100191, China
| | - Y T DU
- Department of Pharmaceutics, Peking University School of Pharmaceutical Sciences & Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Beijing 100191, China
| | - Z Z Yang
- Department of Pharmaceutics, Peking University School of Pharmaceutical Sciences & Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Beijing 100191, China
| | - C L Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - X R Qi
- Department of Pharmaceutics, Peking University School of Pharmaceutical Sciences & Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Beijing 100191, China
| |
Collapse
|
206
|
Layek B, Sehgal D, Argenta PA, Panyam J, Prabha S. Nanoengineering of Mesenchymal Stem Cells via Surface Modification for Efficient Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Buddhadev Layek
- Department of Experimental and Clinical PharmacologyCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Drishti Sehgal
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Peter A. Argenta
- Division of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Jayanth Panyam
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Swayam Prabha
- Department of Experimental and Clinical PharmacologyCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
207
|
Beckman JA, White CJ. Paclitaxel-Coated Balloons and Eluting Stents: Is There a Mortality Risk in Patients With Peripheral Artery Disease? Circulation 2019; 140:1342-1351. [PMID: 31177820 DOI: 10.1161/circulationaha.119.041099] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paclitaxel drug-coated balloons and drug-eluting stents became commercially available for the treatment of intermittent claudication in 2015 and 2012, respectively. Both devices demonstrated superiority in limb revascularization compared with non-paclitaxel-coated devices and were rapidly accepted into clinical practice. In a recent systematic review and study-level meta-analysis, Katsanos et al reported a late all-cause mortality signal for patients in the drug-coated balloon and drug-eluting stent arms of randomized clinical trials for both devices. As a result of this safety signal, Vascular InterVentional Advances Physicians (VIVA), a not-for-profit 501c(3) organization, convened the Vascular Leaders Forum on March 1 and 2, 2019, in Washington, DC, to initiate an open and collaborative process of investigation into this finding. The Vascular Leaders Forum brought together 100 stakeholders, including an international group of representatives of cardiovascular medicine, interventional radiology, vascular medicine, and vascular surgery; oncologists; basic scientists; the Food and Drug Administration; the Centers for Medicare and Medicaid Services; and commercial manufacturers of these products. The Vascular Leaders Forum reviewed the natural history of peripheral arterial disease, the use of paclitaxel in peripheral arterial disease and other conditions, the harm signal noted by Katsanos et al, the impact of the methods chosen by Katsanos et al, possible mechanisms of harm, the role of the Food and Drug Administration in a setting like this one, and guidance for clinicians taking care of patients with symptomatic peripheral arterial disease. This document integrates the most current data to help establish an appropriate path forward to understand the risks and benefits associated with these technologies while ensuring the best treatment paradigm for patients.
Collapse
|
208
|
Ghoneum M, El-Din NKB, Mahmoud AZ, Tolentino L, Pan D, Hassan TA. Dietary baker's yeast sensitizes Ehrlich mammary adenocarcinoma to paclitaxel in mice bearing tumor. Oncol Rep 2019; 41:3155-3166. [PMID: 31002367 PMCID: PMC6489018 DOI: 10.3892/or.2019.7107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/13/2018] [Indexed: 01/14/2023] Open
Abstract
Baker's yeast, Saccharomyces cerevisiae, has been shown to sensitize a variety of breast cancer cell (BCC) lines to paclitaxel chemotherapy in vitro. The present study evaluated the ability of S. cerevisiae to sensitize BCCs to paclitaxel in animals bearing Ehrlich ascites carcinoma (EAC). Mice bearing EAC were intratumorally injected with dead S. cerevisiae (1x107 cells/ml) in the presence or absence of low- and high-dose paclitaxel [paclitaxel-L, 2 mg/kg body weight (BW) and paclitaxel-H, 10 mg/kg BW, respectively]. At 30 days post tumor inoculation, co-treatment with yeast plus paclitaxel-L showed improvements over paclitaxel-H alone, as measured by tumor weight (-64 vs. -53%), DNA damage (+79 vs. +62%), tumor cell apoptosis (+217 vs. +177%), cell proliferation (-56 vs. -42%) and Ki-67 marker (+95 vs. +40%). Histopathology and ultra-structural examinations showed that yeast plus paclitaxel-L enhanced apoptosis in EAC more than paclitaxel-H alone and caused comparable tumor necrosis. We conclude that baker's yeast may be used with low-dose chemotherapy to achieve the same potency as high-dose chemotherapy in mice bearing EAC. This suggests that baker's yeast may be an anticancer adjuvant and may have clinical implications for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Surgery, Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Nariman K. Badr El-Din
- Department of Zoology, Faculty of Science, University of Mansoura, Mansoura 35516, Egypt
| | - Ashraf Z. Mahmoud
- Urology and Nephrology Center, University of Mansoura, Mansoura 35516, Egypt
| | - Lucilene Tolentino
- Department of Pathology, Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Deyu Pan
- Department of Preventive and Social Medicine, Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Tahia Ali Hassan
- Department of Zoology, Faculty of Science, University of Mansoura, Mansoura 35516, Egypt
| |
Collapse
|
209
|
Ash GI, Kim D, Choudhury M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol Metab 2019; 30:369-383. [PMID: 31126754 PMCID: PMC6716370 DOI: 10.1016/j.tem.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology to medicine promises a wide range of new tools and possibilities, from earlier diagnostics and improved imaging, to better, more efficient, and more targeted therapies. This emerging field could help address obesity, with advances in drug delivery, nutraceuticals, and genetic and epigenetic therapeutics. Its application to obesity is still largely in the development phase. Here, we review the novel angle of nanotech applied to human consumable products and their specific applications to addressing obesity through nutraceuticals, with respect to benefits and limitations of current nanotechnology methods. Further, we review potential future applications to deliver genetic and epigenetic miRNA therapeutics. Finally, we discuss future directions, including theranostics, combinatory therapy, and personalized medicine.
Collapse
Affiliation(s)
- Garrett I Ash
- School of Nursing, Yale University, West Haven, CT, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
210
|
A Review of Self-Expanding Esophageal Stents for the Palliation Therapy of Inoperable Esophageal Malignancies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9265017. [PMID: 31080835 PMCID: PMC6475558 DOI: 10.1155/2019/9265017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/09/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer is a very deadly disease, killing more than 15,000 people in the United States annually. Almost 400,000 new cases happen in the worldwide every year. More than 50% esophageal cancer patients are diagnosed at an advanced stage when they need an esophageal stent to open the blocked esophagus for feeding and drinking. Esophageal stents have evolved in stages over the years. Current clinically used stents commonly include stainless steel or nitinol self-expandable metallic stent (SEMS) and self-expandable plastic stent (SEPS). There are many choices of different types of stents and sizes, with fierce competition among manufacturers. However, current stent technology, whether uncovered, partially covered, fully covered SEMS or SEPS, has their own advantages to solve the dysphagia, stricture, and fistula problems, but they also cause some clinical complications. The ideal stent remains elusive. New 3D printing technique may bring new promising potential to manufacturing personalized esophageal stents. Drug-eluting stents could be the new avenue to do more than just pry open a stricture or cover a defect in the esophageal lumen, a possibility of proving local anticancer therapy simultaneously. Additionally, the lack of esophageal cancer animal models also hinders the progress of stent development. This paper reviews these topics for a comprehensive understanding of this field. In a conclusion, the ultimate goal of the future esophageal stent would have multifunction to treat the underlying conditions and restore esophageal function to near normal.
Collapse
|
211
|
Dhanasekaran S. Augmented cytotoxic effects of paclitaxel by curcumin induced overexpression of folate receptor-α for enhanced targeted drug delivery in HeLa cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:279-285. [PMID: 30668349 DOI: 10.1016/j.phymed.2018.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND New targeted therapies are intended to minimize the toxic effects and maximize destruction of tumor cells. Folate is a membrane-bound receptor that plays a vital role in the uptake of anti-folate molecules aimed for efficient drug delivery of anti-folate drugs. PURPOSE The present study is aimed at the modulation of the expression of folate receptor by curcumin that enhances the intake, cytotoxicity and anticancer effects of paclitaxel in HeLa cells. MATERIALS AND METHODS HeLa cells were pretreated with curcumin and treated with paclitaxel. We measured the cell viability, uptake of radiolabelled folic acid and paclitaxel, Folate receptor -alpha (FR-α) protein expression by immunocytochemistry and western blot and FR-α mRNA expression by qualitative and quantitative analysis. RESULTS This study shows that curcumin (10 - 50 µM) causes significantly increased cytotoxicity in a dose and time dependent manner. It also enhances the intake of radiolabeled folic acid and paclitaxel 3-4 folds in HeLa cells. The pretreatment of HeLa cells with curcumin shows statistically significant of cell death by paclitaxel. The quantitative RT-PCR demonstrates the expression of FR- α mRNA upon curcumin treatment. Furthermore, immunochemistry and western blotting analysis proved that curcumin enhances expression the FR- α in HeLa cells. CONCLUSION Our study proved that the molecular mechanism of curcumin enhances the upregulation of FR - α mRNA and protein expression in HeLa cells. Therefore, a combination of curcumin and paclitaxel at less concentration may be a targeting strategy for FR-targeted drug delivery providing a better therapeutic intervention of cancer.
Collapse
Affiliation(s)
- Sugapriya Dhanasekaran
- Department of Medical Laboratory Sciences (Pathology), College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Wadi-Al Dawaser Campus, Riyadh Province, Saudi Arabia.
| |
Collapse
|
212
|
Fratantonio D, Molonia MS, Bashllari R, Muscarà C, Ferlazzo G, Costa G, Saija A, Cimino F, Speciale A. Curcumin potentiates the antitumor activity of Paclitaxel in rat glioma C6 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:23-30. [PMID: 30668434 DOI: 10.1016/j.phymed.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 08/06/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Glioma is the most common primary cancer in central nervous system, especially in brain. Paclitaxel (PTX) is a microtubule stabilizing agent with anticancer potential, but its clinical application to brain tumours is limited by drug resistance, side effects, and lower brain penetration. PURPOSE Herein we explored the in vitro effects, in glioma C6 cells, of the combination of PTX with curcumin, a natural compound with chemotherapeutic activity, in order to improve cytotoxic effects and overcome PTX limitations. RESULTS Our data confirmed PTX antiproliferative activity that was improved by curcumin. These effects were confirmed by clonogenic assay and G0/G1 cell cycle arrest. PTX significantly promoted generation of intracellular reactive species (RS), while curcumin did not affect RS production; the combination of the two drugs resulted in a slight but significant increase in RS levels. Furthermore, we found a constitutive activation of NF-κB in C6 cell line that was inhibited by PTX and curcumin. Interestingly, combination of the drugs totally inhibited NF-κB nuclear translocation and reduced IκB phosphorylation. Our results also supported the involvement of p53-p21 axis in the anticancer effects of curcumin and PTX. The combination of the two drugs further increased p53 and p21 levels enhancing the antiproliferative effects. Furthermore, PTX plus curcumin most impressively activated caspase-3, effector of apoptosis pathways, and reduced the expression of the anti-apoptotic protein Bcl-2. CONCLUSION In conclusion, our findings demonstrated that combination of PTX and curcumin exerts a potentiated anti-glioma efficacy in vitro that may help in reducing dosage and/or minimizing side effects of cytotoxic therapy.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Romina Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Dept. of Human Pathology, Center of Research Cell Factory UniMe, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Dept. of Human Pathology, Center of Research Cell Factory UniMe, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
213
|
Zeng QZ, Yang F, Li CG, Xu LH, He XH, Mai FY, Zeng CY, Zhang CC, Zha QB, Ouyang DY. Paclitaxel Enhances the Innate Immunity by Promoting NLRP3 Inflammasome Activation in Macrophages. Front Immunol 2019; 10:72. [PMID: 30761140 PMCID: PMC6361797 DOI: 10.3389/fimmu.2019.00072] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Microtubules play critical roles in regulating the activation of NLRP3 inflammasome and microtubule-destabilizing agents such as colchicine have been shown to suppress the activation of this inflammasome. However, it remains largely unknown whether paclitaxel, a microtubule-stabilizing agent being used in cancer therapy, has any influences on NLRP3 inflammasome activation. Here we showed that paclitaxel pre-treatment greatly enhanced ATP- or nigericin-induced NLRP3 inflammasome activation as indicated by increased release of cleaved caspase-1 and mature IL-1β, enhanced formation of ASC speck, and increased gasdermin D cleavage and pyroptosis. Paclitaxel time- and dose-dependently induced α-tubulin acetylation in LPS-primed murine and human macrophages and further increased ATP- or nigericin-induced α-tubulin acetylation. Such increased α-tubulin acetylation was significantly suppressed either by resveratrol or NAD+ (coenzyme required for deacetylase activity of SIRT2), or by genetic knockdown of MEC-17 (gene encoding α-tubulin acetyltransferase 1). Concurrently, the paclitaxel-mediated enhancement of NLRP3 inflammasome activation was significantly suppressed by resveratrol, NAD+, or MEC-17 knockdown, indicating the involvement of paclitaxel-induced α-tubulin acetylation in the augmentation of NLRP3 inflammasome activation. Similar to paclitaxel, epothilone B that is another microtubule-stabilizing agent also induced α-tubulin acetylation and increased NLRP3 inflammasome activation in macrophages in response to ATP treatment. Consistent with the in vitro results, intraperitoneal administration of paclitaxel significantly increased serum IL-1β levels, reduced bacterial burden, dampened infiltration of inflammatory cells in the liver, and improved animal survival in a mouse model of bacterial infection. Collectively, our data indicate that paclitaxel potentiated NLRP3 inflammasome activation by inducing α-tubulin acetylation and thereby conferred enhanced antibacterial innate responses, suggesting its potential application against pathogenic infections beyond its use as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Qiong-Zhen Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fan Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng-Yi Mai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Ying Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Cheng-Cheng Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
214
|
Kayssi A, Al‐Jundi W, Papia G, Kucey DS, Forbes T, Rajan DK, Neville R, Dueck AD. Drug-eluting balloon angioplasty versus uncoated balloon angioplasty for the treatment of in-stent restenosis of the femoropopliteal arteries. Cochrane Database Syst Rev 2019; 1:CD012510. [PMID: 30684445 PMCID: PMC6353053 DOI: 10.1002/14651858.cd012510.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stents are placed in the femoropopliteal arteries for numerous reasons, such as atherosclerotic disease, the need for dissection, and perforation of the arteries, and can become stenosed with the passage of time. When a stent develops a flow-limiting stenosis, this process is known as "in-stent stenosis." It is thought that in-stent restenosis is caused by a process known as "intimal hyperplasia" rather than by the progression of atherosclerotic disease. Management of in-stent restenosis may include performing balloon angioplasty, deploying another stent within the stenosed stent to force it open, and creating a bypass to deliver blood around the stent. The role of drug-eluting technologies, such as drug-eluting balloons (DEBs), in the management of in-stent restenosis is unclear. Drug-eluting balloons might function by coating the inside of stenosed stents with cytotoxic chemicals such as paclitaxel and by inhibiting the hyperplastic processes responsible for in-stent restenosis. It is important to perform this systematic review to evaluate the efficacy of DEB because of the potential for increased expenses associated with DEBs over uncoated balloon angioplasty, also known as plain old balloon angioplasty (POBA). OBJECTIVES To assess the safety and efficacy of DEBs compared with uncoated balloon angioplasty in people with in-stent restenosis of the femoropopliteal arteries as assessed by criteria such as amputation-free survival, vessel patency, target lesion revascularization, binary restenosis rate, and death. We define "in-stent restenosis" as 50% or greater narrowing of a previously stented vessel by duplex ultrasound or angiography. SEARCH METHODS The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to November 28, 2017. Review authors also undertook reference checking to identify additional studies. SELECTION CRITERIA We included all randomized controlled trials that compared DEBs versus uncoated balloon angioplasty for treatment of in-stent restenosis in the femoropopliteal arteries. DATA COLLECTION AND ANALYSIS Two review authors (AK, WA) independently selected appropriate trials and performed data extraction, assessment of trial quality, and data analysis. The senior review author (AD) adjudicated any disagreements. MAIN RESULTS Three trials that randomized a combined total of 263 participants met the review inclusion criteria. All three trials examined the treatment of symptomatic in-stent restenosis within the femoropopliteal arteries. These trials were carried out in Germany and Austria and used paclitaxel as the agent in the drug-eluting balloons. Two of the three trials were industry sponsored. Two companies manufactured the drug-eluting balloons (Eurocor, Bonn, Germany; Medtronic, Fridley, Minnesota, USA). The trials examined both anatomical and clinical endpoints. We noted heterogeneity in the frequency of bailout stenting deployment between studies as well as in the dosage of paclitaxel applied by the DEBs. Using GRADE assessment criteria, we determined that the certainty of evidence presented was very low for the outcomes of amputation, target lesion revascularization, binary restenosis, death, and improvement of one or more Rutherford categories. Most participants were followed up to 12 months, but one trial followed participants for up to 24 months.Trial results show no difference in the incidence of amputation between DEBs and uncoated balloon angioplasty. DEBs showed better outcomes for up to 24 months for target lesion revascularization (odds ratio (OR) 0.05, 95% confidence Interval (CI) 0.00 to 0.92 at six months; OR 0.24, 95% CI 0.08 to 0.70 at 24 months) and at six and 12 months for binary restenosis (OR 0.28, 95% CI 0.14 to 0.56 at six months; OR 0.34, 95% CI 0.15 to 0.76 at 12 months). Participants treated with DEBs also showed improvement of one or more Rutherford categories at six and 12 months (OR 1.81, 95% CI 1.02 to 3.21 at six months; OR 2.08, 95% CI 1.13 to 3.83 at 12 months). Data show no clear differences in death between DEBs and uncoated balloon angioplasty. Data were insufficient for subgroup or sensitivity analyses to be conducted. AUTHORS' CONCLUSIONS Based on a meta-analysis of three trials with 263 participants, evidence suggests an advantage for DEBs compared with uncoated balloon angioplasty for anatomical endpoints such as target lesion revascularization (TLR) and binary restenosis, and for one clinical endpoint - improvement in Rutherford category post intervention for up to 24 months. However, the certainty of evidence for all these outcomes is very low due to the small number of included studies and participants and the high risk of bias in study design. Adequately powered and carefully constructed randomized controlled trials are needed to adequately investigate the role of drug-eluting technologies in the management of in-stent restenosis.
Collapse
Affiliation(s)
- Ahmed Kayssi
- Sunnybrook Health Sciences Centre, University of TorontoDivision of Vascular SurgeryRoom H2872075 Bayview AvenueTorontoONCanadaM4N 3M5
| | - Wissam Al‐Jundi
- Sunnybrook Health Sciences Centre, University of TorontoDivision of Vascular SurgeryRoom H2872075 Bayview AvenueTorontoONCanadaM4N 3M5
| | - Giuseppe Papia
- Sunnybrook Health Sciences Centre, University of TorontoDivision of Vascular SurgeryRoom H2872075 Bayview AvenueTorontoONCanadaM4N 3M5
| | - Daryl S Kucey
- Sunnybrook Health Sciences Centre, University of TorontoDivision of Vascular SurgeryRoom H2872075 Bayview AvenueTorontoONCanadaM4N 3M5
| | - Thomas Forbes
- Toronto General Hospital, University of TorontoDivision of Vascular Surgery200 Elizabeth Street, Eaton North 6‐222TorontoCanadaM5G 2C4
| | - Dheeraj K Rajan
- University of TorontoDivision of Vascular and Interventional RadiologyNCSB 1C‐553, 585 University AvenueTorontoONCanadaM5G 2N2
| | - Richard Neville
- Inova Heart and Vascular Institute3300 Gallows RoadFalls Church, VirginiaUSA22042
| | - Andrew D Dueck
- Sunnybrook Health Sciences Centre, University of TorontoDivision of Vascular SurgeryRoom H2872075 Bayview AvenueTorontoONCanadaM4N 3M5
| | | |
Collapse
|
215
|
Sales ME, Español AJ, Salem AR, Pulido PM, Sanchez Y, Sanchez F. Role of Muscarinic Acetylcholine Receptors in Breast Cancer: Design of Metronomic Chemotherapy. CURRENT CLINICAL PHARMACOLOGY 2019; 14:91-100. [PMID: 30501602 PMCID: PMC7011678 DOI: 10.2174/1574884714666181203095437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND muscarinic acetylcholine receptors (mAChRs) have attracted interest as targets for therapeutic interventions in different illnesses like Alzheimer´s disease, viral infections and different tumors. Regarding the latter, many authors have studied each subtype of mAChRs, which seem to be involved in the progression of distinct types of malignancies. METHODS We carefully revised research literature focused on mAChRs expression and signaling as well as in their involvement in cancer progression and treatment. The characteristics of screened papers were described using the mentioned conceptual framework. RESULTS Muscarinic antagonists and agonists have been assayed for the treatment of tumors established in lung, brain and breast with beneficial effects. We described an up-regulation of mAChRs in mammary tumors and the lack of expression in non-tumorigenic breast cells and normal mammary tissues. We and others demonstrated that muscarinic agonists can trigger anti-tumor actions in a dose-dependent manner on tumors originated in different organs like brain or breast. At pharmacological concentrations, they exert similar effects to traditional chemotherapeutic agents. Metronomic chemotherapy refers to the administration of anti-cancer drugs at low doses with short intervals among them, and it is a different regimen applied in cancer treatment reducing malignant growth and angiogenesis, and very low incidence of adverse effects. CONCLUSION The usage of subthreshold concentrations of muscarinic agonists combined with conventional chemotherapeutic agents could be a promising tool for breast cancer therapy.
Collapse
Affiliation(s)
- María E. Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alejandro J. Español
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Agustina R. Salem
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paola M. Pulido
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Y. Sanchez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco Sanchez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
216
|
Abtouche S, Issad-Elkebich M, Brahimi M, Assfeld X. Complexation of Ca2+ cation by the lateral chain of Paclitaxel (N-Benzoyl-ß-phenylisoserine): A theoretical study. COMPUT THEOR CHEM 2018; 1146:1-9. [DOI: 10.1016/j.comptc.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
217
|
Strobel HA, Qendro EI, Alsberg E, Rolle MW. Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Front Pharmacol 2018; 9:1329. [PMID: 30519186 PMCID: PMC6259603 DOI: 10.3389/fphar.2018.01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Collapse
Affiliation(s)
- Hannah A. Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elisabet I. Qendro
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marsha W. Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
218
|
Carboplatin– Angelica gigas Nakai combination synergistically enhances apoptosis by suppressed Akt, Erk, and Stat3 expression in H460 human lung cancer cells. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218805343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The lower potency of low dose of carboplatin often requires combination with other drugs to improve its efficacy. Newer and more potent carboplatin-based combination therapies are investigated for treatment. We investigated whether paclitaxel, carboplatin, and Angelica gigas Nakai (AGN) affect viability of H460 cells by MTT assay. Western blot analysis was used to measure the expression of various modulators, such as p-Stat3, p-Akt, and p-Erk. Paclitaxel, carboplatin, and AGN affected the viability of H460 cells. Paclitaxel, carboplatin, and AGN suppressed p-Akt, p-Erk, and p-Stat3 expression. AGN combined with carboplatin significantly decreased c-Jun, HIF-1α, and VEGF levels. AGN combined with carboplatin significantly increased p21 and p27 levels and suppressed cyclin D1 and cyclin E levels. AGN combined with carboplatin-induced apoptosis by increasing Bax and cleavage of caspase and Parp level and by suppressing Bcl-2 level. Our results clearly demonstrate that AGN combined with carboplatin could be a useful compound for treating lung cancer.
Collapse
|
219
|
Su J, Yan Y, Song J, Li J, Mao J, Wang N, Wang W, Du FK. Recent Fragmentation May Not Alter Genetic Patterns in Endangered Long-Lived Species: Evidence From Taxus cuspidata. FRONTIERS IN PLANT SCIENCE 2018; 9:1571. [PMID: 30429863 PMCID: PMC6220038 DOI: 10.3389/fpls.2018.01571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Forestland fragmentation caused by overexploitation of forest resources can in principle reduce genetic diversity, limit gene flow and eventually lead to species developing strong genetic structure. However, the genetic consequences of recent anthropogenic fragmentation of tree species remain unclear. Taxus cuspidata, which has extremely small populations distributed mainly in Changbai Mt. in Northeast (NE) China, has recently endured severe habitat fragmentation. Here, we investigate the pattern of genetic diversity and structure, identify risk factors, predict the future distribution and finally provide guidelines for the conservation and management of this species. We used three chloroplast and two mitochondrial DNA fragments, which are both paternally inherited in yews but differ in mutation rates, to genotype a total of 265 individuals from 26 populations covering the distribution of the species in China. Both chloroplast and mitochondrial data showed high degrees of genetic diversity, extensive gene flow over the entire geographical range and historical stability of both effective population size and distribution of the species. However, ecological niche modeling suggests a decrease in suitable areas for this species by the years 2050 and 2070. The maintenance of high genetic diversity and the existence of sufficient gene flow suggest that recent fragmentation has not affected the genetic composition of the long-lived tree T. cuspidata. However, severe impacts of anthropogenic activities are already threatening the species. Conservation and management strategies should be implemented in order to protect the remnant populations.
Collapse
Affiliation(s)
- Jinyuan Su
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yu Yan
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jia Song
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Junqing Li
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianfeng Mao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenting Wang
- School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, China
| | - Fang K. Du
- The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
220
|
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol 2018; 9:1116. [PMID: 30319428 PMCID: PMC6168623 DOI: 10.3389/fphar.2018.01116] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been evaluated for their potential to be used as drug delivery vehicles. Synthetically personalized exosome mimetics (EMs) could be the alternative vesicles for drug delivery. In this study, we aimed to isolate EMs from human MSCs. Cells were mixed with paclitaxel (PTX) and PTX-loaded EMs (PTX-MSC-EMs) were isolated and evaluated for their anticancer effects against breast cancer. EMs were isolated from human bone marrow-derived MSCs. MSCs (4 × 106 cells/mL) were mixed with or without PTX at different concentrations in phosphate-buffered saline (PBS) and serially extruded through 10-, 5-, and 1-μm polycarbonate membrane filters using a mini-extruder. MSCs were centrifuged to remove debris and the supernatant was filtered through a 0.22-μm filter, followed by ultracentrifugation to isolate EMs and drug-loaded EMs. EMs without encapsulated drug (MSC-EMs) and those with encapsulated PTX (PTX-MSC-EMs) were characterized by western blotting, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). The anticancer effects of MSC-EMs and PTX-MSC-EMs were assessed with breast cancer (MDA-MB-231) cells both in vitro and in vivo using optical imaging. EMs were isolated by the extrusion method and ultracentrifugation. The isolated vesicles were positive for membrane markers (ALIX and CD63) and negative for golgi (GM130) and endoplasmic (calnexin) marker proteins. NTA revealed the size of MSC-EM to be around 149 nm, while TEM confirmed its morphology. PTX-MSC-EMs significantly (p < 0.05) decreased the viability of MDA-MB-231 cells in vitro at increasing concentrations of EM. The in vivo tumor growth was significantly inhibited by PTX-MSC-EMs as compared to control and/or MSC-EMs. Thus, MSC-EMs were successfully isolated using simple procedures and drug-loaded MSC-EMs were shown to be therapeutically efficient for the treatment of breast cancer both in vitro and in vivo. MSC-EMs may be used as drug delivery vehicles for breast cancers.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
221
|
Li F, Zhang H, He M, Liao J, Chen N, Li Y, Zhou S, Palmisano M, Yu A, Pai MP, Yuan H, Sun D. Different Nanoformulations Alter the Tissue Distribution of Paclitaxel, Which Aligns with Reported Distinct Efficacy and Safety Profiles. Mol Pharm 2018; 15:4505-4516. [PMID: 30180593 DOI: 10.1021/acs.molpharmaceut.8b00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that different paclitaxel formulations produce distinct anticancer efficacy and safety profiles in animals and humans. This study aimed to investigate the distinct pharmacokinetics and tissue distribution of various nanoformulations of paclitaxel, which may translate into potential differences in safety and efficacy. Four nanoparticle formulations ( nab-paclitaxel, mouse albumin nab-paclitaxel [m -nab-paclitaxel], micellar paclitaxel, and polymeric nanoparticle paclitaxel) as well as solvent-based paclitaxel were intravenously administered to mice. Seventeen blood and tissue samples were collected at different time points. The total paclitaxel concentration in each tissue specimen was measured with liquid chromatography-tandem mass spectrometry. Compared with solvent-based paclitaxel, all four nanoformulations demonstrated decreased paclitaxel exposure in plasma. All nanoformulations were associated with paclitaxel blood-cell accumulation in mice; however, m- nab-paclitaxel was associated with the lowest accumulation. Five minutes after dosing, the total paclitaxel in the tissues and blood was approximately 44% to 57% of the administered dose of all paclitaxel formulations. Paclitaxel was primarily distributed to liver, muscle, intestine, kidney, skin, and bone. Compared with solvent-based paclitaxel, the different nanocarriers altered the distribution of paclitaxel in all tissues with distinct paclitaxel concentration-time profiles. nab-paclitaxel was associated with increased delivery efficiency of paclitaxel in the pancreas compared with the other formulations, consistent with the demonstrated efficacy of nab-paclitaxel in pancreatic cancer. All the nanoformulations led to high penetration in the lungs and fat pad, which potentially points to efficacy in lung and breast cancers. Micellar paclitaxel and polymeric nanoparticle paclitaxel were associated with high paclitaxel accumulation in the heart; thus, the risk of cardiovascular toxicity with these formulations may warrant further investigation. The solvent-based formulation was associated with the poorest paclitaxel penetration in all tissues and the lowest tissue-to-plasma ratio. The different nanocarriers of paclitaxel were associated with distinct pharmacokinetics and tissue distribution, which largely align with the observed efficacy and toxicity profiles in clinical trials.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Nianhang Chen
- Translational Development and Clinical Pharmacology , Celgene Corporation , 86 Morris Avenue , Summit , New Jersey 07901 , United States
| | - Yan Li
- Translational Development and Clinical Pharmacology , Celgene Corporation , 86 Morris Avenue , Summit , New Jersey 07901 , United States
| | - Simon Zhou
- Translational Development and Clinical Pharmacology , Celgene Corporation , 86 Morris Avenue , Summit , New Jersey 07901 , United States
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology , Celgene Corporation , 86 Morris Avenue , Summit , New Jersey 07901 , United States
| | - Alex Yu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 1600 Huron Parkway, North Campus Research Complex, Building 520 , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
222
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
223
|
Abstract
Spherical nucleic acids (SNAs) are highly oriented, well organized, polyvalent structures of nucleic acids conjugated to hollow or solid core nanoparticles. Because they can transfect many tissue and cell types without toxicity, induce minimum immune response, and penetrate various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier), they have become versatile tools for the delivery of nucleic acids, drugs, and proteins for various therapeutic purposes. This article describes the unique structures and properties of SNAs and discusses how these properties enable their application in gene regulation, immunomodulation, and drug and protein delivery. It also summarizes current efforts towards clinical translation of SNAs and provides an expert opinion on remaining challenges to be addressed in the path forward to the clinic.
Collapse
Affiliation(s)
- Chintan H Kapadia
- Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jilian R Melamed
- Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center and Research Institute, Newark, DE, 19713, USA.
| |
Collapse
|
224
|
Moore KN, Vergote I, Oaknin A, Colombo N, Banerjee S, Oza A, Pautier P, Malek K, Birrer MJ. FORWARD I: a Phase III study of mirvetuximab soravtansine versus chemotherapy in platinum-resistant ovarian cancer. Future Oncol 2018; 14:1669-1678. [DOI: 10.2217/fon-2017-0646] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mirvetuximab soravtansine, an antibody–drug conjugate that binds with high affinity to folate receptor-α to provide tumor-directed delivery of the potent microtubule-disrupting agent DM4, has emerged as a promising investigational agent for the treatment of ovarian cancer, particularly in the setting of platinum-resistant disease. Here we describe the rationale and design of FORWARD I (NCT02631876), the first randomized, multicenter Phase III study to compare the safety and efficacy of mirvetuximab soravtansine versus investigator's choice of chemotherapy in women with folate receptor-α-positive, platinum-resistant epithelial ovarian, primary peritoneal or fallopian tube cancer. Patients will be randomized in a 2:1 ratio. The primary end point is progression-free survival, and key secondary objectives include comparison of overall response rates, overall survival and duration of response.
Collapse
Affiliation(s)
- Kathleen N Moore
- Department of Obstetrics & Gynecology, Stephenson Oklahoma Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignace Vergote
- Gynaecological Oncology, Leuven Cancer Institute, Leuven 3000, Belgium
| | - Ana Oaknin
- Medical Oncology Department, Vall D'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Nicoletta Colombo
- Gynecologic Oncology, The European Institute of Oncology, Milan 20141, Italy
| | - Susana Banerjee
- Gynaecology Unit, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Amit Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto M5G 2M9, Canada
| | - Patricia Pautier
- Department of Adult Medicine, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Karim Malek
- Clinical Development, ImmunoGen, Inc., Waltham, MA 02451, USA
| | - Michael J Birrer
- Division of Hematology–Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
225
|
Shashni B, Nagasaki Y. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer. Biomaterials 2018; 178:48-62. [PMID: 29908344 DOI: 10.1016/j.biomaterials.2018.05.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The critical importance of reactive oxygen species (ROS) as oncogene activators and essential secondary messengers in cancer cell survival have been widely reported. Since oxidative stress has been implicated as being pivotal in various cancers, antioxidant therapy seems an apt strategy to abrogate ROS-mediated cellular processes to attenuate cancers. We therefore synthesized ROS scavenging nitroxide radical-containing nanoparticles (RNPs); pH insensitive RNPO and pH sensitive RNPN, to impede the proliferative and metastatic characteristics of the triple negative breast cancer cell line, MDA-MB-231, both in vitro and in vivo. RNPs significantly curtailed the proliferative and clonogenic potential of MDA-MB-231 and MCF-7 cell lines. Inhibition of ROS-mediated migratory and invasive characteristics of MDA-MB-231, via down regulation of NF-κB and MMP-2, was also confirmed. Furthermore, a significant anti-tumor and anti-metastatic potential of RNPs was observed in an MDA-MB-231 mouse xenograft model. Such tumoricidal effects of RNPs were attained with negligible adverse effects, compared to conventional low molecular weight antioxidants, TEMPOL. Thus, the tumoricidal effects of RNPs are suggestive of insights on precedence of nanoparticle-based therapeutics over current low molecular weight antioxidants to curtail ROS-induced tumorigenesis of various cancers.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotope and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
226
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
227
|
Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC. Enzyme-MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:5725-5730. [PMID: 29536600 PMCID: PMC6621563 DOI: 10.1002/anie.201801378] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Indexed: 11/08/2022]
Abstract
Prodrug activation, by exogenously administered enzymes, for cancer therapy is an approach to achieve better selectivity and less systemic toxicity than conventional chemotherapy. However, the short half-lives of the activating enzymes in the bloodstream has limited its success. Demonstrated here is that a tyrosinase-MOF nanoreactor activates the prodrug paracetamol in cancer cells in a long-lasting manner. By generating reactive oxygen species (ROS) and depleting glutathione (GSH), the product of the enzymatic conversion of paracetamol is toxic to drug-resistant cancer cells. Tyrosinase-MOF nanoreactors cause significant cell death in the presence of paracetamol for up to three days after being internalized by cells, while free enzymes totally lose activity in a few hours. Thus, enzyme-MOF nanocomposites are envisioned to be novel persistent platforms for various biomedical applications.
Collapse
Affiliation(s)
- Xizhen Lian
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Yanyan Huang
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Yuanyuan Zhu
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Yu Fang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Rui Zhao
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Elizabeth Joseph
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University College Station, TX 77843-2128 (USA); Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| |
Collapse
|
228
|
Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC. Enzyme-MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801378] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xizhen Lian
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yuanyuan Zhu
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yu Fang
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Elizabeth Joseph
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
| | - Jialuo Li
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
| | - Jean-Philippe Pellois
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX 77843-2128 USA
| | - Hong-Cai Zhou
- Department of Chemistry; Texas A&M University; College Station TX 77843-3255 USA
| |
Collapse
|
229
|
Liaskoni A, Angelopoulou A, Voulgari E, Popescu MT, Tsitsilianis C, Avgoustakis K. Paclitaxel controlled delivery using a pH-responsive functional-AuNP/block-copolymer vesicular nanocarrier composite system. Eur J Pharm Sci 2018; 117:177-186. [PMID: 29477643 DOI: 10.1016/j.ejps.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Paclitaxel (PTX)-loaded gold nanoparticles functionalized with mercaptooctanoic acid (MOA) and folic acid (FA) (AuMOA-FA) were encapsulated within pH-sensitive poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP-PEO) vesicles with the aim to develop a more selective injectable nano-formulation for PTX, lacking the side effects of the conventional PTX delivery system. The size of the resulting composite vesicles was lower than 200 nm, i.e. it is suitable for tumor targeting applications taking advantage of the enhanced permeability and retention (EPR) effect. The vesicles did not aggregate in the presence of high electrolyte concentrations, indicating the colloidal stability of the vesicles. The vesicles did not leak their AuMOA-FA or PTX content at physiological pH of 7.4. However, AuMOA-FA and PTX release were significantly accelerated at acidic pHs resembling tumor environment and acidic intracellular compartments. PTX release from the vesicles at acidic pH apparently follows AuMOA-FA release from the vesicles. Flow cytometry measurements and confocal laser scanning microscopy images showed that the vesicles could enter A549 cancer cells in culture and that cellular uptake increased with time. Blank vesicles did not exhibit cytotoxicity and did not induce apoptosis in A549 cancer cells. The PTX currying vesicles exhibited comparable or a little higher cytotoxicity than free PTX. Both the PTX currying vesicles and free PTX induced A549 cells apoptosis, however the vesicle-encapsulated PTX induced a higher percentage of late apoptotic cells than free PTX.
Collapse
Affiliation(s)
- Athina Liaskoni
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Athina Angelopoulou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Efstathia Voulgari
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | | | | | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
230
|
Gajski G, Ladeira C, Gerić M, Garaj-Vrhovac V, Viegas S. Genotoxicity assessment of a selected cytostatic drug mixture in human lymphocytes: A study based on concentrations relevant for occupational exposure. ENVIRONMENTAL RESEARCH 2018; 161:26-34. [PMID: 29100207 DOI: 10.1016/j.envres.2017.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Cytostatic drugs are highly cytotoxic agents used in cancer treatment and although their benefit is unquestionable, they have been recognized as hazardous to healthcare professionals in occupational settings. In a working environment, simultaneous exposure to cytostatics may occur creating a higher risk than that of a single substance. Hence, the present study evaluated the combined cyto/genotoxicity of a mixture of selected cytostatics with different mechanisms of action (MoA; 5-fluorouracil, cyclophosphamide and paclitaxel) towards human lymphocytes in vitro at a concentration range relevant for occupational as well as environmental exposure. The results suggest that the selected cytostatic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. This indicates not only that such mixture may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the prediction of toxicity in a complex working environment. The presence of drugs in different amounts and with different MoA suggests the need to study the relationship between the presence of genotoxic components in the mixture and the resulting effects, taking into account the MoA of each component by itself. Therefore, this study provides new data sets necessary for scientifically-based risk assessments of cytostatic drug mixtures in occupational as well as environmental settings.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Carina Ladeira
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Grupo de Investigação em Genética e Metabolismo, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Susana Viegas
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
231
|
Maleki Vareki S, Salim KY, Danter WR, Koropatnick J. Novel anti-cancer drug COTI-2 synergizes with therapeutic agents and does not induce resistance or exhibit cross-resistance in human cancer cell lines. PLoS One 2018; 13:e0191766. [PMID: 29364966 PMCID: PMC5783418 DOI: 10.1371/journal.pone.0191766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
Emerging drug-resistance and drug-associated toxicities are two major factors limiting successful cancer therapy. Combinations of chemotherapeutic drugs have been used in the clinic to improve patient outcome. However, cancer cells can acquire resistance to drugs, alone or in combination. Resistant tumors can also exhibit cross-resistance to other chemotherapeutic agents, resulting in sub-optimal treatment and/or treatment failure. Therefore, developing novel oncology drugs that induce no or little acquired resistance and with a favorable safety profile is essential. We show here that combining COTI-2, a novel clinical stage agent, with multiple chemotherapeutic and targeted agents enhances the activity of these drugs in vitro and in vivo. Importantly, no overt toxicity was observed in the combination treatment groups in vivo. Furthermore, unlike the tested chemotherapeutic drugs, cancer cells did not develop resistance to COTI-2. Finally, some chemo-resistant tumor cell lines only showed mild cross-resistance to COTI-2 while most remained sensitive to it.
Collapse
Affiliation(s)
- Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Kowthar Y. Salim
- Cotinga Pharmaceuticals (formerly Critical Outcome Technologies Inc.), London, Ontario, Canada
| | - Wayne R. Danter
- Cotinga Pharmaceuticals (formerly Critical Outcome Technologies Inc.), London, Ontario, Canada
| | - James Koropatnick
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
232
|
Xu Y, Shen M, Li Y, Sun Y, Teng Y, Wang Y, Duan Y. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells. Oncotarget 2018; 7:20890-901. [PMID: 26956046 PMCID: PMC4991499 DOI: 10.18632/oncotarget.7896] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relatively uniform diameter of 206.3 ± 14.7 nm. The NPs showed sustained release character. Cytotoxicity assays showed the best synergistic effects were achieved when the weight ratios of PTX to TMZ were 1:5 and 1:100 on U87 and C6 cells, respectively. PTX/TMZ-NPs showed better inhibition effect to U87 and C6 cells than single drug NPs or free drugs mixture. PTX/TMZ-NPs (PTX: TMZ was 1:5(w/w)) significantly inhibited the tumor growth in the subcutaneous U87 mice model. These results indicate that coordinate administration of PTX and TMZ combined with NPs is an efficient method for glioblastoma.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yiming Li
- Department of Ultrasound, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yanwei Teng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yi Wang
- Department of Ultrasound, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| |
Collapse
|
233
|
Liu KF, Liu YX, Dai L, Li CX, Wang L, Liu J, Lei JD. A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody-4arm-polyethylene glycol-pterostilbene conjugates for co-delivery of anticancer drugs. J Mater Chem B 2018; 6:656-665. [PMID: 32254494 DOI: 10.1039/c7tb02485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, antibody-drug conjugates (ADC) have shown potential for cancer immunotherapy by tumor-targeted delivery of anticancer drugs. However, the development of ADC is subject to many restrictions, such as the payloads, stabilities and intracellular uptake of the drugs, which has greatly restricted their clinical application. To overcome these hurdles, in this study, a novel pH-sensitive targeted nanoparticle platform based on a newly synthesized amphipathic antibody-drug conjugate (antibody-4arm-polyethylene glycol-pterostilbene, mAb-4arm-PEG-PS) was fabricated for co-delivery of another anticancer drug (10-hydroxy camptothecin, HCPT). The prepared mAb-4arm-PEG-PS/HCPT nanoparticles (NPs) had a moderate particle size (∼120 nm), a high drug to antibody ratio (∼22.4) and relatively high binary drug loading capacity (∼24.2 wt% HCPT, ∼2.9 wt% PS). Moreover, the mAb-4arm-PEG-PS/HCPT NPs exhibited enhanced intracellular uptake (∼5 fold that of mAb-4arm-PEG-PS conjugates) and excellent cytotoxicity in vitro. In subsequent Daudi lymphoma xenograft assays, compared with free drugs and mAb-4arm-PEG-PS conjugates, the mAb-4arm-PEG-PS/HCPT NPs inhibited tumor growth more efficiently. Our results indicated the great potential of mAb-4arm-PEG-PS/HCPT NPs for targeted co-delivery of anticancer drugs to solid tumors.
Collapse
Affiliation(s)
- Ke-Feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
234
|
Nazıroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol 2017; 8:1040. [PMID: 29326595 PMCID: PMC5733463 DOI: 10.3389/fphys.2017.01040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold temperature. Accumulating evidences indicates that antagonists of TRPA1 and TRPM8 may protect against cisplatin, oxaliplatin, and paclitaxel-induced mitochondrial oxidative stress, inflammation, cold allodynia, and hyperalgesia. TRPV1 was responsible from the cisplatin-induced heat hyperalgesia and mechanical allodynia in the sensory neurons. TRPA1, TRPM8, and TRPV2 protein expression levels were mostly increased in the dorsal root (DRG) and trigeminal ganglia by these treatments. There is a debate on direct or oxaliplatin-induced oxidative cold stress dependent TRPA1 and TRPV4 activation in the DRG. Involvement of molecular pathways such as cysteine groups, glutathione metabolism, anandamide, cAMP, lipopolysaccharide, proteinase-activated receptor 2, and mitogen-activated protein kinase were also indicated in the oxaliplatin and paclitaxel-induced cold allodynia. In this review, we summarized results of five temperature-regulated TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as novel targets for treating chemotherapy-induced peripheral pain
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
235
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
236
|
Leiva MC, Ortiz R, Contreras-Cáceres R, Perazzoli G, Mayevych I, López-Romero JM, Sarabia F, Baeyens JM, Melguizo C, Prados J. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Sci Rep 2017; 7:13506. [PMID: 29044153 PMCID: PMC5647375 DOI: 10.1038/s41598-017-13816-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/29/2017] [Indexed: 01/24/2023] Open
Abstract
Paclitaxel (PTX) is one of the drugs of choice in the treatment of breast and lung cancer. However, its severe side effects, including mielosuppression, cardiotoxicity and neurotoxicity, frequently cause treatment to be discontinued. Solid lipid nanoparticles (NPs) of glyceril tripalmitate (tripalmitin) loaded with PTX (Tripalm-NPs-PTX) including modifications by the addition of hexa(ethylene glycol), β-cyclodextrin and macelignan were developed. All NPs-PTX formulations displayed excellent hemocompatibility and significantly enhanced PTX antitumor activity in human breast (MCF7, MDAMB231, SKBR3 and T47D) and lung (A549, NCI-H520 and NCI-H460) cancer cells. Tripalm-NPs-PTX decreased PTX IC50 by as much as 40.5-fold in breast and 38.8-fold in lung cancer cells and Tripalm-NPs-PTX macelignan inhibited P-glycoprotein in resistant tumor cells. In addition, Tripalm-NPs-PTX significantly decreased the volume of breast and lung multicellular tumor spheroids that mimics in vivo tumor mass. Finally, Tripalm-NPs-PTX decreased the PTX IC50 of cancer stem cells (CSCs) derived from both lung and breast cancer cells (6.7- and 14.9-fold for MCF7 and A549 CSCs, respectively). These results offer a new PTX nanoformulation based on the use of tripalmitin which improves the antitumor activity of PTX and that may serve as an alternative PTX delivery system in breast and lung cancer treatment.
Collapse
Affiliation(s)
- María Carmen Leiva
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Health Science, University of Jaén, 23071, Jaén, Spain
| | | | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Iryna Mayevych
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Juan Manuel López-Romero
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain.
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Jose Manuel Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| |
Collapse
|
237
|
Giacone DV, Carvalho VFM, Costa SKP, Lopes LB. Evidence That P-glycoprotein Inhibitor (Elacridar)-Loaded Nanocarriers Improve Epidermal Targeting of an Anticancer Drug via Absorptive Cutaneous Transporters Inhibition. J Pharm Sci 2017; 107:698-705. [PMID: 28935591 DOI: 10.1016/j.xphs.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy.
Collapse
Affiliation(s)
- Daniela V Giacone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa F M Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
238
|
Huang S, Wang D, Zhang S, Huang X, Wang D, Ijaz M, Shi Y. Tunicamycin potentiates paclitaxel-induced apoptosis through inhibition of PI3K/AKT and MAPK pathways in breast cancer. Cancer Chemother Pharmacol 2017; 80:685-696. [DOI: 10.1007/s00280-017-3393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
239
|
Patient-centered drug delivery and its potential applications for unmet medical needs. Ther Deliv 2017; 8:775-790. [DOI: 10.4155/tde-2017-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pharmaceutical dosage forms address diverse key components but satisfying unmet patient needs to enhance patient adherence is a major challenge. The desired design of patient-centered drug products should be based on characteristics of various components, such as patients, disease, routes of administration, drug delivery technologies and active pharmaceutical ingredients. Understanding of targeting patients and their physiological and biological environments is pivotal for developing suitable patient-centered drug products. In this review, key components of an ideal drug delivery system were considered. Then, stepwise approaches for designing patient-centered drug products were suggested. Finally, various case studies are also presented and considered to develop models of patient-centered drug products.
Collapse
|
240
|
Nabavinia MS, Gholoobi A, Charbgoo F, Nabavinia M, Ramezani M, Abnous K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med Res Rev 2017; 37:1518-1539. [PMID: 28759115 DOI: 10.1002/med.21462] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
Mucin 1 (MUC1) is a protein usually found on the apical surface of most normal secretory epithelial cells. However, in most adenocarcinomas, MUC1 is overexpressed, so that it not only appears over the entire cell surface, but is also shed as MUC1 fragments into the blood stream. These phenomena pinpoint MUC1 as a potential target for the diagnosis and treatment of cancer; consequently, interest has increased in MUC1 as a molecular target for overcoming cancer therapy challenges. MUC1 currently ranks second among 75 antigen candidates for cancer vaccines, and different antibodies or aptamers against MUC1 protein are proving useful for tracing cancer cells in the emerging field of targeted delivery. The unique properties of MUC1 aptamers as novel targeting agents, and the revolutionary role that MUC1 now plays in cancer therapy, are the focus of this review. Recent advancements in MUC1-targeted cancer therapy are also assessed.
Collapse
Affiliation(s)
- Maryam Sadat Nabavinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Charbgoo
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
241
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
242
|
Ding L, Wang Q, Shen M, Sun Y, Zhang X, Huang C, Chen J, Li R, Duan Y. Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy. Autophagy 2017; 13:1176-1190. [PMID: 28594260 DOI: 10.1080/15548627.2017.1320634] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although the treatments of malignant glioma include surgery, radiotherapy and chemotherapy by oral drug administration, the prognosis of patients with glioma remains very poor. We developed a polyethylene glycol-dipalmitoylphosphatidyle- thanoiamine (mPEG-DPPE) calcium phosphate nanoparticles (NPs) injectable thermoresponsive hydrogel (nanocomposite gel) that could provide a sustained and local delivery of paclitaxel (PTX) and temozolomide (TMZ). In addition, the proportion of PTX and TMZ for the optimal synergistic antiglioma effect on C6 cells was determined to be 1:100 (w/w) by the Chou and Talalay method. Our results clearly indicated that the autophagy induced by PTX:TMZ NPs plays an important role in regulating tumor cell death, while autophagy inhibition dramatically reverses the antitumor effect of PTX:TMZ NPs, suggesting that antiproliferative autophagy occurs in response to PTX:TMZ NPs treatment. The antitumor efficacy of the PTX:TMZ NP-loaded gel was evaluated in situ using C6 tumor-bearing rats, and the PTX:TMZ NP-loaded gel exhibited superior antitumor performance. The antitumor effects of the nanocomposite gel in vivo were shown to correlate with autophagic cell death in this study. The in vivo results further confirmed the advantages of such a strategy. The present study may provide evidence supporting the development of nanomedicine for potential clinical application.
Collapse
Affiliation(s)
- Li Ding
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Qi Wang
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Ming Shen
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Ying Sun
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Xiangyu Zhang
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Can Huang
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jianhua Chen
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Rongxin Li
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yourong Duan
- a State Key Laboratory of Oncogenes and Related Genes , School of Biomedical Engineering, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
243
|
Fang M, Song T, Liang X, Lv S, Li J, Xu H, Luo L, Jia Y. Comparative study of cisplatin-based definitive concurrent chemoradiotherapy with S-1 versus paclitaxel for unresectable locally advanced esophageal squamous cell carcinoma. Oncotarget 2017; 8:37080-37090. [PMID: 28415745 PMCID: PMC5514892 DOI: 10.18632/oncotarget.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
This study compared the efficiency and safety of definitive concurrent chemoradiotherapy (CCRT) using Paclitaxel plus Cisplatin (TP) versus S-1 plus Cisplatin (CS) in unresectable locally advanced esophageal squamous cell carcinoma (LAESCC). Between January 2009 and December 2013, 203 LAESCC patients were retrospectively reviewed. We performed a propensity score matching analysis; 41 patients treated with the CS regimen were matched 1:1 to patients who received the TP regimen. Patient- and disease-related characteristics were well-balanced between the two groups. The CS group showed significantly better treatment compliance (90.2% vs. 70.7%, P = 0.026) and less hospital stay (48 days vs 49 days, P = 0.025) over the TP group during the CCRT course. The complete response rate was comparable between the two groups (51.2% vs. 48.8%, P = 0.825). The 1- and 3-year overall survival (OS) rates in the TP group were 63.4% and 32.4% compared to 62.8% and 32.1% in the CS group, respectively (P = 0.796). The 1- and 3-year progression-free survival (PFS) rates in the TP group were 51.2% and 24.9%, compared to 53.6% and 18.9% in the CS group, respectively (P = 0.630). The incidence of severe and total neutropenia in the TP group was significantly higher compared to the CS group (P = 0.011 and 0.046, respectively). Multivariate analysis revealed that T stage and the complete response rate were strong prognostic factors associated with OS and PFS. In conclusion, both treatment regimens yielded satisfactory survival outcomes, but the CS regimen could significantly improve treatment compliance, reduce hematological toxicities and lengths of hospital stay. Future prospective studies in large cohorts are highly warranted to confirm the findings in our report.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Tao Song
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Xiaodong Liang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Shiliang Lv
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Jianbo Li
- Department of Radiation Oncology, Ningbo Mingzhou Hospital, Ningbo 315000, Zhejiang, P. R. China
| | - Hong’en Xu
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Limin Luo
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| | - Yongshi Jia
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, P. R. China
| |
Collapse
|
244
|
Paclitaxel: What has been done and the challenges remain ahead. Int J Pharm 2017; 526:474-495. [DOI: 10.1016/j.ijpharm.2017.05.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/17/2022]
|
245
|
Chung HH, Chen MK, Chang YC, Yang SF, Lin CC, Lin CW. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1765-1774. [PMID: 28181379 DOI: 10.1002/tox.22399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is one of the most common cancers worldwide, and metastasis is recognized as a major factor causing its low survival rate. The inhibition of metastasis progress and the improvement of the survival rate for oral cancer are critical research objectives. Leucaena leucocephala from the mimosa branch Leucaena genus is native to Central and South America and has been used as a traditional remedy for treating various disorders. Previous studies have demonstrated antioxidant, anti-inflammatory as well as anticancer properties of L. leucocephala plant materials. However, the molecular mechanism underlying the anticancer effect induced by L. leucocephala remains unclear. In this study, we investigated the effect of L. leucocephala extract (LLE) on SCC-9 and SAS oral cancer cells and examined the potential inhibitory mechanisms involved. The results indicated that LLE attenuated the migration and invasion abilities of both SCC-9 and SAS cells by reducing the activity and protein expression of matrix metalloproteinases-2 (MMP-2). Regarding mitogen-activated protein kinase (MAPK) pathways, the phosphorylation of ERK1/2 and p38 exhibited a significant inhibitory effect in the presence of LLE. The application of ERK inhibitor and p38 inhibitor confirmed that both signalling transduction pathways were involved in the inhibition of cell metastasis. These data indicate that L. leucocephala could be a potent therapeutic agent for the prevention and treatment of oral cancer and a prominent plant source for anticancer research in the future.
Collapse
Affiliation(s)
- Hsiao-Hang Chung
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Chieh Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
246
|
Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front Pharmacol 2017; 8:261. [PMID: 28559844 PMCID: PMC5432624 DOI: 10.3389/fphar.2017.00261] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of RajasthanKishangarh, India
| |
Collapse
|
247
|
|
248
|
Manning T, Plummer S, Woods R, Wylie G, Phillips D, Krajewski L. Cell line studies and analytical measurements of three paclitaxel complex variations. Bioorg Med Chem Lett 2017; 27:2793-2799. [PMID: 28495086 DOI: 10.1016/j.bmcl.2017.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
The copper(II) cation, sucrose, and hydroxychloroquine were complexed with the chemotherapy agent paclitaxel and studied for medicinal activity. Data (GI50, LD50) from single dose and five dose National Cancer Institute sixty cell line panels are presented. Analytical measurements of different complexes were made using Nuclear Magnetic Resonance (1H NMR), Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) and Fourier Transform-Ion Cyclotron Resonance (FT-ICR). Molecular modeling is utilized to better understand the impact that species could have on physical parameters associated with Lipinski's Rule of Five, such as logP and TPSA. On average, Cu(II) and hydroxychloroquine decreased GI50 values, while sucrose increased GI50 values of paclitaxel.
Collapse
Affiliation(s)
- Thomas Manning
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States.
| | - Sydney Plummer
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Rechelle Woods
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Greg Wylie
- NMR Facility, Department of Chemistry, Texas A&M, College Station, TX 77843, United States
| | - Dennis Phillips
- PAMS Facility, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Logan Krajewski
- ICR Facility, National High Field Magnet Lab, Tallahassee, FL 32310, United States
| |
Collapse
|
249
|
Song Y, Cao W, Zhu X, Qiu Z, Yang X, Liu J, Xu R, Yuan W, Quan S. F10, a novel hydatidiform mole-associated gene, inhibits the paclitaxel sensitivity of A549 lung cancer cells by downregulating BAX and caspase-3. Oncol Lett 2017; 13:2563-2568. [PMID: 28454434 PMCID: PMC5403314 DOI: 10.3892/ol.2017.5749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
F10 is a novel hydatidiform mole (HM)-associated gene that was initially identified during a study into the pathogenesis of HMs. However, the role of the F10 gene requires further investigation. Our, previous studies have indicated that F10 may be involved in the malignant transformation of HMs and the development of certain types of adenocarcinoma, and that the overexpression of F10 may lead to excessive proliferation and decreased apoptosis of A549 cells. The present study aimed to investigate whether F10 may suppress the sensitivity of A549 lung cancer cells to paclitaxel therapy. A previously established F10-overexpressing A549 cell line (A549-F10) was treated with paclitaxel, using untransfected A549 cells and A549-mock cells (non-carrier A549) as the controls. These three groups of cells were subsequently examined by an MTT cell proliferation assay and a TUNEL-fluorescein isothiocyanate/Hoechst 33258 apoptosis assay. A western blot analysis was used to determine the expression levels of the pro-apoptotic genes B-cell lymphoma-2-associated X protein (BAX) and caspase-3. The effects of paclitaxel treatment on the proliferation and apoptosis of A549 cells were compared between the aforementioned cell lines. It was revealed that F10 inhibited the chemosensitivity of A549 cells to paclitaxel, as demonstrated by the decreased rates of growth inhibition and apoptosis in the A549-F10 group compared with the two control groups. Furthermore, the A549-F10 cells treated with paclitaxel exhibited significantly lower expression levels of the pro-apoptotic genes. The results of the current study demonstrate that F10 may inhibit the chemosensitivity of A549 cells to paclitaxel and that this inhibitory effect may be mediated by the downregulation of BAX and caspase-3 expression, which subsequently inhibits cell apoptosis.
Collapse
Affiliation(s)
- Yali Song
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Cao
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuolin Qiu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ruoting Xu
- Department of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weizhuang Yuan
- Department of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
250
|
Kayssi A, Al-Jundi W, Papia G, Kucey DS, Forbes T, Rajan DK, Neville R, Dueck AD. Drug-eluting balloon angioplasty versus uncoated balloon angioplasty for the treatment of in-stent restenosis of the femoropopliteal arteries. Hippokratia 2017. [DOI: 10.1002/14651858.cd012510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed Kayssi
- Sunnybrook Health Sciences Centre, University of Toronto; Division of Vascular Surgery; Room H185 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| | - Wissam Al-Jundi
- Sunnybrook Health Sciences Centre, University of Toronto; Division of Vascular Surgery; Room H185 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| | - Giuseppe Papia
- Sunnybrook Health Sciences Centre, University of Toronto; Division of Vascular Surgery; Room H185 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| | - Daryl S Kucey
- Sunnybrook Health Sciences Centre, University of Toronto; Division of Vascular Surgery; Room H185 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| | - Thomas Forbes
- Toronto General Hospital, University of Toronto; Division of Vascular Surgery; 200 Elizabeth Street, Eaton North 6-222 Toronto Canada M5G 2C4
| | - Dheeraj K Rajan
- University of Toronto; Division of Vascular and Interventional Radiology; NCSB 1C-553, 585 University Avenue Toronto ON Canada M5G 2N2
| | - Richard Neville
- Inova Heart and Vascular Institute; 3300 Gallows Road Falls Church, Virginia USA 22042
| | - Andrew D Dueck
- Sunnybrook Health Sciences Centre, University of Toronto; Division of Vascular Surgery; Room H185 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| |
Collapse
|